Published at : 17 Jan 2014
Volume : IJtech
Vol 1, No 1 (2010)
DOI : https://doi.org/10.14716/ijtech.v1i1.33
Hery Haerudin | Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan PUSPIPTEK, Serpong, Tangerang 15314, Indonesia |
Andika W. Pramono | Research Center for Metallurgy, Indonesian Institute of Sciences, Kawasan PUSPIPTEK, Serpong, Tangerang 15314, Indonesia |
Dona Sulistia Kusuma | Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan PUSPIPTEK, Serpong, Tangerang 15314, Indonesia |
Aisyiyah Jenie | Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan PUSPIPTEK, Serpong, Tangerang 15314, Indonesia |
Nicolas H. Voelcker | School of Chemistry, Physics and Earth Sciences, Flinders University of South Australia, GPO Box 2100, Bedford Park, South Australia, 5042, Australia |
Christopher Gibson | School of Chemistry, Physics and Earth Sciences, Flinders University of South Australia, GPO Box 2100, Bedford Park, South Australia, 5042, Australia |
A natural- based nanocomposite film consisting of chitosan, montmorillonite (MMT) and cashew nut shell liquid (CNSL) was synthesized. The nanocomposite was prepared by mixing a suspension of clay particles (filler, MMT) with a solution containing chitosan as the macroscopic polymer matrix. In this study, it was proposed that non-ionic long-chain alkyl molecules with possible interactions with the amine group of chitosan could be used as a plasticizer. As a natu-ral source for these compounds, an extract of CNSL was used. A series of chitosan/MMT com-posite samples containing two different clay contents and a sample with an additional CNSL were prepared. FTIR spectroscopy of the nanocomposite films indicated that, by addition of CNSL, amide groups of the chitosan are probably less attached and have more space for vibra-tion. CNSL seems to provide intermolecular spaces between the chitosan molecules. Atomic force microscopy (AFM) analysis showed that the composite contained particles measuring 100 nm or less, which confirmed that the nanocomposite had been successfully produced by this method. Addition of CNSL as plasticizer improved the tensile strength by 10% and the elastic modulus by almost 18%. Cell growth was observed on all the nanocomposite samples studied.
Chitosan, CNSL, Montmorillonite (MMT), Nanocomposite
Akbari, Z., Ghomashchi, T. & Moghadam, S., 2007. Improvement in Food Packaging Industry with Biobased Nanocomposites, International Journal of Food Engineering, vol. 3: Iss. 4, Article 3, DOI: 10.2202/1556-3758.1120.
Bae, S.B., Kim, C.K., Kim, K. & Chung, I.J., 2008. The effect of organic modifiers with different chain lengths on the dispersion of clay layers in HTPB (hydroxyl terminated polybutadiene), European Polymer Journal, vol. 44, pp.3385-3392.
Bajdik, J., Marciello, M., Caramellab, C., Domjánc, A., Süveghd, K., Mareke, T. & Pintye-Hódi, K., 2009. Evaluation of surface and microstructure of differently plasticized chitosan films, J. Pharm. Biomed. Analysis, vol. 49, pp.655-659.
Caner, C., Vergano, P.J. & Wiles, J.L. 1998. Chitosan Film Mechanical and Permeation Properties as Affected by Acid, Plasticizer, and Storage, J. Food Sci., vol.63, no.6, pp.1049-1053.
Costache, M.C., Heidecker, M.J., Manias, E. & Wilkie, C.A., 2006. Preparation and characterization of poly(ethylene terephthalate)/clay nanocomposites by melt blending using thermally stable surfactants, Polym. Adv. Technol., vol. 17, pp.764-771.
Dutta, P.K., Tripathi, S., Mehrotra, G.K. & Dutta, J., 2009. Perspectives for chitosan based antimicrobial films in food applications, Food Chemistry, 114, pp.1173-1182. Gabrovskaa, K., Georgievaa, A., Godjevargovaa, T., Stoilovab, O. & Manolova, N., 2007. Poly(acrylonitrile) chitosan composite membranes for urease immobilization, J. Biotech., vol. 129, no. 4, pp.674-680, May 2007.
Kumar, P.P., Paramashivappa, R., Vithayathil, P.J., Subba Rao, P.V. & Rao, A.S., 2002. Process for Isolation of Cardanol from Technical Cashew (Anacardium occidentale L.) Nut Shell Liquid, J Agric. Food Chem., vol. 50, pp. 4705-708.
Liu, Y.L., Yua, C.H., Leea, K.R. & Lai, J.Y., 2007. Chitosan/poly (tetrafluoroethylene) composite membranes using in pervaporation dehydration processes, J. Membrane Sci., vol. 287, no. 2, pp. 230-236.
Luckachan, G.E. & Pillai, C.K.S., 2006. Chitosan/oligo L-lactide graft copolymers: Effect of hydrophobic side chains on the physico-chemical properties and biodegradability, Carbohydrate Polymers, vol. 64, no. 2, pp.254-266.
No, H.K., Meyers, S.P., Prinyawiwatakul, W. & Xu, Z., 2007. Applications of Chitosan for Improvement of Quality and Shelf Life of Foods: A Review, J. Food Sci., vol. 72, no. 5, pp. 87-100.
Quijada-Garrido, I., Iglesias-González, V., Mazón-Arechederra, J.M. & Barrales-Rienda, J.M., 2007. The role played by the interactions of small molecules with chitosan and their transition temperatures. Glass forming liquids: 1,2,3-Propantriol (glycerol), Carbohydrate Polymers, vol. 68, pp.173-186.
Rhim, J.W., Hong, S.I., Park, H.M. & Ng, P.K.W., 2006. Preparation and Characterization of Chitosan-Based Nanocomposite Films with Antimicrobial Activity, J. Agric. Food Chem., vol. 54, no. 16, pp.5814-5822.
Rivero, S., García, M.A. & Pinotti, A., 2009. Composite and bi-layer films based on gelatin and chitosan, J. Food Eng., vol. 90, no. 4, pp.531-539.
Ruiz-Hitzky, E., Darder, M. & Aranda, P., 2005. Functional biopolymer nanocomposites based on layered solids, J. Mater. Chem., vol. 15, pp.3650-3662.
Silva, C.L., Pereira, J.C., Ramalho, A., Pais, A.A. & Sousa, J.J.S., 2008. Films based on chitosan polyelectrolyte complexes for skin drug delivery: Development and characterization, J. Membrane Sci., vol. 320, pp.268-279.
Suyatma, N.E., Tighzert, L., Copinet, A. & Coma, V., 2005. Effects of Hydrophilic Plasticizers on Mechanical, Thermal, and Surface Properties of Chitosan Films, J. Agric. Food Chem., vol. 53, pp. 3950-3957.
Tang, C., Chen, N., Zhang, Q., Wang, K., Fu, Q. & Zhang, X., 2009. Preparation and properties of chitosan nanocomposites with nanofillers of different dimensions, Polym. Degrad. Stab., vol. 94, no. 1, pp.124-131.
Wang, X., Du, Y., Yang, J., Tang, Y. & Luo, J., 2008. Preparation, characterization, and antimicrobial activity of quaternized chitosan/organic montmorillonite nanocomposites”, J. Biomed. Mater. Res. A, vol. 84, no. 2, pp.384-390.
Wang, X., Du, Y., Yang, J.H., Wang, X.H., Shi, X.W. & Hu, Y., 2006. Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites, Polymer, vol. 47, pp.6738-6744.
Xie, W., Hwu, J.Y., Jiang, G.J., Buthelezi, T.M. & Pan, W.P., 2003. A Study of the Effect of Surfactants on the Properties of Polystyrene Montmorillonite Nanocomposites, Polym. Eng. Sci., vol. 43, no. 1, pp.214-222.
Akbari, Z., Ghomashchi, T. & Moghadam, S., 2007. Improvement in Food Packaging Industry with Biobased Nanocomposites, International Journal of Food Engineering, vol. 3: Iss. 4, Article 3, DOI: 10.2202/1556-3758.1120.
Bae, S.B., Kim, C.K., Kim, K. & Chung, I.J., 2008. The effect of organic modifiers with different chain lengths on the dispersion of clay layers in HTPB (hydroxyl terminated polybutadiene), European Polymer Journal, vol. 44, pp.3385-3392.
Bajdik, J., Marciello, M., Caramellab, C., Domjánc, A., Süveghd, K., Mareke, T. & Pintye-Hódi, K., 2009. Evaluation of surface and microstructure of differently plasticized chitosan films, J. Pharm. Biomed. Analysis, vol. 49, pp.655-659.
Caner, C., Vergano, P.J. & Wiles, J.L. 1998. Chitosan Film Mechanical and Permeation Properties as Affected by Acid, Plasticizer, and Storage, J. Food Sci., vol.63, no.6, pp.1049-1053.
Costache, M.C., Heidecker, M.J., Manias, E. & Wilkie, C.A., 2006. Preparation and characterization of poly(ethylene terephthalate)/clay nanocomposites by melt blending using thermally stable surfactants, Polym. Adv. Technol., vol. 17, pp.764-771.
Dutta, P.K., Tripathi, S., Mehrotra, G.K. & Dutta, J., 2009. Perspectives for chitosan based antimicrobial films in food applications, Food Chemistry, 114, pp.1173-1182. Gabrovskaa, K., Georgievaa, A., Godjevargovaa, T., Stoilovab, O. & Manolova, N., 2007. Poly(acrylonitrile) chitosan composite membranes for urease immobilization, J. Biotech., vol. 129, no. 4, pp.674-680, May 2007.
Kumar, P.P., Paramashivappa, R., Vithayathil, P.J., Subba Rao, P.V. & Rao, A.S., 2002. Process for Isolation of Cardanol from Technical Cashew (Anacardium occidentale L.) Nut Shell Liquid, J Agric. Food Chem., vol. 50, pp. 4705-708.
Liu, Y.L., Yua, C.H., Leea, K.R. & Lai, J.Y., 2007. Chitosan/poly (tetrafluoroethylene) composite membranes using in pervaporation dehydration processes, J. Membrane Sci., vol. 287, no. 2, pp. 230-236.
Luckachan, G.E. & Pillai, C.K.S., 2006. Chitosan/oligo L-lactide graft copolymers: Effect of hydrophobic side chains on the physico-chemical properties and biodegradability, Carbohydrate Polymers, vol. 64, no. 2, pp.254-266.
No, H.K., Meyers, S.P., Prinyawiwatakul, W. & Xu, Z., 2007. Applications of Chitosan for Improvement of Quality and Shelf Life of Foods: A Review, J. Food Sci., vol. 72, no. 5, pp. 87-100.
Quijada-Garrido, I., Iglesias-González, V., Mazón-Arechederra, J.M. & Barrales-Rienda, J.M., 2007. The role played by the interactions of small molecules with chitosan and their transition temperatures. Glass forming liquids: 1,2,3-Propantriol (glycerol), Carbohydrate Polymers, vol. 68, pp.173-186.
Rhim, J.W., Hong, S.I., Park, H.M. & Ng, P.K.W., 2006. Preparation and Characterization of Chitosan-Based Nanocomposite Films with Antimicrobial Activity, J. Agric. Food Chem., vol. 54, no. 16, pp.5814-5822.
Rivero, S., García, M.A. & Pinotti, A., 2009. Composite and bi-layer films based on gelatin and chitosan, J. Food Eng., vol. 90, no. 4, pp.531-539.
Ruiz-Hitzky, E., Darder, M. & Aranda, P., 2005. Functional biopolymer nanocomposites based on layered solids, J. Mater. Chem., vol. 15, pp.3650-3662.
Silva, C.L., Pereira, J.C., Ramalho, A., Pais, A.A. & Sousa, J.J.S., 2008. Films based on chitosan polyelectrolyte complexes for skin drug delivery: Development and characterization, J. Membrane Sci., vol. 320, pp.268-279.
Suyatma, N.E., Tighzert, L., Copinet, A. & Coma, V., 2005. Effects of Hydrophilic Plasticizers on Mechanical, Thermal, and Surface Properties of Chitosan Films, J. Agric. Food Chem., vol. 53, pp. 3950-3957.
Tang, C., Chen, N., Zhang, Q., Wang, K., Fu, Q. & Zhang, X., 2009. Preparation and properties of chitosan nanocomposites with nanofillers of different dimensions, Polym. Degrad. Stab., vol. 94, no. 1, pp.124-131.
Wang, X., Du, Y., Yang, J., Tang, Y. & Luo, J., 2008. Preparation, characterization, and antimicrobial activity of quaternized chitosan/organic montmorillonite nanocomposites”, J. Biomed. Mater. Res. A, vol. 84, no. 2, pp.384-390.
Wang, X., Du, Y., Yang, J.H., Wang, X.H., Shi, X.W. & Hu, Y., 2006. Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites, Polymer, vol. 47, pp.6738-6744.
Xie, W., Hwu, J.Y., Jiang, G.J., Buthelezi, T.M. & Pan, W.P., 2003. A Study of the Effect of Surfactants on the Properties of Polystyrene Montmorillonite Nanocomposites, Polym. Eng. Sci., vol. 43, no. 1, pp.214-222.