• International Journal of Technology (IJTech)
  • Vol 5, No 1 (2014)

Simulation and Visualization of Thermal Metaphors in a Virtual Environment for Thermal Building Assessment

Simulation and Visualization of Thermal Metaphors in a Virtual Environment for Thermal Building Assessment

Title: Simulation and Visualization of Thermal Metaphors in a Virtual Environment for Thermal Building Assessment
Yudi Nugraha Bahar, Jérémie Landrieu, Christian Pere, Christophe Nicolle

Corresponding email:


Published at : 27 Jan 2014
Volume : IJtech Vol 5, No 1 (2014)
DOI : https://doi.org/10.14716/ijtech.v5i1.148

Cite this article as:
Bahar, Y.N., Landrieu, J., Pere, C., Nicolle, C., 2014. Simulation and Visualization of Thermal Metaphors in a Virtual Environment for Thermal Building Assessment. International Journal of Technology. Volume 5(1), pp. 3-13

918
Downloads
Yudi Nugraha Bahar Arts et Metiers ParisTech, UMR CNRS 6306, LE2I, Institut Image, Chalon-sur-Saône, France
Jérémie Landrieu Arts et Metiers ParisTech, UMR CNRS 6306, LE2I, Institut Image, Chalon-sur-Saône, France
Christian Pere Arts et Metiers ParisTech, UMR CNRS 6306, LE2I, Institut Image, Chalon-sur-Saône, France
Christophe Nicolle Université de Bourgogne, Laboratoire LE2I, UMR CNRS 6306, Dijon Cedex, France
Email to Corresponding Author

Abstract
Simulation and Visualization of Thermal Metaphors in a Virtual Environment for Thermal Building Assessment

The current application of the design process through energy efficiency in virtual reality (VR) systems is limited mostly to building performance predictions, as the issue of the data formats and the workflow used for 3D modeling, thermal calculation and VR visualization. The importance of energy efficiency and integration of advances in building design and VR technology have lead this research to focus on thermal simulation results visualized in a virtual environment to optimize building design, particularly concerning heritage buildings. The emphasis is on the representation of thermal data of a room simulated in a virtual environment (VE) in order to improve the ways in which thermal analysis data are presented to the building stakeholder, with the aim of increasing accuracy and efficiency. The approach is to present more immersive thermal simulation and to project the calculation results in projective displays particularly in Immersion room (CAVE-like). The main idea concerning the experiment is to provide an instrument of visualization and interaction concerning the thermal conditions in a virtual building. Thus the user can immerge, interact, and perceive the impact of the modifications generated by the system, regarding the thermal simulation results. The research has demonstrated it is possible to improve the representation and interpretation of building performance data, particularly for thermal results using visualization techniques.

Building performance, Thermal metaphor, Virtual environment

References

Aguerreche L, Duval T, Arnaldi B., 2009. Analyse de Techniques de Coopération en Environnements Virtuels 3D, RSTI – TSI. Réalités virtuelle et augmentée Volume 28, pp. 763–793 http://dx.doi.org/10.3166/tsi.28.767-797

Atmaca, I., Kaynakli, O., Yigit, A., 2006. Effects of Radiant Temperature on Thermal Comfort, ScienceDirect – Journal Building and Environment, Elsevier Volume 42, pp. 3210–3220 http://dx.doi.org/10.1016/j.buildenv.2006.08.009

Attia, S., 2010. Building Performance Simulation Tools: Selection Criteria and User Survey. Research Based Report. Architecture et climat, Université catholique de Louvain, Louvain La Neuve, Belgium, pp. 14–27

Bean, R., 2010. Mean Radiant Temperature (MRT), Available online at http://www.healthyheating.com/Definitions/Mean Radiant.htm#.UTB1sFcySpA (Accessed on 23 January 2013)

Bruno, F., Caruso, F., Li, K., Milite, A., Muzzupappa, M., 2008. Dynamic Simulation of Virtual Prototypes in Immersive Environment, Journal of Advance Manufacture Technology – Springer Volume 43, pp. 620–630 http://dx.doi.org/10.1007/s00170-008-1736-6

Clifton, M., Pang, A., 1997. Cutting Planes and Beyond. Journal Computer & Graphics – Elsevier Volume 21(5), pp. 563–575 http://dx.doi.org/10.1016/s0097-8493(97)00036-8

Cormier, A., Robert, S., Roger, P., Stephan, L., Wurtz, E., 2011. Towards a BIM-based Service Oriented Platform: Application to Building Energy Performance Simulation. 12th Conference of International Building Performance Simulation Association, Sydney, pp. 2309–2316

Crawley, D.B., Hand, J.W., Kummert, M., Griffith, B.T., 2008. Contrasting the Capabilities of Building Energy Performance Simulation Programs. Journal Building and Environment – Elsevier, Volume 43, pp. 661–673 http://dx.doi.org/10.1016/j.buildenv.2006.10.027

Dubois, M.C., Horvat, M., 2010. State-of-the-art of Digital Tools Used by Architects for Solar Design. IEA SHC Task 41 – Solar Energy and Architecture, Subtask B – Methods and Tools for Solar Design, pp.22–115

Dong, B., Lam, K.P., Huang, Y.C., Dobbs, G.M., 2007. A Comparative Study of the IFC and gbXML Informational Infrastructures for Data Exchange in Computational Design Support Environments. Proceedings: Building Simulation, pp. 1530–1537

EERE (Energy Efficiency and Renewable Energy), US Department of Energy. Availabel ate http://apps1.eere.energy.gov/buildings/energyplus/weatherdata_about.cfm? (Accessed: 10 December 2012)

Fricoteaux, L., 2010. Conception d’un Environnement Virtuel Informé: Application à la Restitution de Calculs Scientifiques. Rapport d’activités Stage TN10/ST02, l’Université de Technologie de Compiègne, France

Gutierrez, M., Vexo, F., Thalmann, D., 2008. Stepping into Virtual Reality. Springer, London http://dx.doi.org/10.1007/978-1-84800-117-6

Hanam, B., 2010. Development of an Open Source Hourly Building Energy Modeling Software Tool. Thesis Master of Applied Science in Civil Engineering, University of Waterloo, Ontario, Canada, pp. 9–55

Humphreys, M.A., Nicol, J.F., 1998. Understanding the Adaptive Approach to Thermal Comfort. ASHRAE Transactions, Volume 104 (1), pp. 991–1004

Knight, D., Roth, S., Rosen, S.L., 2010. Using BIM in HVAC Design. ASHRAE Journal, Volume 52(6),pp 24–32

Malkawi, A.M., Srinivasan, R.S., 2005. A New Paradigm for Human–Building Interaction: The Use of CFD and Augmented Reality, Volume 14(1), pp. 71–84 http://dx.doi.org/10.1016/j.autcon.2004.08.001

Ter Minassian, H., 2011, La réhabilitation thermique des bâtiments anciens à Paris: comment concilier protection du patrimoine et performance énergétique? Cybergeo: European Journal of Geography, Aménagement, Urbanisme, article 536, 2011. Available online at http://cybergeo.revues.org/23737 (Accessed: 21 January 2013) http://dx.doi.org/10.4000/cybergeo.23737

US GSA, Statsbygg and Senate, 2010. Information Delivery Manual (IDM) for BIM Based Energy Analysis as Part of the Concept Design BIM

Van Treeck, C., Petra, W., Andre, B., Michael, P., Martin, E., Oliver, W., Ernst, R., 2006. Towards Interactive Indoor Thermal Comfort Simulation, European Conference on Computational Fluid Dynamics ECCOMAS CFD

Wagner, A.D., 2010. Revit Architecture+Ecotect.BIM/CAD Camp 2010, US CAD Honolulu Hawai. Available online at www.uscad.com ; www.uscadbim.com (Accessed: 22 January 2013)

Welle, B., Haymaker, J., Rogers, Z., 2011. ThermalOpt: A Methodology for Automated BIM-based Multidisciplinary Thermal Simulation for Use in Optimization Environments, Building Simulation–Tsinghua University Press and Springer–Verlag Berlin Heidelberg 4, pp. 293–313 http://dx.doi.org/10.1007/s12273-011-0052-5

Woksepp, S., Olofsson, T., 2006. Using Virtual Reality in a Large-scale Industry Project. Journal ITcon, Volume 11, pp. 627–640