• Vol 10, No 5 (2019)
  • Mechanical Engineering

Effect of the Incline Angle of Propeller Boss Cap Fins (PBCF) on Ship Propeller Performance

Insanu Abdilla Cendikia Abar, I Ketut Aria Pria Utama

Corresponding email: insanu.abar.93@gmail.com

Cite this article as:
Abar, I.A.C., Utama, I.K.A.P., 2019. Effect of the Incline Angle of Propeller Boss Cap Fins (PBCF) on Ship Propeller Performance. International Journal of Technology. Volume 10(5), pp. 1056-1064
Insanu Abdilla Cendikia Abar Institut Teknologi Sepuluh Nopember, Jl. Raya ITS, Keputih, Kec. Sukolilo, Kota Surabaya 60111, Indonesia
I Ketut Aria Pria Utama Institut Teknologi Sepuluh Nopember, Jl. Raya ITS, Keputih, Kec. Sukolilo, Kota Surabaya 60111, Indonesia
Email to Corresponding Author


In order to understand the effect of modifying the traditional form of propeller hub into the propeller boss cap fins (PBCF) form, a series of tests was conducted to discover the best type. Analysis was made using the computational fluid dynamic (CFD) approach, together with ANSYS CFX code. Two types of hub were employed, namely convergent and divergent. Both types were made using slope angles of 5, 10 and 15 degrees. Comparative analysis of the data was made, combined with validation by published papers. The overall results indicate that compared to a normal hub, the traditional convergent type has an increased efficiency of around 1.4%, while the divergent type decreases efficiency by approximately 1.2%. Furthermore, the PBCF convergent hub results in increased efficiency of around 0.8%, whereas the divergent type decreases efficiency by about 1.0%. This study is in good agreement with previous papers, with a discrepancy of approximately 2%.

Energy saving devices; Hub vortex; Propeller boss cap fins


Propeller boss cap fins (PBCF) have been used since 1988 as an innovative energy saving device in marine transportation, according to the International Towing Tank Conference (ITTC). The addition of PBCF can improve the efficiency of a ship's propeller. The other function of PBCF is to eliminate the vortex phenomenon on the hub part of the rotor. It has been evidenced by Dang et al. (2011), Kawamura et al. (2012), Cheng and Hao-Eng (2014), Molland et al. (2014), and Sun et al. (2016) in research based on field studies, lab trials and computational fluid dynamic (CFD) simulations that PBCF can eliminate the vortex and improve the efficiency of ships’ propellers. Considering design parameters, PBCF will influence propeller efficiency noticeably (Seo et al., 2016; Mizzi et al., 2017).

In the past few decades, research on PBCF geometry has been conducted to discover which components of PBCF are highly sensitive to efficiency and the hub vortex phenomenon. Several papers (Ghassemi et al., 2012; Druckenbrod et al., 2015; Kimura et al., 2018) have found that variations in PBCF fin position are highly influential on propeller efficiency and added hub configurations indicate can affecting vortex in the hub cap area. This has led to the indication that the shape of the hub geometry has an effect on the shape and magnitude of the vortex, as stated by Katayama et al. (2015). The geometry of the hub propeller is divided into three parts, convergent, straight and divergent, with each type having a different vortex characteristic.

In addition, Katayama et al. (2015) undertook research on the addition of updated PBCF using convergent hub types, and obtained good efficiency. However, this does not apply to the research on the type of divergent hub conducted by Lim et al. (2014), who found decreased propeller system efficiency. These two issues are the basis for this research.

CFD simulation focuses on varying the inclined angle of the hub cap (convergent and divergent types) and then converting it into PBCF. Furthermore, each type of hub cap has varying incline angles of 5, 10 and 15 degrees. Comparison is made between each type of conventional and PBCF hub in order to obtain the best results.


CFD has been fairly successfully used to simulate and demonstrate the use of PBCF on propeller hub caps. The results are excellent for the convergent hub, whilst the divergent one shows a disappointing output. The convergent hub increases efficiency by around 1.4% compared to conventional one, which rises further by approximately 0.8% after being converting into PBCF. On the other hand, the divergent hub decreases efficiency by around 1.2%, with a further decrease of approximately 1% after being converting into PBCF.

In addition, the incline angle can influence the increase or decrease in efficiency. The reason for this is attributed to the decrease in the pressure area on the convergent hub and the increase on the divergent one. This occurs because in the case of divergent hubs the pressure drops and the shape of the flow is affected, resulting in the emergence of hub vortices.


Almohammadi, K.M., Ingham, D.B., Ma, L., Pourkashan, M., 2013. Computational Fluid Dynamics (CFD) Mesh Independency Techniques for a Straight Blade Vertical Axis Wind Turbine. Journal of Energy, Volume 58, pp. 483–493

Asimakopoulos, O.A., Kaklis, P., 2016. Effect of Propeller Geometry on Cavitation. 4th Edition. University of Strathclyde, Glasgow, Scotland: Year Individual Project

Chamanara, M., Ghasemmi, H., 2016. Hydrodinamic Characteristics of the Kort – Nozzle Propeller by Different Turbulent Models. American Journal of Mechanical Engineering, Volume 4(5), pp. 169–172

Cheng, M., Hao-Eng, C., 2014. The Design of Propeller and Propeller Boss Cap Fins (PBCF) by an Integrative Method. Journal of Hydrodinamic, Volume 26(4), pp. 586–593

Dang, J., Chen, H., Dong, G., 2011. An Exploratory Study on the Working Principle of Energy Saving Devices (ESD). Symposium on Green Ship Technology Greenship, Volume 2(1), pp. 50–59

Davidson, L., 2018. An Introduction to Turbulence Models. Chalmers University of Technology, Goteborg, Sweden

Druckenbrod, M., Wang, K., Greitsch, L., Heinke, H.J., Abdel-Maksoud, M., 2015. Development of Hub Cap Fitted with PBCF. International Symposiums on Marine Propulsors, Volume 3(1), pp. 350–358

Ghassemi, H., Mardan, A., Ardeshir, A., 2012. Numerical Analysis of Hub Effect on Hydrodinamic Performance of Propellers with Inclusion of PBCF to Equalize the Induced Velocity. The Journal of Gdansk University of Technology, Volume 19(2), pp. 17–24

Islam, M.F., Veitch, B., Bose, N., Liu, P., 2006. Numerical Study of Effects of Hub Taper Angle on the Performance of Propellers Designed for Podded Propulsion Systems. In: The Thirteenth Annual Conference of the Computation Fluid Dynamics Society of Canada, Volume 39(2), pp. 31–37

Katayama, K., Okada, Y., Okazaki, A., 2015. Optimization of the Propeller with ECO-cap by CFD. International Symposiums on Marine Propulsors, Volume 3(1), pp. 358–365

Kawamura, T., Ouchi, K., Takeuchi, S., 2012. Model and Full Scale CFD Analysis of Propeller Boss Cap Fins (PBCF). Journal of Marine Science and Technology, Volume 17(4), pp. 469–480

Kimura, L., Ando, S., Ono, S., Tanaka, Y., Takeuchi, S., Asanuma, N., 2018. Investigation on Full Scale Performance of the Propeller Bos Cap Fins (PBCF). International Full Scale Ship Performance, Volume 2, pp. 73–81

Lim, S.S., Kim, T.W., Lee, D.M., Kang, C.G., Kim, S.Y., 2014. Parametric Study of Propeller Boss Cap Fins for Container Ships. International Journal Naval Architecture Ocean Engineering, Volume 6(2), pp. 187–205

Mizzi, K., Demirel, Y.K., Banks, C., Turan, O., Kaklis, P., Atlar, M., 2017. Design Optimisation of Propeller Boss Cap Fins for Enhanced Propeller Performance. Journal of Ocean and Marine Engineering, Volume 62, pp. 210–222

Molland, A.F., Turnock, S.R., Hudson, D.A., Utama, I.K., 2014. Reducing Ship Emission: A Review of Potensial Practical Improvements in the Propulsive Efficiency of Future Ships. Transactions of the Royal Institution of Naval Architects Part A: International Journal of Maritime Engineering, Volume 156, pp. 175–188

Nojiri, T., Ishii, N., Kai, H., 2011. Energy Saving Technology of PBCF (Propeller Boss Cap Fins) and Its Evolution. Japan Institute of Marine Engineering, Volume 46(3), pp. 350–358

Ouchi, K., Ogura, M., Kono, Y., Orito, H., Shiotsu, T., Tamashima, M., Koizuka, H., 1988. A Research and Development of PBCF (Propeller Boss Cap Fins) - Improvement of Flow from Propeller Boss. Journal of the Society of Naval Architects of Japan, Volume 1988(163), pp. 66–78

Ouchi, K., Tamashima, M., Kawasaki, T., Koizuka, H., 1989. Research and Development of PBCF (Propeller Boss Cap Fins). Journal of the Society of Naval Architects of Japan, Volume 1989(165), pp. 43–53

Prakash, S., Nath, D.R., 2012. A Computational Method for Determination of Open Water Performance of a Marine Propeller. International Journal of Computer Applications, Volume 58(12), pp. 431–436

Seo, J., Lee, S.J., Han, B., Rhee, S.H., 2016. Influence Design Parameter Variation for Propeller-Boss-Cap-Fins on Hub Vortex Reduction. Journal of Ship Research, Volume 60(4), pp. 203–218

Suastika, K., Hidayat, A., Riyadi, S., 2017. Effects of the Application of a Stern Foil on Ship Resistance: A Case Study of an Orela Crew Boat. International Journal of Technology,Volume 8(7), pp. 1266–1275

Suastika, K., Nugraha, F., Utama, I., 2017. Parallel-Middle-Body and Stern-form Relative Significance in the Wake Formation of Single-screw Large Ships. International Journal of Technology, Volume 8(1), pp. 94–103

Sun, Y., Su, Y., Wang, X., Hu, H., 2016. Experimental and Numerical Analyses of the Hydrodynamic Performance of Propeller Boss Cap Fins in a Propeller Rudder System. Engineering Applications of Computational Fluid Mechanics, Volume 10(1), pp. 145–159