Published at : 29 Apr 2016
Volume : IJtech
Vol 7, No 3 (2016)
DOI : https://doi.org/10.14716/ijtech.v7i3.2946
Nanto, D., Nan, W.Z., Oh, S.K., Yu, S.C., 2016. Influence of Sn-doping on Magnetocaloric Properties of La0.7Ca0.3Mn1?xSnxO3(x = 0.0, x = 0.02 and x = 0.04) Compounds. International Journal of Technology. Volume 7(3), pp.493-499
Dwi Nanto | Department of Physics, Chungbuk National University, Cheongju, 361-763, South Korea |
Wen Zhe Nan | Department of Physics, Chungbuk National University, Cheongju, 361-763, South Korea |
Suhk Kun Oh | Department of Physics, Chungbuk National University, Cheongju, 361-763, South Korea |
Seong Cho Yu | Department of Physics, Chungbuk National University, Cheongju, 361-763, South Korea |
Modern technology for refrigerators and coolers is based on the chemical gas Chlorofluorocarbon (CFC) compression method that is indicative of a high consumption of electricity. The CFC is also understood as a reason for global warming. One of the solutions to this issue is magnetic refrigeration technology, which is environmentally friendly because it does not use any hazardous chemicals or ozone depleting/greenhouse gases. Magnetic refrigeration technology is based on the magnetocaloric effect of magnetic refrigerant materials. Exploring the magnetocaloric effect of magnetic refrigerant materials is important because these contain many of the physical properties needed for magnetic refrigeration technology. Herein, the present work reports on the magnetocaloric effect of La0.7Ca0.3Mn1?xSnxO3 (x = 0.0, x = 0.02 and x = 0.04) compound samples produced with the solid state reaction technique. Curie temperature TC obtained for the La0.7Ca0.3Mn1?xSnxO3 (x = 0.0, x = 0.02 and x = 0.04) are 260 K, 176 K and 170 K with -?SM max of 4.32 J×kg-1×K-1, 1.61 J×kg-1×K-1 and 1.24 J×kg-1×K-1 and a refrigerant capacity of 48 J/kg, 41.43 J/kg and 28.53 J/kg for x = 0.0, x = 0.02 and x = 0.04, respectively. A small addition of Sn-doped resulted in a significant decrease of more than 80 K on the Curie temperature scale compared to that of La0.7Ca0.3MnO3. The large gap in the decreasing magnetic temperature phase transition might be useful as an option of metal/transition metal doped for tuning the Curie temperature of magnetic refrigerant materials.
Magnetic refrigerant material, Magnetocaloric effect, Polycrystalline perovskite manganites, Refrigerant capacity, Sn-doped
Dhahri, J., Dhahri, A., Oumezzine, M., Dhahri, E, 2008. Effect of Sn-doping on the Structural, Magnetic and Magnetocaloric Properties of La0.67Ba0.33Mn1?xSnxO3 Compounds. J. Magn. Magn. Mater., Volume 320, pp. 2613-2617
Gencer, H., Atalay, S., Adiguzel, H.I., Kolat, V.S., 2005. Magnetocaloric Effect in the La0.62Bi0.05Ca0.33MnO3 Compound. Physica B, Volume 357, pp. 326-333
Kammoun, I., Cheikhrouhou-Koubaa, W., Boujelben, W., Cheikhrouhou, A., 2008a. Bi Doping Effects on the Physical Properties of Pr0.6Sr0.4Mn1?xBixO3 (0 ? x ? 0.2) Manganese Oxides. J. Alloys Comp., Volume 452, pp. 195-199
Kammoun, I., Cheikhrouhou-Koubaa, W., Boujelben, W., Cheikhrouhou, A., 2008b. Structural and Magnetic Properties of Bi Doped in the A-site of (Pr1 ? xBix)0.6Sr0.4MnO3 (0 ? x ? 0.4) Perovskite Manganites. J. Mater. Sci., Volume 43, pp. 960-966
Koubaa, M., Regaieg, Y., Cheikhrouhou Koubaa, W., Cheikhrouhou, A., Ammar-Merah, S., Herbst, F., 2011. Magnetic and Magnetocaloric Properties of Lanthanum Manganites with Monovalent Elements Doping at A-site. J. Magn. Magn. Mater., Volume 323, pp. 252-257
Kumar, V.S., Mahendiran, R., 2011. Effect of Impurity Doping at the Mn-site on Magnetocaloric Effect in Pr0.6Ca0.4Mn0.96B0.04O3 (B=Al, Fe, Cr, Ni, Co, and Ru). J. Appl. Phys., Volume 109(2), pp. pp. 023903-1-023903-7
Lampen, P.J., Zhang, Y., Phan, T.-L., Zhang, P., Yu, S.-C., Srikanth, H., Phan, M.-H., 2012. Magnetic Phase Transitions and Magnetocaloric Effect in La0.7Ca0.3Mn1-xFexO3 0.00?x?0.07 Manganites. J. Appl. Phys., Volume 112(11), pp. 113901-1-113901-6
Millis, A.J., Littlewood, P.B., Shraiman, B.I., 1995. Double Exchange Alone does not Explain the Resistivity of La1?xSrxMnO3. Phys. Rev. Lett., Volume 74, pp. 5144-5147
Omri, A., Bejar, M., Sajieddine, M., Dhahri, E., Hlil, E.K., Es-Souni, M., 2012. Structural, Magnetic and Magnetocaloric Properties of AMn1?xGaxO3 Compounds with 0?x?0.2. Physica B, Volume 407, pp. 2566–2572
Phan, M. H., Pham, V. T., Yu, S. C., Rhee, J. R., Hur, N. H. 2004. Large magnetic entropy change in a La0.8Ca0.2MnO3 single crystal. J. Magn. Magn. Mater., Volume 272–276, Part 3, pp. 2337–2339
Rodriguez-Martinez, L.M., Attfield, J.P., 1996. Cation Disorder and Size Effects in Magnetoresistive Manganese Oxide Perovskites. Phys. Rev. B, Volume 54, R15622–R15625
Tan, X., Chai, P., Thompson, C.M., Shatruk, M., 2013. Magnetocaloric Effect in AlFe2B2: toward Magnetic Refrigerants from Earth-Abundant Elements. J. American Chem. Soc., Volume 135, pp. 9553–9557
Tka, E., Cherif, K., Dhahri, J., 2013. Evolution of Structural, Magnetic and Magnetocaloric Properties in Sn-doped Manganites La0.57Nd0.1Sr0.33Mn1?xSnxO3 (x = 0.05–0.3). Appl. Phys. A, Volume 116(3), pp. 1181-1191
Yibole, H., Guillou, F., Zhang, L., Dijk, N.H.V., Br?ck, E., 2014. Direct Measurement of the Magnetocaloric Effect in MnFe(P, X )( X=As, Ge, Si) Materials. J. Phys. D: Appl. Phys., Volume 47(7), pp. 1–9
Zener, C., 1951. Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure. Phys. Rev., Volume 82, pp. 403–405