Published at : 27 Oct 2015
Volume : IJtech
Vol 6, No 4 (2015)
DOI : https://doi.org/10.14716/ijtech.v6i4.2176
Slamet, Kusrini, E., Afrozi, A.S., Ibadurrohman, M., 2015. Photocatalytic Hydrogen Production from Glycerol-water over Metal Loaded and Non-metal Doped Titanium Oxide. International Journal of Technology. Volume 6(4), pp. 520-532
Slamet | Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI Depok, Depok 16424, Indonesia |
Eny Kusrini | Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI Depok, Depok 16424, Indonesia |
Agus Salim Afrozi | Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI Depok, Depok 16424, Indonesia |
Muhammad Ibadurrohman | Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI Depok, Depok 16424, Indonesia |
Modifications of the TiO2 P25 photocatalyst with metals: Platinum (Pt), Copper (Cu) and non-metal: Nitrogen (N) doping to produce Hydrogen (H2) from a glycerol-water mixture have been investigated. The metals (Pt and Cu) were loaded into Titanium Dioxide (TiO2 ) surface by employing an impregnation and Photo-Assisted Deposition (PAD) method, respectively. As prepared the metal doped TiO2 photocatalyst was then dispersed into an ammonia solution to obtain N-doped photocatalysts. The modified photocatalysts were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS). XRD patterns indicated that the modified TiO2 photocatalysts have a nano-size crystallite range of 16-23 nm, while the DRS analysis showed that the doping of both metal and non-metal into TiO2 photocatalysts could effectively shift photon absorption to the visible light region. The optimum Cu loading of Cu-N-TiO2 was found to be 5%, resulting in a 10 times higher H2 production improvement level when compared to unloaded TiO2, even though this is still considered to be inferior compared to that of a 1% Pt loading, which results in a 34 times higher level than an unmodified TiO2photocatalyst. The effect of glycerol concentrations on hydrogen production has also been studied. This method offers a promising technology to find renewable and clean energy by using cheap materials and a simple technology.
Glycerol, Hydrogen production, Nanocomposite, Photocatalyst, TiO2
Asahi, R., Morikawa, T., Ohwaka, T., Aoki, K., Taga, Y., 2001. Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides. Science, Volume 293(5528), pp. 269?271
Bahruji, H., Bowker, M., Davies, P.R., Al-Mazroai, L.S., Dickinson, A., Greaves, J., James, D., Millard, L., Pedrono, F., 2010. Sustainable H2 Gas Production by Photocatalysis. J. Photochem. Photobiol. A: Chemistry, Volume 216(2-3), pp. 115?118
Bandara, J., Udawatta,C.P.K., Rajapakse, C.S.K., 2005. Highly Stable CuO Incorporated TiO2 Catalyst for Photocatalytic Hydrogen Production from H2O. Photochem. Photobiol. Sci., Volume 4(11), pp. 857?861
Chiarello, G.L., Aguirre, M.H., Selli, E., 2010. Hydrogen Production by Photocatalytic Steam Reforming of Methanol on Noble Metal-modified TiO2. J. Catal., Volume 273(2), pp. 182?190
Cristallo, G., Roncari, E., Rinaldo, A., Trifiro, F., 2001. Study of Anatase-rutile Transition Phase in Monolithic Catalyst V2O5/TiO2 and V2O5-WO3/TiO2. Appl. Catal. A: General, Volume 209(1?2), pp. 249?256
Cullity, B.D., 1978. Elements of X-ray Diffraction, Massachusetts: Addison-Wesley Publication Company: Reading
Daskalaki, V.M., Kondarides, D.I., 2009. Efficient Production of Hydrogen by Photo-induced Reforming of Glycerol at Ambient Conditions. Catal. Today, Volume 144(1?2), pp. 75?80
Iriondo, A., Barrio, V.L., Cambra, J.F., Arias, P.L., Güemez, M.B., Navarro, R.M., Sanchez-Sanchez, M.C., Fierro, J.L.G., 2009. Influence of La2O3 Modified Support and Ni and Pt Active Phases on Glycerol Steam Reforming to Produce Hydrogen. Catal. Commun., Volume 10(8), pp. 1275?1278
Lalitha, K., Sadanandam, G., Kumari, V.D., Subrahmanyam, M., Sreedhar, B., Hebalkar, N.Y., 2010. Highly Stabilized and Finely Dispersed Cu2O/TiO2: A Promising Visible Sensitive Photocatalyst for Continuous Production of Hydrogen from Glycerol:Water Mixtures. J. Phys. Chem. C, Volume 114(50), pp. 22181?22189
Li, M., Li, Y.X., Peng, S.Q., Lu, G.X., Li, S., 2006. Photocatalytic Hydrogen Generation in the Presence of Chloroacetic Acids over Pt/TiO2. Chemosphere, Volume 63(8), pp. 1312?1318
Lide, D. R., and Haynes, W. M. (2010), CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, Florida
Lin, W.C., Yang, W.D., Huang, I.L., Wu,T.S., Chung, Z.J., 2009. Hydrogen Production from Methanol/Water Photocatalytic Decomposition using Pt/TiO2-xNx Catalyst. Energy & Fuels, Volume 23, pp. 2192?2196
Luo, N.J, Jiang, Z., Shi, H.H., Cao, F.H., Xiao, T.C., Edwards, P., 2009. Photocatalytic Conversion of Oxygenated Hydrocarbons to Hidrogen over Heteroatom-doped TiO2 Catalysts. J. Catal., Volume 34, pp. 125?129
Millard, L., Bowker, M., 2002. Photocatalytic Water-gas Shift Reaction at Ambient Temperature. J. Photochem. Photobiol. A:Chemistry, Volume 148(1?3), pp. 91?95
Nosaka, Y., Matsushita, M., Nishino, J., Nosaka, A., 2005. Nitrogen-doped Titanium Dioxide Photocatalysts for Visible Response Prepared by using Organic Compounds. Sci. Technol. Adv. Mater., Volume 6, pp. 143–148
Slamet, Nasution, H.W., Purnama, E., Kosela, S., Gunlazuardi, J., 2005. Photocatalytic Reduction of CO2 on Copper-doped Titania Catalysts Prepared by Improved-impregnation Method. Catal.Commun., Volume 6(5), pp. 313?319
Slamet, Nasution, W.H., Purnama, E., Riyani, K., Gunlazuardi, J., 2009. Effect of Copper Species in a Photocatalytic Synthesis of Methanol from Carbon Dioxide over Copper-doped Titania Catalysts. World Appl. Sci. J., Volume 6(1), pp. 112?122
Strataki, N., Kondarides, D.I., Lianos, P. (2007), Hydrogen production by photocatalytic alcohol reforming employing highly efficient nanocrystalline titania films, Appl. Catal. B: Environmental, 77, 184–189
Tseng, I.H., Wu, J.C.S., 2004. Chemical States of Metal-loaded Titania in the Photoreduction of CO2. Catal. Today, Volume 97(2?3), pp. 113?119
Wu, G.P., Chen, T., Zhou, G.H., Xu, Z., Can, L., 2008. H2 Production with Low CO Selectivity from Photocatalytic Reforming of Glucose on Metal/TiO2 Catalysts. Science in China Series B: Chemistry, Volume 51, pp. 97?100
Wu, N.L., Lee, M.S., Pon, Z.J., Hsu, J.Z., 2004. Effect of Calcination Atmosphere on TiO2 Photocatalysis in Hydrogen Production from Methanol/Water Solution. J. Photochem. Photobiol. A: Chemistry, Volume 163, pp. 277?280
Xu, S.P., Sun, D.D., 2009. Significant Improvement of Photocatalytic Hydrogen Generation Rate over TiO2 with Deposited CuO. Inter. J. Hydro. Energy, Volume 34(15), pp. 6096?6104
Yoong, L.S., Chong, F.K., Dutta, B.K., 2009. Development of Copper-doped TiO2 Photocatalyst for Hydrogen Production under Visible Light. Energy, Volume 34(10), pp. 1652?1661
Yu, J.G., Qi, L.F., Jaroniec, M., 2010. Hydrogen Production by Photocatalytic Water Splitting over Pt/TiO2 Nanosheets with Exposed (001) Facets. J. Phys. Chem. C, Volume 114(30), pp. 13118?13125
Zhang, J.L., Wu, Y.M., Xing, M.Y., Leghari, Ahmed Khan, S., Shamila, S., 2010. Development of Modified N Doped TiO2 Photocatalyst with Metals, Nonmetals and Metal Oxides. Energy Environ. Sci., Volume 3, pp. 715?726