• International Journal of Technology (IJTech)
  • Vol 5, No 2 (2014)

Synthesis of Titania Nanotubes and Titania Nanowires by Combination Sonication-hydrothermal Treatment and their Photocatalytic Activity for Hydrogen Production

Synthesis of Titania Nanotubes and Titania Nanowires by Combination Sonication-hydrothermal Treatment and their Photocatalytic Activity for Hydrogen Production

Title: Synthesis of Titania Nanotubes and Titania Nanowires by Combination Sonication-hydrothermal Treatment and their Photocatalytic Activity for Hydrogen Production
Indar Kustiningsih, Slamet , Widodo Wahyu Purwanto

Corresponding email:


Published at : 07 Jul 2014
Volume : IJtech Vol 5, No 2 (2014)
DOI : https://doi.org/10.14716/ijtech.v5i2.400

Cite this article as:
Kustiningsih, I., SlametPurwanto, W.W., 2014. Synthesis of Titania Nanotubes and Titania Nanowires by Combination Sonication-hydrothermal Treatment and their Photocatalytic Activity for Hydrogen Production. International Journal of Technology. Volume 5(2), pp. 133-141

1,135
Downloads
Indar Kustiningsih Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI Depok 16424, Indonesia
Slamet Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI Depok 16424, Indonesia
Widodo Wahyu Purwanto Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI Depok 16424, Indonesia
Email to Corresponding Author

Abstract
Synthesis of Titania Nanotubes and Titania Nanowires by Combination Sonication-hydrothermal Treatment and their Photocatalytic Activity for Hydrogen Production

Titania nanotubes (TiO2 NT) and Titania nanowires (TiO2 NW) were fabricated using TiO2 Degussa P25 (TiO2 P25) nanoparticle as precursors via a sonication-hydrothermal combination approach. The prepared catalysts were characterized by means of an X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), ultraviolet-visible diffuse reflectance spectroscopy (DRS) and the Brunauer-Emmett-Teller technique (BET). The photocatalytic activity of prepared catalysts was evaluated for photocatalytic H2 evolution from an aqueous methanol solution. The results showed that activity of the catalyst not only depends on the morphology of its catalysts, but also on the crystalinity and surface area. Hydrogen production of TiO2 NT was about three times higher than TiO2 P25 and TiO2 NW was two times higher than TiO2P25.

Hydrogen production, Nanotubes, Nanowires, Photocatalytic, TiO2

References

Asiah, M.N., Mamat, M.H., Khusaimi, Z., Achoi, M.F., Abdullah, S., Rusop, M., 2013.

Thermal Stability and Phase Transformation of TiO2 Nanowires at Various Temperatures.

Microelectronics Engineering, Volume 108, pp. 134?137

Bavykin, D.V., Friedrich, J.M., Walsh, F.C., 2006. Protonated Titanates and TiO2

Nanostructured Materials: Synthesis, Properties and Application. Adv. Mater. Volume 18,

pp. 2807?2824

Chen, X.B. Mao, S.S., 2007. Titanium Dioxide Nanomaterials: Synthesis, Properties,

Modification and Applications. Chem. Rev. Volume 107, pp. 2891?2959

Costa, L.L., Prado, A.G.S., 2009. TiO2 Nanotubes as Recyclable Catalyst for Efficient

Photocatalytic Degradation of Indigo Carmine Dye. J. Photochem. Photobiol. A. Volume

, pp. 45?49

Dang, H. Dong, Dong, X., Zhang, Y., Hampshire, S., 2013. TiO2 Nanotubes Coupled with

Nano-Cu(OH)2 for Highly Efficient Photocatalytic Hydrogen Production. Int. J. Hydrogen

Energy. Volume 38, pp. 2126?2135

Fujishima, K. Honda., 1972. Electrochemical Photolysis of Water at a Semiconductor

Electrode. Nature Volume 238. pp. 37?38

Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., Dickey, E.C., 2001.

Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation. J. Mater. Res. Volume

, pp. 3331?3334

Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., 1995. Environmental Application

of Semiconductor Photocatalysis. Chem. Rev. Volume 95, pp. 69?96

Jin, Z., Meng, F., Jia, Y., Luo., T., Liu, J., Sun, B., Wang, J., Liu, J., Huang, X., 2013. Porous

TiO2 Nanowires Derived from Nanotubes: Synthesis Characterization and their Enhanced

Photocatalytic Properties. Microporous and Mesoporous Materials. Volume 181, pp.

?153

Jitputti, J., Suzuki, Y., Yoshikawa, S., 2008. Synthesis of TiO2 Nanowires and their

Photocatalytic Activity for Hydrogen Evolution. Catal. Commun . Volume 9, pp.

?1271

Kasuga, T., Hiramatsu., M., Hoson., A., Sekino, T., Nihara, K., 1999. Titania Nanotubes

Prepared by Chemical Processing. Adv. Mater. Volume 11, pp. 1307?1311

Kasuga, T., Hiramatsu., M., Hoson., A., Sekino, T., Nihara, K., 1998. Formation of Titanium

Oxide Nanotubes. Langmuir. Volume 14, pp. 3160?3163

Morales, A.M., Liber, C.M., 1998. A Laser Ablation Method for the Synthesis of Crystalline

Semiconductor Nanowires. Science. Volume 279, pp. 208?211

Morgado, E., de Abreu., M.A.S., Moure., G.T., Marinkovic., B.A., Jardim., P.M., Araujo, A.S.,

Chem. Mater. Volume 19, pp. 665?676

Ou, H.H., Lo, S.L., 2007. Review of Titania Nanotubes Synthesized via the Hydrothermal

Treatment: Fabrication, Modification and Application. Sep. Purif. Technol. Volume 58, pp.

?191

Sreekantan, S., Wei, L.C., 2009. Study on the Formation and Photocatalytic Activity of

Titanate Nanotubes Synthesized via Hydrothermal Method. J Alloy Compd. Volume 1-2,

pp. 436?442

Sun, W., Zhang, S., Liu, Z., Wang, C., Mao, Z., 2006. Studies on the Enhanced Photocatalytic

Hydrogen Evolution Over Pt/PEG?Modified TiO2 Photocatalysts. Int J. Hydrogen Energy.

Volume 31, pp 786?796

Purwanto et al. 141

Sun, Y., Wang., G., Yan, K., 2011. TiO2 Nanotubes for Hydrogen Generation by

Photocatalytic Water Splitting in a Two-compartment Photoelectrochemical Cell. Int. J.

Hydrogen Energy. Volume 36, pp. 15502-15508

Viriya-empikul, N., Charinpanitkul., T., Sano, N., Soottitantawat., A., Kikuchi, T.,

Faungnawakij., K., Tanthapanichakoon, W., 2009. Effect of Reaction and Sonication

Pretreatment in the Hydrothermal Process on the Morphology of Titanate Nanostructure. J

Chem Eng Jpn. Volume 42, pp. 234?237

Wang, D., Zhou, F., Liu., Y., Liu, W., 2008. Synthesis and Characterization of Anatase TiO2

Nanotubes with Uniform Diameter from Titanium Powder. Mater. Lett. Volume 62, pp.

?1822

Wang, F.M., Shi., Z.S., Gong, F., Jiu J.T., Adachi, M., 2007. Morphology Control of Anatase

TiO2 by Surfactant?assisted Hydrothermal Method. Chin. J. Chem. Eng. Volume 15, pp.

?759

Wang, Y.Q., Hu., G.Q., Duan, X.F., Sun., H.L., Xue, Q.K., 2002. Microstructure and

Formation Mechanism of Titanium Oxide Nanotubes. Chem. Phys. Lett. Volume 365, pp.

?431

Weller, H., 1993. Colloidal Semiconductor Q-particles Chemistry in the Transition Region

between Solid State and Molecules Angew. Chem. Int. Ed. Engl. Volume 32, pp. 41?53

Yoong, L.S., Chong, F.K., Duta, B.K., 2009. Development of Copper?doped TiO2

Photocatalyst for Hydrogen Production under Visible Light. Energy. Volume 34, pp.

?1661

Yuan, Z.Y., Su, B. L., 2004. Titanium Oxide Nanotubes, Nanofibers and Nanowires. Colloid

Surface A. Volume 241, pp. 173?183

Zhang, S., Peng, L.M., Chen, Q., Du, G.H., Dawson, G., Zhou, W.Z., 2003. Formation

Mechanism of H2Ti3O7 Nanotubes. Phys. Rev. Lett. Volume 91, pp. 256103

Zhu, Y.C., Li, H.L., Koltypin, Y., Hacohenb, Y.R., 2001. Gedanken Sonochemical Synthesis

of Titania Whiskers and Nanotubes. Chem. Commun. Volume 24, pp. 2616?2617

Zwilling, V., Aucouturier, M., Darque-Ceretti, E., 1999. Anodic Oxidation of Titanium and

TA6V Alloy in Chromic Media, an Electrochemical Approach. Electrochim. Acta. Volume

, pp. 921?929