Published at : 27 Jan 2014
Volume : IJtech
Vol 5, No 1 (2014)
DOI : https://doi.org/10.14716/ijtech.v5i1.154
Chiraz Hannachi | University Tunis EL MANAR, Faculty of Sciences of Tunis, UR11ES17 Treatment and Water Desalination, 2092 Tunis, Tunisia |
Fatma Guesmi | University Tunis EL MANAR, Faculty of Sciences of Tunis, UR11ES17 Treatment and Water Desalination, 2092 Tunis, Tunisia |
Khaoula Missaoui | University Tunis EL MANAR, Faculty of Sciences of Tunis, UR11ES17 Treatment and Water Desalination, 2092 Tunis, Tunisia |
Béchir H amrouni | University Tunis EL MANAR, Faculty of Sciences of Tunis, UR11ES17 Treatment and Water Desalination, 2092 Tunis, Tunisia |
An anion exchange membrane, (AMX) that carries a quaternary ammonium functional group has been investigated for its adsorption of fluoride, nitrate and sulfate from aqueous solutions. Fitting of the Freundlich, Langmuir, and Dubinin–Radushkevich adsorption models to the equilibrium data was performed at different temperatures in the range of 283?313K. The sorption parameters of the studied models were determined by linear regression and discussed. Adsorption analysis results obtained at various temperatures showed that the adsorption pattern on the membrane followed Langmuir isotherms. Thermodynamic studies revealed that the adsorption of the AMX membrane to the studied ions was spontaneous. The 0 ?GT values suggested the affinity order of the membrane for the studied anions. At 283K and 298K, the affinity order was: ? ? ? SO ? NO3 ? F 2 4 . This order was: ? ? ? ? ? 3 2 F SO4 NO at 313K. The standard enthalpy change and the standard entropy change were found to be ?11.63 kJ/mol and ?9.93 J/mol. K for the adsorption of nitrate, 7.42 kJ/mol and 58,73 J/mol. K for the adsorption of sulfate, and 74.21 kJ/mol and 274.9 J/mol. K for the adsorption of fluoride, respectively. The negative values of standard free energy 0 ?GT indicate the spontaneous natures of adsorption of studied anions onto the AMX membrane.
Adsorption models, AMX membrane, Fluoride, Nitrate, Sulfate
Bilgili, M. S., 2006. Adsorption of 4-chlorophenol from Aqueous Solutions by XAD-4 Resin: Isotherm, Kinetic, and Thermodynamic Analysis, Journal of Hazardous Materials, Volume 137, pp.157–164 http://dx.doi.org/10.1016/j.jhazmat.2006.01.005
Chabani, M., Amrane, A., Bensmaili, A., 2006. Kinetic Modelling of the Adsorption of Nitrate by Ion Exchange Resin, Chemical Engineering Journal, Volume 125, pp 111–117 http://dx.doi.org/10.1016/j.cej.2006.08.014
Chabani, M., Amrane, A., Bensmaili, A., 2007. Kinetics of Nitrates Adsorption on Amberlite IRA 400 resin, Desalination, Volume 206, pp. 560–567 http://dx.doi.org/10.1016/j.desal.2006.04.064
Chabani, M., Amrane, A., Bensmaili, A., 2009. Equilibrium Sorption Isotherms for Nitrate on Resin Amberlite IRA 400, Journal of Hazardous Materials, Volume 165, pp. 27–33 http://dx.doi.org/10.1016/j.jhazmat.2008.08.091
Chia-Hung, L., Jeng-Shiou, W., Hsin-Chieh, Ch., Shing-Yi, S., Khim Hoong, Ch., 2007. Removal of Anionic Reactive Dyes from Water using Anion Exchange Membranes as Adsorbers, Water Research, Volume 41, pp. 1491–1500 http://dx.doi.org/10.1016/j.watres.2007.01.023
Dizge, N., Keskinler, B., Barlas, H., 2009. Sorption of Ni(II) Ions from Aqueous Solution by Lewatit Cation Exchange Resin, Journal of Hazardous Materials, Volume 167, pp. 915–926 http://dx.doi.org/10.1016/j.jhazmat.2009.01.073
Do Hee, K., Seung-Hyeon M., Jaeweon, Ch., 2002. Investigation of the Adsorption and Transport of Natural Organic Matter (NOM) in Ion Exchange Membranes, Desalination, Volume 151, pp. 11–20 http://dx.doi.org/10.1016/s0011-9164(02)00968-2
Donat, R., Akdogan, A., Erdem, E., Cetisli, H., 2005. Thermodynamics of Pb2+ and Ni2+, Adsorption onto Natural Bentonite from Aqueous Solutions, Journal of Colloid and Interface Science, Volume 286, pp. 43–52 http://dx.doi.org/10.1016/j.jcis.2005.01.045
Dron, J., Dodi, A., 2011. Comparison of Adsorption Equilibrium Models for the Study of CL?, NO3? and SO42? Removal from Aqueous Solutions by an Anion Exchange Resin, Journal of Hazardous Materials, Volume 190, pp. 300–307 http://dx.doi.org/10.1016/j.jhazmat.2011.03.049
Freundlich, H., 1906. Over the Adsorption in Solution, Journal of Physical Chemistry, Volume 57, pp.385–471
Gonzalez-Munoz, M.J., Rodriguez, M.A., Luque, S., Alvarez, R.J., 2006. Recovery of Heavy Metals from Metal Industry Waste Waters by Chemical Precipitation and Nanofiltration, Desalination, Volume 200, pp. 742–744 http://dx.doi.org/10.1016/j.desal.2006.03.498
Guesmi, F., Hannachi, C., Hamrouni, B., 2010. Effect of Temperature on Ion Exchange Equilibrium between AMX Membrane and Binary Systems of Cl?, NO?3 and SO2?4 ions, Desalination and Water Treatement, Volume 23, pp. 32–38 http://dx.doi.org/10.5004/dwt.2010.1837
Haghshenoa, R., Mohebbia, A., Hashemipoura, H., Sarrafia. A., 2009. Study of Kinetic and Fixed Bed Operation of Removal of Sulfate Anions from Anindustrial Wastewater by an Anion Exchange Resin, Journal of Hazardous Materials, Volume 166, pp. 961–966 http://dx.doi.org/10.1016/j.jhazmat.2008.12.009
Hsieh, C.T., Teng, H.S., 2000. Langmuir and Dubinin-Radushkevich Analyses on Equilibrium Adsorption of Activated Carbon Fabrics in Aqueous Solutions, Jounal of Chemical Technology and Biotechnologies, Volume 75, pp.1066–1072 http://dx.doi.org/10.1002/1097-4660(200011)75:11%3C1066::aid-jctb321%3E3.0.co;2-z
Langmuir, I., 1918. The Constitution and Fundamental Properties of Solids and Liquids-Part I, Solids, Journal of the American Chemical Society, Volume 40, pp. 1361–1403
Lebrun, L., Vallée, F., Alexandre, B., Nguyen, Q.T., 2007. Preparation of chelating membranes to remove metal cations from aqueous solutions, Desalination, Volume 207 (1–3), pp.9-23 http://dx.doi.org/10.1016/j.desal.2006.06.011
Lin, L.C., Li, J.K., Juang, R.S., 2008. Removal of Cu(II) and Ni(II) from aqueous solutions using batch and fixed-bed ion exchange processes, Desalination, Volume, 225, pp. 249–259 http://dx.doi.org/10.1016/j.desal.2007.03.017
Maturana, H.A., Peric, I.M., Rivas, B.L., Pooley, S.A., 2011. Interaction of Heavy Metal Ions with an Ion Exchange Resin Obtained from a Natural Polyelectrolyte, Polymer Bulletin, Volume 67, pp. 669–676 http://dx.doi.org/10.1007/s00289-011-0454-7
Ningmei, Wu., Zhengkui, Li., 2013. Synthesis and Characterization of Poly(HEA/MALA) Hydrogel and its Application in Removal of Heavy Metal Ions from Water, Chemical Engineering Journal, Volume 215, pp. 894–902 http://dx.doi.org/10.1016/j.cej.2012.11.084
Pehlivan, E., Altun, T., 2006. The Study of Various Parameters Affecting the Ion Exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from Aqueous Solution on Dowex 50W Synthetic Resin, Journal of Hazardous Materials, Volume 134, pp. 149–156 http://dx.doi.org/10.1016/j.jhazmat.2005.10.052
Milmile, S.N. Pande, J.V., Karmakar, S., Bansiwal, A., Chakrabarti, T., Biniwale, R.B., 2011. Equilibrium Isotherm and Kinetic Modeling of the Adsorption of Nitrates by Anion Exchange Indion NSSR Resin, Desalination, Volume 276, pp. 38–44 http://dx.doi.org/10.1016/j.desal.2011.03.015
Schoeman, J.J., Steyn, A., 2001. Investigation into Alternative Water Treatment Technologies for the Treatment of Underground Minewater Discharged by Grootvlei Proprietary Ltd. into the Blesbokspruit in South Africa, Desalination, Volume 133, pp. 13–30 http://dx.doi.org/10.1016/s0011-9164(01)00079-0
Sohn, S., Kim, D., 2005. Modification of Langmuir Isotherm in Solution Systems Definition and Utilization of Concentration Dependent Factor, Chemosphere, Volume 58, pp.115–123 http://dx.doi.org/10.1016/j.chemosphere.2004.08.091
Yoon, I. H., Meng, X., Wang, C., Kim, K-W., Bang, S., Choe, E., Lippincott, L., 2009. Perchlorate Adsorption and Desorption on Activated Carbon and Anion Exchange Resin, Journal of Hazardous Materials, Volume 164, pp 87–94 http://dx.doi.org/10.1016/j.jhazmat.2008.07.123
Yu, L., Zou, R., Zhang, Z., Song, G., Chen, Z., Yang, J., Hu, J., 2011. A Zn2GeO4-ethylenediamine Hybrid Nanoribbon Membrane as a Recyclable Adsorbent for the Highly Efficient Removal of Heavy Metals from Contaminated Water, Chemical Communications, Volume 47, pp. 10719–10721 http://dx.doi.org/10.1039/c1cc14159g
Zainol , Z., Nicol, M.J., 2009. Ion-exchange Equilibria of Ni2+, Co2+, Mn2+ and Mg2+ with Iminodi Acetic Acid Chelating Resin Amberlite IRC 748, Hydrometallurgy, Volume 99, pp.175–180 http://dx.doi.org/10.1016/j.hydromet.2009.08.004
Zhou, L.M., Wang, Y.P., Liu, Z.R., Huang, Q.W., 2009. Characteristics of Equilibrium, Kinetics Studies for Adsorption of Hg(II), Cu(II), and Ni(II) Ions by Thiourea-modified Magnetic Chitosan Microspheres, Journal of Hazardous Materials, Volume 161, pp. 995–1002 http://dx.doi.org/10.1016/j.jhazmat.2008.04.078