• Vol 7, No 8 (2016)
  • Metalurgy and Material Engineering

Optical Transmittance, Electrical Resistivity and Microstructural Characteristics of Undoped and Fluorine-doped Tin Oxide Conductive Glass Fabricated by Spray Pyrolysis Technique with Modified Ultrasonic Nebulizer

Cahya Ahmad Trisdianto, Akhmad Herman Yuwono, Tri Arini, Nofrijon Sofyan, Dahlin Fikri, Latifa Hanum Lalasari


Publish at : 30 Dec 2016 - 00:00
IJtech : IJtech Vol 7, No 8 (2016)
DOI : https://doi.org/10.14716/ijtech.v7i8.6885

Cite this article as:
Trisdianto, C.A.., Yuwono, A.H.., Arini, T.., Sofyan, N.., Fikri, D.., Lalasari, L.H.., 2016. Optical Transmittance, Electrical Resistivity and Microstructural Characteristics of Undoped and Fluorine-doped Tin Oxide Conductive Glass Fabricated by Spray Pyrolysis Technique with Modified Ultrasonic Nebulizer. International Journal of Technology. Volume 7(8), pp.1316-1325
81
Downloads
Cahya Ahmad Trisdianto Department of Metallurgy and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
Akhmad Herman Yuwono Department of Metallurgy and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia. Tropical Renewable Energy Center (TREC), Faculty of Enginee
Tri Arini Department of Metallurgy and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia. Research Center for Metallurgy and Materials, LIPI Puspipte
Nofrijon Sofyan Department of Metallurgy and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia. Tropical Renewable Energy Center (TREC), Faculty of Enginee
Dahlin Fikri Department of Metallurgy and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
Latifa Hanum Lalasari Research Center for Metallurgy and Materials, LIPI Puspiptek Serpong, Cisauk, Banten 15314, Indonesia
Email to Corresponding Author

Abstract

Fluorine-doped tin oxide (FTO) is one of the conductive glasses that have strategic functions in various important applications, including dye-sensitized solar cell (DSSC). In the current work, the effects of deposition time (5, 10, 20, 30, and 40 minutes) upon the fabrication process of FTO thin film using spray pyrolysis technique with modified ultrasonic nebulizer has been studied in regard to its microstructural, optical, crystallinity, and resistivity characteristics. The variation was also performed by comparing the pure tin chloride precursor and the solution that was doped with fluor (F) at 2 wt% in order to see the doping effect on the properties of thin film. The thin films were characterized using x-ray diffraction (XRD), scanning electron microscope (SEM), ultraviolet-visible (UV-Vis) spectroscopy, and digital multimeter. On the basis of current investigation, it has been found that the best FTO was obtained through the pyrolysis technique of 20-minute deposition time, providing optical transmittance of 74%, a band gap energy (Eg) of 3.85 eV and sheet resistance (Rs) of 7.99 ?/sq. The fabricated FTO in the present work is promising for further development as conducting glass for dye-sensitized solar cell (DSSC).

Conductive glass; Deposition time; Fluorine-doped Tin Oxide; Spray pyrolysis; Transparent