Published at : 29 Apr 2016
Volume : IJtech
Vol 7, No 4 (2016)
DOI : https://doi.org/10.14716/ijtech.v7i4.2865
Fitri Yuli Zulkifli | Antenna Propagation and Microwave Research Group, Department of Electrical Engineering, Faculty of Engineering Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia |
Nugroho Adi Saputro | Antenna Propagation and Microwave Research Group, Department of Electrical Engineering, Faculty of Engineering Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia |
Basari | Antenna Propagation and Microwave Research Group, Department of Electrical Engineering, Faculty of Engineering Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia |
Eko Tjipto Rahardjo | Antenna Propagation and Microwave Research Group, Department of Electrical Engineering, Faculty of Engineering Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia |
Antenna can be one of the largest components in a wireless device; therefore antenna miniaturization can reduce the overall size of wireless devices. One method used to reduce the element size of an antenna is by using meta material structures. This paper discusses a Left-Handed Meta material (LHM) structure stacked on a two-element microstrip antennas array for miniaturization and gain enhancement at a frequency of 2.35 GHz. To observe the impact of the LHM structure on the antenna, first this paper discuss the design of a conventional rectangular shape microstrip antenna without a LHM structure, then a design of the LHM structure which shows both negative permittivity and negative permeability. This LHM structure is then implemented on a conventional single element microstrip antenna and on a two-element microstrip antennas array. Results and discussion of implementation of the LHM structure on the conventional microstrip antenna is provided in this paper. The results show that good agreement between simulated and measured results has been achieved. The simulation results show that the antenna works at a frequency of 2.29–2.42 GHz with a bandwidth of 128 MHz (5.4%) and a gain of 8.2 dBi, while the measurements show that the antenna works at a frequency of 2.26–2.41 GHz with a bandwidth of 146 MHz (6.21%) and a gain of 8.97 dBi. In addition, by comparing the substrate dimension for the two element array antennas, with and without the LHM structure, shows a 39% reduction is achieved.
Array antenna; Metamaterial structure; Microstrip antenna; Split ring resonator
Balanis, C.A., 2005. Antenna Theory Analysis and Design. Third edition, Wiley-Interscience, John Wiley & Sons, Inc., Hoboken, New Jersey, USA
Erentok, A., Luljak, P.L., Ziolkowski, R.W., 2005. Characterization of a Volumetric Metamaterial Realization of an Artificial Magnetic Conductor for Antenna Application. IEEE Transactions on Antennas and Wireless Propagation, Volume 53, pp. 160-172
Lai, A., Leong, K., Itoh, T., 2007. Infinite Wavelength Resonant Antennas with Monopolar Radiation Pattern based on Periodic Structures. IEEE Transactions on Antennas and Propagation, Volume 55(3), pp. 868-876
Notris, D.T., Phaedra, C., Dimitris, P., 2004. Dual Polarized Microstrip Patch Antenna, Reduced in Size by Use of Peripheral Slits. In: Proceedings European Conference on Wireless Technology, Amsterdam
Rahardjo, E.T., Yuswardi, W., Zulkifli, F.Y., 2012. Size Reduction of Microstrip Antenna with CRLH-TL Metamaterial and Partial Ground Plane Techniques. In: Proceedings of the International Symposium on Antennas and Propagation, Nagoya October 29-November 2, Japan
Sarabandi, K., George, P., 2006. Reducing Antenna Visual Signature using Metamaterials. In: Proceedings of the 25th Army Science Conference, Orlando, Fl. Nov. pp. 27-30
Selvanayagam, M., 2010. A Compact Printed Antenna with an Embedded Double Tuned Metamaterial Matching Network. IEEE Transactions on Antennas and Propagation, Volume 58(7), pp. 2354–2361
Singh, G., 2010. Double Negative Left-Handed Metamaterial for Miniaturization of Rectangular Microstrip Antenna. J. Electromagnetic Analysis & Applications, Volume 2, pp. 347–351
Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S., 2000. Composite Medium with Simultaneously Negative Permeability and Permittivity. Phys. Rev. Lett., Volume 84, pp. 4184–4187
Ziolkowski, R.W., 2003. Design, Fabrication, and Testing of Double Negative Metamaterials. IEEE Trans. on Antennas and Wireless Propag., Volume 51, pp. 1516-1529