Published at : 29 Jul 2015
Volume : IJtech
Vol 6, No 3 (2015)
DOI : https://doi.org/10.14716/ijtech.v6i3.1125
Yuliusman, Purwanto, W.W., Nugroho, Y.S., 2015. Smoke Clearing Method using Activated Carbon and Natural Zeolite. International Journal of Technology. Volume 6(3), pp. 492-503
Yuliusman | Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI Depok, Depok 16424, Indonesia |
Widodo Wahyu Purwanto | Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI Depok, Depok 16424, Indonesia |
Yulianto Sulistyo Nugroho | Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI Depok, Depok 16424, Indonesia |
The purpose of this research is to study the effectiveness of smoke clearing with adsorbents measured in situ using the photoelectric type smoke detection system. The influence of the type, size and the mass of the adsorbents was evaluated against the smoke clearing process. Adsorbent types studied were commercial activated carbon, ZnCl2-activated carbon, and activated natural zeolite, with the size of 0.6-1.0 ?m, 1.0 to 2.0 ?m, 53-106 ?m, and 106-212 ?m, and the mass of 1, 3, and 5g. The smoke was generated by burning tissue paper using an electrical soldering apparatus. The adsorbent was dispersed using a pressurized nitrogen system. The results showed that in comparison with no adsorbent, the activated carbon and natural zeolite were more effective for clearing the smoke. The order of clearing effectiveness was best achieved by commercial activated carbon, ZnCl2-activated carbon and activated natural zeolite, respectively. Particle size of 53 micron provided the most effective performance. The more mass of adsorbent dispersed, the faster the clearing process. Clearing process at the top of the column was faster than that at the bottom. The best t10 value obtained for the top, middle and bottom column were 4, 4.6, and 7.7 minutes, respectively. In addition, the average adsorption of carbon monoxide was less than 15%.
Activated carbon, Natural zeolite, Photoelectric, Smoke clearing
Ackley, M.W., Rege, S.U., Himanshu, S., 2003. Application of Natural Zeolites in the Purification and Separation of Gases. Microporous and Mesoporous Materials, Volume 61, pp. 25-42
Azizi, K., Hashemianzadeh, S.M., Bahramifar, Sh., 2015. Adsorption of Carbon Monoxide, Carbon Dioxide and Methane on Outside of the Armchair Single-walled Carbon Nanotubes. Current Applied Physics, Volume 7, pp. 776-782
German, E.D., Moshe, S., 2008. Comparative Theoretical Study of CO Adsorption and Desorption Kinetics on (111) Surfaces of Transition Metals. The Journal of Physical Chemistry, Volume 112, pp. 14377–14384
Hagen, Bjarne C., Frette, V., Kleppe, G., Arntzen, B.J., 2015. Transition from Smoldering to Flaming Fire in Short Cotton Samples with Asymmetrical Boundary Conditions. Fire Safety Journal, Volume 71, pp. 69-78
Hull, T.R., Keith, T.P., 2007. Bench-scale Assessment of Combustion Toxicity - A Critical Analysis of Current Protocols. Fire Safety Journal, Volume 42(5), pp. 340-365
Maghirang, R.G., Razote, E.B., 2009. Smoke Dissipation by Solid Particles and Charged Water Spray in Enclosed Spaces. Fire Safety Journal, Volume 44, pp. 668–671
Mulukutla, R.S., Paul, S.M., Ronaldo, M., John, S.K., Kennet, J.K., Olga, K, 2007. Metal Oxide Nanoparticles for Smoke Clearing and Fire Suppression, U.S. Patent No. 7,276,640
Wang, W., Zhang, H., Ping, Wan, Y.T., 2007. Experimental Study on CO2/CO of Typical Lining Materials in Full-Scale Fire Test. Chinese Science Bulletin, Volume 52(9), pp. 1282-1286
Yadav, R., Maghirang, R.G., Erickson, L.E., Kakumanu, B., Castro, S.G., 2008. Laboratory Evaluation of the Effectiveness of Nanostructured and Conventional Particles in Clearing Smoke in Enclosed Spaces. Fire Safety Journal, Volume 43, pp. 36-41
Yuliusman, Purwanto, W.W., Nugroho, Y.S., 2013. Selection of the Adsorbent for Carbon Monoxide Adsorption using Adsorption Isotherm Model of Langmuir. Reactor, Volume 14(3), pp. 225-233