• Vol 6, No 2 (2015)
  • Chemical Engineering

Synthesis of Carbon Nanotube–Titania Composite for Application in a Self-cleaning Self-sterilizing Diaper

Febrian Tri Adhi Wibowo, Rahmita Diansari, Shofiyyah Taqiyyah, Slamet


Cite this article as:

Wibowo, F.T.A., Diansari, R., Taqiyyah, S., Slamet, 2015. Synthesis of Carbon Nanotube–Titania Composite for Application in a Self-cleaning Self-sterilizing Diaper. International Journal of Technology. Volume 6(2), pp. 291-301

242
Downloads
Febrian Tri Adhi Wibowo Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok 16424, Indonesia
Rahmita Diansari Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok 16424, Indonesia
Shofiyyah Taqiyyah Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok 16424, Indonesia
Slamet Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok 16424, Indonesia
Email to Corresponding Author

Abstract
image

Carbon Nanotubes-Titania (CNT-TiO2) composite that coated on diaper have been synthesized and tested for the removal of ammonia (self-cleaning test) and Candida albicans fungi (self-sterilizing test) that cause odor and make Candidiasis disease, respectively. The composite was characterized by FTIR, FESEM-EDX, XRD, and UV-Vis DRS. XRD and UV-Vis DRS results showed that the CNT-TiO2 composite has a high crystalline and low band gap. The results of self-cleaning and self-sterilizing tests showed that the optimum composition of the composite was 1-3 % wt of CNT and 97-99% wt of TiO2. Acid treatment at pH 1 were accompanied by ultrasonic agitation is an appropriate conditions on the composite synthesis. Within 2 hours of testing the modified diapers, the optimum composite can remove ammonia and Candida albicans by 91 and 98 %, respectively. Based on the experiment results, ammonia and fungi on the modified diapers was able to be removed up to minimum standard to prevent odor and diaper rash

ammonia, CNT, Candida albicans, composite, TiO2

References

Jaswin. (2013). Popok Siap Pakai Sebabkan Kandiasis Bayi. http://balipost.co.id. Accessed on 17 April 2013.

Nemoto J, Gokan H, Ueno M, Kaneko. (2007). Photodecomposition of Ammonia to Dinitrogen and Dihydrogen on Platinized TiO2 Nanoparticules in an Aqueous Solution. J. Photochem. Photobiol. A: Chemistry, 185, 295-300.

Huang Z, Maness P.C, Blake D.M, Wolfrum E.J, Smolinski S.L. (2000). Bactericidal Mode of Titanium Dioxide Photocatalysis. J. Photochem. Photobiol. A: Chemistry, 130 (2-3). 163-170.

Chong M.N, Jin B, Chow C.W.K., Saint C. (2010). Recent Developments in photocatalytic water treatment technology: a review. Water Res. 44, 2997-3027.

SNI. (2005). Udara Ambien- Bagian 1: Cara Uji Kadar Ammonia (NH3) dengan metoda Indofenol Menggunakan Spektrofotometer No. 19-7119.1-2005.

Cai J.H, Huang J.W, Yu H.C, and Ji L.N. (2012). Synthesis, characterization, and photocatalytic activity of TiO2 microspheres functionalized with porphyrin. Int. J. Photoenergy, 2012. 1-10.

Vasconcelos, D.C.L., Costa, V.C., Nunes, E.H.M., Sabioni, A.C.S., Gasparon, M., Vasconcelos, W.L. (2011). Infrared Spectroscopy of Titania Sol-Gel Coatings on 316L Stainless Steel. Material Sciences and Applications, 2, 1375-1382.

Slamet, Nasution H.W, Purnama E, Kosela S, Gunlazuardi J. (2005). Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method. Catal. Commun., 6. 313-319.

Sampaio M.J, Silva C.G, Marques R.R.N, Silva A.M.T, Faria J.L. (2011). Carbon nanotube-TiO2 Thin Films for Photocatalytic Applications. Catal. Today, 161, 91-96.

Malato, Ibanez, F.B., 2006. Solar Disinfection of Drinking Water. J. Solar Energy Eng., 129, 1-12.

Akhavan, F., Montazer, M. (2013). In Situ Sonosynthesis of Nano TiO2 on Cotton Fabric. Ultrasonics Sonochemistry, 21. 681-691.

Altomare, M., Chiarello, A. Costa, M. Guarino, E. Selli. (2012). Photocatalytic Abatement of Ammonia in Nitrogen-Containing Effluents. Chemical Engineering Journal, 191, 394-401

Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y. (2001). Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 293, 269–71.

Chen X., Mao S.S. (2007). Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev., 107, 2891-2959..

Fujishima, A., Rao, T. N., Tryk, D. A.(2000). Titanium Dioxide Photocatalysis. J. Photochem. Photobiol., 1. 1-21.

Gunlazuardi, J. (2001). Fotokatalisis pada Permukaan TiO2: Aspek Fundamental dan Aplikasinya, Seminar Nasional Kimia Fisika II. Jurusan Kimia, FMIPA, Universitas Indonesia, pp. 88-92.

Kabir, M.F., Haque, F., Vaisman, E., Langford, C. H., and Kantzas, A. (2003). Disinfecting E.coli Bacteria in Drinking Water Using A Novel Fluidized Bed Reactor. Int. J. of Chem. Reactor Eng., 1. 39-45.

Lijima, S. (1991). Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58.

Sumarlin, L., Muharam, S., Vitaria, A. (2008). Pemerangkap Ammonium (NH4+) Dari Urine dengan Zeolit pada berbagai Variasi Konsentrasi Urin. http://journal.uinjkt.ac.id . Accessed on 4 juni 2013.

Sunada, K., Wanatabe, T. (2003). Studies on Photokilling of Bacteria on TiO2 Thin Film. J. Photochem. Photobiol. Chem. Vol. 6221, 1-7.

Yuzawa, H., Mori, T., Itoh, H., Yoshida, H. (2012). Reaction Mechanism of Ammonia Decomposition to Nitrogen and Hydrogen Over Metal Loaded Titanium Oxide Photocatalyst. Journal of Physical Chemistry C, 116, 6, 4126-4136.

Table of Contents