• International Journal of Technology (IJTech)
  • Vol 6, No 4 (2015)

The adsorption Properties of Surface-Modified Mesoporous Silica Materials with ß-Cylodextrin

The adsorption Properties of Surface-Modified Mesoporous Silica Materials with ß-Cylodextrin

Title: The adsorption Properties of Surface-Modified Mesoporous Silica Materials with ß-Cylodextrin
Lee D. Wilson, Sarker T. Mahmud

Corresponding email:

Published at : 27 Oct 2015
Volume : IJtech Vol 6, No 4 (2015)
DOI : https://doi.org/10.14716/ijtech.v6i4.2036

Cite this article as:

Wilson, L.D., Mahmud, S.T., 2015. The adsorption Properties of Surface-Modified Mesoporous Silica Materials with ß-Cylodextrin. International Journal of Technology. Volume 6(4), pp. 533-545

Lee D. Wilson Department of Chemistry, University of Saskatchewan, Saskatoon, SK. S7N 5C9 Canada
Sarker T. Mahmud Department of Chemistry, University of Saskatchewan, Saskatoon, SK. S7N 5C9 Canada
Email to Corresponding Author

The adsorption Properties of Surface-Modified Mesoporous Silica Materials with ß-Cylodextrin

The adsorption properties of surface-modified mesoporous silica materials containing ?-cyclodextrin (CD ICS) were studied using two types of gas phase adsorbates (N2 and CH3Cl), along with a dye molecule (p-nitrophenol; PNP) in an aqueous solution. The CD ICS materials possess an ordered silica mesostructure framework that depends on the type of surfactant template and the level of loading of ?-CD. Incremental variations in the uptake of gas phase adsorbates and PNP from an aqueous solution were observed, according to the composition of CD ICS materials. For materials with similar CD loading, the surface area (SA) and pore volume doubled, as the surfactant from dodecylamine to hexadecylamine was varied. The SA of the CD ICS materials decreased by ca. 1.5-fold as the CD loading varied from 2% to 6%. The sorption capacity (Qe; mmol/g) of PNP increased from 61% to 84% as the CD loading increased from 2% to 6% and as the alkyl chain length of the surfactant template varied from C12 to C16. The adsorption properties of CD ICS materials with CH3Cl in the gas phase and for PNP in aqueous solution adopt a multi-layer adsorption profile, as described by the BET isotherm model.

4-Nitrophenol, Adsorption, ?-Cyclodextrin, Methyl Chloride, Mesoporous Silica, Surface functionalization


Alam M.A., Al-Jenoobi F.I., Al-Mohizea A.M., 2013. Commercially Bioavailable Proprietary Technologies and their Marketed Products. Drug Discovery Today, Volume 18(19?20), 936?49

Atkins, P., de Paula J., 2009. Physical Chemistry (9th Edition), New York, NY, W.H. Freeman

Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T. W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., Schlenker, J.L., 1992. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc., Volume 114, pp. 10834?10843

Bergna, H.E., Roberts, W.O. (Eds.), 2005. Colloidal Silica: Fundamentals and Applications. Surfactant Science Series, Volume 131, Boca Raton, Florida: Crc Taylor & Francis

Bibby A., Mercier L., 2003. Adsorption and Separation of Water-soluble Aromatic Molecules by Cyclodextrin-functionalized Mesoporous Silica. Green Chem., Volume 5, pp. 15–19

Cejka, J., Corma, A., Zones, S. (Eds.), 2010. Zeolites and Catalysis: Synthesis, Reactions and Applications, KGaA Weinheim: John Wiley & Sons

Crini, G., 2014. A History of Cyclodextrins. Chem. Rev., Volume 114(21), pp. 10940?10975

Crini, G., Morcellet, M., 2002. Synthesis and Applications of Adsorbents Containing Cyclodextrins. J. Sep. Sci., Volume 25, pp. 789–813

Hatton, B., Landskron, K., Whitnall, W., Perovic, D., Ozin, G.A., 2005. Past Present and Future of Mesoporous Organosilicas. The Pmos. Acc. Chem. Res., Volume 38, pp. 305?312

Huq, R., Mercier, L., Kooyman, P.J., 2001. Incorporation of Cyclodextrin into Mesostructured Silica. Chem. Mater., Volume 13, pp. 4512?4519

Levy, D., Zayat, M. (Eds.), 2015. The Sol-Gel Handbook: Synthesis, Characterization and Applications, Volume 1?3, Weinheim, Germany: Wiley-Vch

Lim, M.H., Blanford, C.F., Stein, A., 1998. Synthesis of Ordered Microporous Silicates with Organosulfur Surface Groups and their Applications as Solid Acid Catalysts. Chem. Mater., Volume 10, pp. 467?470

Lim, M.H., Stein, A., 1999. Comparative Studies of Grafting and Direct Synthesis of Inorganic?organic Hybrid Mesoporous Materials. Chem. Mater., Volume 11, pp. 3285?3295

Liu, C., Lambert, J.B., Fu, L., 2004. Simple Surfactant-free Route to Mesoporous Organic-inorganic Hybrid Silicas Containing Covalently Bound Cyclodextrins. J. Org. Chem., Volume 69, pp. 2213?2216

Liu, C., Lambert, J.B., 2004. Self-templation Synthesis of Mesoporous Organosilicas Containing Covalently Bound Cyclodextrins Polymer Preprints, Polymer Preprints –America, Volume 45(2), pp. 746?747

Mahmud, S.T., 2007. Studies of Cyclodextrin Functionalized Silica Materials. M.Sc. Thesis. Saskatoon, SK.: University Of Saskatchewan

Mitzi. D.B. (Ed.), 2008. Solution Processing of Inorganic Materials. Hoboken, New Jersey: John Wiley & Sons

Mohamed, M.H., Wilson, L.D., Headley, J.V., Peru, K.M., 2015. Thermodynamic Properties of Inclusion Complexes Between ?-Cyclodextrin and Naphthenic Acid Fraction Components. Energy and Fuels, Volume 29(6), pp. 3591–3600

Mohamed, M.H., Wilson, L.D., Headley, J.V., 2010. Estimation of Surface Accessibility of ?-Cyclodextrin in Cyclodextrin-copolymer Materials. Carbohydr. Polym., Volume 80, pp. 186?196

Morin-Crini, N., Crini, G., 2013. Environmental Applications of Water Insoluble ?-Cyclodextrin?Epichlorohydrin Polymers. Prog. Polym. Sci., Volume 38(2), pp. 344?368

Pratt, D.Y., Wilson, L.D., Kozinski, J.A., Morhart, A., 2010. Preparation and Sorption Studies of Carbohydrate Polymers. J. Appl. Polym. Sci., Volume 116, pp. 2892?2989

Qu, J., 2008. Research Progress of Novel Adsorption Processes in Water Purification: A Review. J. Environ. Sci., Volume 20, pp. 1–13

Rurack, K., Martinez-Manez, R. (Eds.), 2010. The Supramolecular Chemistry of Organic-inorganic Hybrid Materials, Usa: John Wiley & Sons

Udoetok, I.A., Dimmick, R.M., Wilson, L.D., Headley, J.V., 2016. Adsorption Properties of Cross-linked Cellulose-Epichlorohydrin Polymers in Aqueous Solution. Carbohydrate Polymers, In Press, pp. 1?12

Tanev, P.T.; Pinnavaia, T.J. Mesoporous Silica Molecular Sieves Prepared by Ionic and Neutral Surfactant Templating: A Comparison of Physical Properties, Chem. Mater. Volume 1996(8), pp. 2068?2079

Valtchev, V., Mintova, S., Tsapatsis, M. (Eds.) 2011.Ordered Porous Solids: Recent Advances and Prospects, Amsterdam, The Netherlands: Elsevier

van De Manakker, F., Vermonden, T., Van Nostrum, C.F., Hennink, W.E., 2009. Cyclodextrin-based Polymeric Materials: Synthesis, Properties, and Pharmaceutical/Biomedical Applications. Biomacromolecules, Volume 10(12), pp. 3157?3175

Wilson, L.D., Guo, R., 2012. Preparation and Sorption Studies of Polyester Copolymers Containing ?-Cyclodextrin. J. Colloid Interface Sci., Volume 387, pp. 250?261

Wilson, L.D., Mohamed, M.H., Guo, R., Pratt, D.Y., Kwon, J.H., Mahmud, S.T., 2010. Sorption of Agrochemical Model Compounds by Sorbent Materials Containing ?-CD. J. Agromedicine - Practice, Policy, & Research, Volume 15(2), pp. 105?116

Wilson, L.D., Mohamed, M.H., Headley, J.V., 2011. Surface Area and Pore Structure Properties of ?-Cyclodextrin-Urethane Copolymer Materials. J. Colloid Interface Sci., Volume 357, pp. 215?222

Wilson, L.D., Mohamed, M.H., Headley, J.V., 2014. Novel Materials for Environmental Remediation of Oil Sands Contaminants. Rev. Environ. Health, Volume 29(1?2), pp. 5?8

Yang, Y-W., Sun, Y-L., Song, N., 2014. Switchable Host-guest Systems on Surfaces. Accounts of Chemical Research, Volume 47(7), pp. 1950?1960

Zolfaghari, G., 2016. b-Cyclodextrin Incorporated Nanoporous Carbon: Host-guest Inclusion for Removal of P-Nitrophenol and Pesticides from Aqueous Solutions. Chemical Engineering Journal, Volume 283, pp. 1424?1434