Published at : 17 Jan 2014
Volume : IJtech
Vol 4, No 2 (2013)
DOI : https://doi.org/10.14716/ijtech.v4i2.113
Mohd Aidil A. Abdullah | Advanced Materials Research Group, Department of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia |
Mazidah Mamat | Advanced Materials Research Group, Department of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia |
Mohammad Awang | Department of Engineering Science, Faculty of Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia |
Eny Kusrini | Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI Depok 16424, Indonesia |
Farah N.A. Mubin | Advanced Materials Research Group, Department of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia |
Nor H. Sudin | Advanced Materials Research Group, Department of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia |
Low linear density polyethylene/organo-montmorillonite (LLDPE/OMMT) nanocomposites at 1–5 wt% OMMT loading were prepared by the melt intercalation technique. The OMMT was synthesized via an ion exchange reaction by replacing the interlayer of sodium ions (Na+ ) in the repeating unit of silicate layers of montmorillonite (MMT) with the cationic surfactant in the form of trihexyltetradecylphosphonium (THTDP) ions. The obtained OMMT and its nanocomposites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and elemental and thermogravimetric analyses. The interlayer spacing of MMT expanded from 1.41 to 2.29 nm due to the accommodation of THTDP ions in the intergallery of OMMT. The introduction of THTDP in the interlayer of OMMT rendered better dispersion of OMMT layers in the LLDPE/OMMT nanocomposites and significantly improved the thermal degradation properties of nanocomposites as compared to the pristine LLDPE.
Melt intercalation, Nanocomposites, Organo-montmorillonite, Thermal degradation
Abdullah, M.A.A., Ahmad, M., Wan Yunus, W.M.Z., Ab Rahman, M.Z., Hussein, M.Z., Dahlan K.Z.M., 2010. Preparation and Properties of Natural Rubber/Layered Double Hydroxide Nanocomposites, Journal of Sustainability Science and Management, Volume 5(2), pp. 58-67.
Avalos, F., Ortiz, J., Zitzumbo, R., Manchado, M., Verdejo, R., Arroyo, M., 2008.
Phosphonium Salt Intercalated Montmorillonites, Applied Clay Science, Volume 43, pp. 27-32.
Livi, S., Rumeau, J.D., Pham, T.N., Gerard, J.F., 2011. Synthesis and Physical Properties of New Surfactants Based on Ionic Liquids: Improvement of Thermal Stability and Mechanical Behavior of High Density Polyethylene Nanocomposites, Journal of Colloid and Interface Science, Volume 354, pp. 555-562.
Malucelli, G., Ronchetti, S., Lak, N., Priola, A., Dintcheva, N.T., Mantia, F.P., 2007. Intercalation Effects in LDPE/o-montmorillonites Nanocomposites, European Polymer Journal, Volume 43, pp. 328-335.
Naveau, E., Dominkovics, Z., Detrembleur, C., Jérôme, C., Hári, J., Renner, K., Alexandre, M., Pukánszky, B., 2011. Effect of Clay Modification on the Structure and Mechanical Properties of Polyamide-6 Nanocomposites. European Polymer Journal, Volume 47, pp. 5-15.
Nayak, S.K., Mohanty, S., 2010. Poly(trimethylene) Terephthalate/m-LLDPE Blend Nanocomposites: Evaluation of Mechanical, Thermal and Morphological Behavior, Material Science and Engineering A, Volume 527, pp. 57-583.
Patel, H.A., Somani, R.S., Bajaj, B.C., Jasra, R.V., 2007. Preparation and Characterization of Phosphonium Montmorillonite with Enhanced Thermal Stability, Applied Clay Science, Volume 35, pp. 194-200.
Qin, H., Zhang, S., Zhao, C., Feng, M., Yang, M., Shu, Z., Yang, S., 2004. Thermal Stability and Flammability of Polypropylene/Montmorillonite Composites. Polymer Degradation and Stability, Volume 85(2), pp. 807-813.
Wang, K.H., Choi, M.H., Koo, C.M., Choi, Y.S., Chung, I.J., 2001. Synthesis and
Characterization of Maleated Polyethylene/Clay Nanocomposites. Polymer, Volume 42, pp. 9819-9826.
Xie, W., Gao, Z., Pan, W.P., Hunter, D., Singh, A., Vaia, R., 2001. Thermal Degradation Chemistry of Alkyl Quaternary Ammonium Montmorillonite, Chemistry of Materials, Volume 13(9), pp. 2979-2990.
Zhang, W., Li, Y., Wei, L., Fang, Y., 2003. In Situ Intercalative Polymerization of Poly(methyl methacrylate)/Clay Nanocomposites by g-ray Irradiation, Materials Letters, Volume 57, pp. 3366-3370.
Zhao, C., Qin, H., Gong, F., Feng, M., Zhang, S., Yang, M., 2005. Mechanical, Thermal and Flammability Properties of Polyethylene/Clay Nanocomposites, Polymer Degradation and Stability, Volume 87(1), pp. 183-189.
Zhao, F., Bao, X., McLachlin, A.R., Gu, J., Wan, C., Kandasubramanian, B., 2010. Effect of POSS on Morphology and Mechanical Properties of Polyamide 12/montmorillonite nanocomposites, Applied Clay Science, Volume 47, pp. 249-256.
Zanetti, M., Camino, G., Reichert, P. Mülhaupt, R., 2001. Thermal Behavior of Poly(propylene) Layered Silicate Nanocomposites, Macromolecular Rapid Communications, Volume 22(3), pp. 176-180.
Zanetti, M., Camino, G., Thomann, R., Mülhaupt, R., 2001. Synthesis and Thermal Behavior of Layered Silicate-EVA Nanocomposites, Polymer, Volume 42(10), pp. 4501-4507.