• Vol 7, No 3 (2016)
  • Metalurgy and Material Engineering

Relative Cooling Power of La0.7Ca0.3Mn1–xCuxO3 (0.0 ? x ? 0.03)

Dwi Nanto, Seong Cho Yu

Cite this article as:

Nanto, D., Yu, S.C., 2016. Relative Cooling Power of La0.7Ca0.3Mn1–xCuxO3 (0.0 ? x ? 0.03). International Journal of Technology. Volume 7(3), pp.417-423

Dwi Nanto Department of Physics, Chungbuk National University, Cheongju, 361-763, South Korea
Seong Cho Yu Department of Physics, Chungbuk National University, Cheongju, 361-763, South Korea
Email to Corresponding Author


Manganite perovskite has a wide variety of potential applications as an advanced material, for example, in magnetic random access memory, spintronics, magnetoelectric, magnetic field sensors and cooling technology, based on magnetism and magnetic materials. In work on cooling technology, magnetic materials show a magnetocaloric effect. Manganite perovskite has some fundamental properties, such as Curie temperature, magnetic entropy change, temperature span and relative cooling power. Current works report detailed properties of manganite perovskite in La0.7Ca0.3MnO3 doped with Cu, which show magnetocaloric effects. The samples were synthesized by a conventional solid state reaction. A small amount of doping Cu 1%~3% at a Mn site maintains the First-Order Magnetic Transition (FOMT) without leading into the Second-Order Magnetic Transition (SOMT). Maximum magnetic entropy change increased as the Cu-doped decreased. Introducing a small percentage of Cu-doped on La0.7Ca0.3Mn1-xCuxO3 also implies decreasing the Curie temperature, TC. For all samples under external application in a field of 10 kOe, these resulted in a slightly wider temperature span and the Relative Cooling Power (RCP) of about 39 J/kg to 47 J/kg as the Cu-doped decreased. The small amount of Cu-doping on La0.7Ca0.3MnO3 keeps the rate of relative cooling power in a wider temperature range. It may be beneficial for cooling technology based on magnetism and magnetic materials.

Cu-doped manganites, Magnetocaloric effect, Relative cooling power


Banerjee, B.K., 1964. On a Generalised Approach to First and Second Order Magnetic Transitions. Phys. Lett., Volume 12, pp. 16–17

Brück, E., 2005. Developments in Magnetocaloric Refrigeration. J. Phys. D: Appl. Phys., Volume 38(23), pp. R381–R391

Chau, N., Niem, P.Q., Nhat, H.N., Luong, N.H., Tho, N.D., 2003. Influence of Cu Substitution for Mn on the Structure, Magnetic, Magnetocaloric and Magnetoresistance Properties of La0.7Sr0.3MnO3 Perovskites. Physica B, Volume 327, pp. 214–217

El-Hagary, M., Shoker, Y.A., Emam-Ismail, M., Moustafa, A.M., Abd El-Aal, A., Ramadan, A.A., 2009. Magnetocaloric Effect in Manganite Perovskites La0.77Sr0.23Mn1?xCuxO3 (0.1? x ?0.3). Solid State Comm., Volume 149, pp. 184–187

Franco, V., Blázquez, J.S., Ingale, B., Conde, A., 2012. The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models. Ann. Rev. Mater. Res., Volume 42, pp. 305–342

Gschneidnerjr, K.A., Pecharsky, V.K., Tsokol, A.O., 2005. Recent Developments in Magnetocaloric Materials. Rep. Prog. Phy., Volume 68, pp. 1479–1539

Kim, M.S., Yang, J.B., Parris, P.E., Cai, Q., Zhou, X.D., James, W.J., Yelon, W.B., Buddhikot, D., Malik, S.K., 2005. The Effect of Cu-doping on the Magnetic and Transport Properties of La0.7Sr0.3MnO3. J. Appl. Phys., Volume 97(10), pp. 1–9

Koubaa, M., Koubaa, W.C.-R., Cheikhrouhou, A., 2009. Magnetocaloric Effect and Magnetic Properties of La0.75Ba0.1M0.15MnO3 (M = Na, Ag and K) Perovskite Manganites. J. Alloys Comp., Volume 479, pp. 65–70

Mira, J., Rivas, J., Rivadulla, F., Vázquez-Vázquez, C., López-Quintela, M.A., 1999. Change from First- to Second-Order Magnetic Phase Transition in La2/3(Ca, Sr)1/3MnO3 Perovskites. Phys. Rev. B., Volume 60, pp. 2998–3001

Phan, M.-H., Peng, H.-X., Yu, S.-C., Duc Tho, N., Chau, N., 2005a. Large Magnetic Entropy Change in Cu-doped Manganites. J. Magn. Magn. Mater., Volume 285, pp. 199–203

Phan, M.-H., Yu, S.-C., 2007. Review of the Magnetocaloric Effect in Manganite Materials. Journal of Magnetism and Magnetic Materials, Volume 308(2), pp. 325–340

Phan, M.-H., Yu, S.-C., Hur, N.H., 2005b. Excellent Magnetocaloric Properties of La0.7Ca0.3-xSrxMnO3 (0.05 ? x ? 0.25) Single Crystals. Appl. Phys. Lett., Volume 86(7), pp. 072504

Phan, M.H., Pham, V.T., Yu, S.-C., Rhee, J.R., Hur, N.H., 2004. Large Magnetic Entropy Change in A La0.8Ca0.2MnO3 Single Crystal. J. Magn. Magn. Mater., Volume 272-276, pp. 2337–2339

Phan, T.L., Thanh, P.Q., Sinh, N.H., Zhang, Y.D., Yu, S.C., 2012. Effects of the Cu Doping on Critical Behavior of La0.7Ca0.3MnO3. IEEE Trans. Magn., Volume 48, pp. 1293–1296

Phung, Q.T., Vu, V.K., Ngac, A.B., Nguyen, H.S., Hoang, N.N., 2012a. Magnetotransport Properties and Magnetocaloric Effect in La0.67Ca0.33Mn1?xTMxO3 (TM=Cu, Zn) Perovskite Manganites. J. Magn. Magn. Mater., Volume 324, pp. 2363–2367

Wang, Z., Xu, Q., Zhang, H., 2011. Magnetocaloric Effect at Room Temperature in Manganese Perovskite La0.65Nd0.05Pb0.3MnO3 with Double Resistivity Peaks. J. Magn. Magn. Mater., Volume 323, pp. 3229–3233

Wang, Z.M., Ni, G., Xu, Q.Y., Sang, H., Du, Y.W., 2001. Magnetocaloric Effect in Perovskite Manganites La0.7-xNdxCa0.3MnO3 and La0.7Ca0.3MnO3. J. Appl. Phys., Volume 90, pp. 5689–5691

Zener, C., 1951. Interaction between D-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure. Phys. Rev., Volume 82, pp. 403–405

Zhang, H., Shi, J., Li, Y., Liu, H., Dong, X., Chen, K., Hou, Q., Huang, Y., Ge, X., Zhao, L., Lu, Z., Li, Q., 2012. Local Atomic and Electronic Structure with Magnetism of La0.7Ca0.3Mn1?xCuxO3 (x = 0, 0.03, 0.06, 0.1). J. Low Temp. Phys., Volume 169, pp. 77–89

Zhou, H.D., Li, G., Xu, X.Y., Feng, S.J., Qian, T., Li, X.G., 2002. Transport and Magnetic Properties in La0.7Ca0.3Mn1?xCuxO3. Mater. Chem. Phys., Volume 75, pp. 140–143

Table of Contents