Published at : 30 Jan 2016
Volume : IJtech
Vol 7, No 1 (2016)
DOI : https://doi.org/10.14716/ijtech.v7i1.2193
Nazir, R., Nurdin, M., Fitrianto, E., 2016. Voltage Profile Improvement of the 20 kV Painan Distribution System with Multiple Distributed Renewable Energy Generation. International Journal of Technology. Volume 7(1), pp.26-37
Refdinal Nazir | Department of Electrical Engineering, Faculty of Engineering, Universitas Andalas, Limau Manis, Pauh, West Sumatera 25163, Indonesia |
Muhammad Nurdin | School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, Indonesia |
Eka Fitrianto | Department of Electrical Engineering, Faculty of Engineering, Universitas Andalas, Limau Manis, Pauh, West Sumatera 25163, Indonesia |
This paper analyzes the effect of multiple Distributed Renewable Energy Generation penetration on improving the performance of the B3 feeder typical distribution system structure in Painan, Indonesia. Analysis uses a simple concept of load and distributed generation current injection at the distributed main, lateral and sublateral lines. The algorithm begins from completion of the main line variables, then uses an algorithm to complete the lateral line variables associated with the main line variable, and finally calls algorithms to resolve the sublateral variables associated with the lateral line variable. The results have shown that integrating three Distributed Renewable Energy Generation units to this distributed system has increased the minimum voltage of the main line from 17.35 kV to 20.37 kV, reduced active power loss from 1914.747 kW to 569.925 kW, and diminished reactive power loss from 650.747 kVAr to 188.624 kVAr.
Distributed Renewable Energy Generation (DREG), Distribution System (DS), Voltage profile, Active power loss, Reactive power loss
Caisheng, W., Hashem, N., 2004. Analytical Approaches for Optimal Placement of Distributed Generation Sources in Power System. IEEE Transactions on Power Systems, Volume 19(4), pp. 2068-2076
Davda, A.T., Desai, M.D., Parekh, B.R., 2011. Integration of Renewable Distributed Generation in Distribution System for Loss Reduction: A Case Study. International Journal of Computer and Electrical Engineering, Volume 3(3), pp. 413-416
Dipak, R.G., Chinala, Mallareddy, 2015. Optimal Placement of Distributed Generation for Loss Reduction in Distribution System by using Newton-Raphson Method. In: the Proceedings of the 29th International Road Federation (IRF) Conference, Pune, 21 June, India
Gopiya, N.S., Khatod, D.K., Sharma, M.P., 2012. Distributed Generation Impact on Distribution Networks: A Review. IJEEE, Volume 2(1), pp. 68-72
Jen-Hao, T., 2003. A Direct Approach for Distribution System Load Flow Solutions. IEEE Transaction on Power Delivery, Volume. 18(3), pp. 882-887
Kementrian ESDM, 2009. Peraturan Menteri Energi dan Sumber Daya Mineral Nomor 31 Tahun 2009, 13 November, pp. 2-3 (in Bahasa)
Kersting, W.H., 2002. Distribution System Modeling and Analysis. First Edition, New York: CRC Press LLC
Mahmud, M.A., Hossain, M.J., Pota, H.R., 2011. Analysis of Voltage Rise Effect on Distribution Network with Distributed Generation. In: the Proceedings of the 18th International Federation of Automatic Control (IFAC) World Congress, Milano, 28 August, Italy pp. 14796-14801
Pathomthat, Ch., Ramakumar, R., 2004. An Approach to Quantify the Technical Benefit of Distributed Generation. IEEE Transactions on Energy Conversion, Volume 19(4), pp. 764-773
PT PLN Persero, 2015. Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT. PLN (Persero), 2015-2024, 12 January, pp. 217-222 (in Bahasa)
Ramana, T., Ganesh, V., Sivanagaraju, S., 2013. Simple and Fast Load Flow Solution for Electrical Power Distribution Systems. International Journal on Electrical Engineering and Informatics (IJEEI), Volume 5(3), pp. 245-255
Refdinal, N., Topan, A., 2007. Analisis Manfaat Teknis Pengintegrasian PLTM Tersebar pada Sistem Distribusi. In: the Proceedings of the Applied Technology, Science, and Arts (APTECS), 22 December, Surabaya, Indonesia (in Bahasa)
Sampath, K.B., Inamdar, H.P., 2011. Loss Reduction by Optimal Placement of Distributed Generation on a Radial Feeder. International Journal on Electrical and Power Engineering, Volume 02(01), pp. 24-29
Sivkumar, M., Debapriya, D., Subrata, P., 2014. A Simple Algorithm for Distribution System Load Flow with Distributed Generation. In: the Proceeding of IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), 09-11 May, India