Published at : 28 Jan 2015
Volume : IJtech
Vol 6, No 1 (2015)
DOI : https://doi.org/10.14716/ijtech.v6i1.783
Isti Surjandari | Department of Industrial Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia |
Amar Rachman | Department of Industrial Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia |
Purdianta | Department of Industrial Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia |
Arian Dhini | Department of Industrial Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia |
Most classical scheduling approaches deal with single products, single machines, and static manufacturing environments. In real-world manufacturing systems, however, scheduling can be assigned for multi-item production on multimachines in a dynamic environment in which unexpected new orders may be received. This paper focuses on scheduling problems in an assembly job shop with parallel machines that produce multi-item multi-level products. Models were developed for due date fulfillment and due date assignment in static and dynamic conditions, with the objectives of minimizing total actual flow time, while considering the defect rate at each stage of the process. The insertion technique was used in the scheduling process; insertion can be performed in batch operations at all available positions on all machines. A hypothetical case of job shop scheduling problems associated with multi-item, multi-level production on parallel machines was studied, and the computational results demonstrated the validity of the proposed algorithms.
Assembly job shop, Batch scheduling, Defect rate, Insertion technique, Total actual flow time
Alvarez, E., Diaz, F., 2004. An Application of a Real-time Scheduling System for Turbulent Manufacturing Environments, Robotics and Computer-Integrated Manufacturing, Volume 20, pp. 485?494
Artigues, C., Michelon, P., Reusser, S., 2003. Insertion Technique for Static and Dynamic Resource-constrained Project Scheduling, European Journal of Operational Research, Volume 149(2), pp. 249?267
Artigues, C., Briand, C., 2009. The Resource-constrained Activity Insertion Problem with Minimum and Maximum Time Lags, Journal of Scheduling, Volume 12, pp. 447–460
Baker, K.R., 1974. Introduction to Sequencing and Scheduling, New York: John Wiley & Sons, Inc.
Baker, K.R., Trietsch, 2009. Principles of Sequencing and Scheduling, New York: John Wiley & Sons, Inc.
Chan, F.T.S., Wong, T.C., Chan, L. Y., 2008. Lot Streaming for Product Assembly in Job Shop Environment, Robotics and Computer-Integrated Manufacturing, Volume 24, pp. 321?331
Cheng, T.C.E., Kang, L., Ng, C.D., 2007. Due Date Assignment and Parallel Machine Scheduling with Deteriorating Jobs, Journal of Operational Research Society, Volume 58, pp. 1103?1108
Dobson, G., Karmarkar, U.S., Rummel, J.L., 1987. Batching to Minimize Flow Times on One Machine, Management Science, Volume 33, pp. 784?799
Halim, A.H., Ohta, H., 1993. Batch Scheduling Problems of Multiple Items through the Flow Shop with Both Receiving and Delivery Just in Time, International Journal of Operation Research, Volume 31, pp. 1943?1955
Leung, J.Y.T., Li, H., Pinedo, M., 2005. Order Scheduling in an Environment with Dedicated Resources in Parallel, Journal of Scheduling, Volume 8, pp. 355?386
Kim, J.G., Lee, D.H., 2008. Algorithms for Common Due-Date Assignment and Sequencing on a Single Machine with Sequence-Dependent Setup Times, Journal of the Operational Research Society, Volume 60, pp. 1264?1272
Ouelhadj, D., Petrovic, S., 2009. A Survey of Dynamic Scheduling in Manufacturing Systems, Journal of Scheduling, Volume 12, pp. 417–431
Saroso, D.M., 2012. Decision Making Models for Quality Improvement, International Journal of Technology, Volume 3(2), pp. 169?181
Shabtay, D., Steiner, G., 2008. Optimal Due Date Assignment in Multi-Machine Scheduling Environments, Journal of Scheduling, Volume 11, pp. 217–228
Shabtay, D., 2010. Scheduling and Due Date Assignment to Minimize Earliness, Tardiness, Holding, Due Date Assignment and Batch Delivery Costs, International Journal of Production Economics, Volume 123, pp. 235?242
Sotskov, Y.N., Tautenhahn, T., Werner, F., 1999. On the Application of Insertion Techniques for Job Shop Problems with Setup Times, RAIRO Operations Research, Volume 33, pp. 209?245
Thiagarajan, S., Rajendran, C., 2005. Scheduling in Dynamic Assembly Job-shops to Minimize the Sum of Weighted Earliness, Weighted Tardiness and Weighted Flow Time of Jobs, Computer and Industrial Engineering, Volume 49, pp. 463?503
Tuong, N.H., Soukhal, A., 2010. Due Dates Assignment and JIT Scheduling with Equal-size Jobs, European Journal of Operational Research, Volume 205, pp. 280–289
Vinod, V., Sridharanl, R., 2011. Simulation Modeling and Analysis of Due-Date Assignment Methods and Scheduling Decision Rules in A Dynamic Job Shop Production System, International Journal of Production Economics, Volume 129, pp. 127?146
Vollmann, T.E., Berry, W.L., Whybark, D.C., Jacobs, F.R., 2005. Manufacturing Planning and Control for Supply Chain Management. New York: McGraw Hill.
Wong, T.C., Chan, F.T.S., Chan, L.Y., 2009. A Resource-Constrained Assembly Job Shop Scheduling Problem with Lot Streaming Technique, Computers and Industrial Engineering, Volume 57, pp. 983?995
Xia,Y., Chen, B., Yue, J., 2008. Job Sequencing and Due Date Assignment in a Single Machine Shop with Uncertain Processing Times, European Journal of Operational Research, Volume 184, pp. 63?75