
International Journal of Technology 17(1) 250-260 (2026)

International Journal of Technology
http://ijtech.eng.ui.ac.id

Research Article
A Zeroth-Order Stochastic Gradient Descent Method for
Communication-Efficient Federated Learning
Hodaka Nishi1, Shiro Yano2, Megumi Miyashita1,∗, Shunta Onishi1, Yuta Goto1,
Toshiyuki Kondo1

1Department of Electrical Engineering and Computer Science, Tokyo University of Agriculture and Technology,
2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan;
2InfoTech Div., Toyota Motor Corporation, Otemachi Bldg. 6F, 1-6-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004,
Japan;
∗Corresponding author: mmiyashita@go.tuat.ac.jp; Tel.: +81 42-388-7699; Fax: +81 42-388-7699

Abstract: Federated learning (FL) has emerged as a key paradigm for decentralized data
privacy-preserving machine learning. However, substantial communication costs often hinder its
practical application, especially as deep learning models scale to millions or billions of param-
eters. This communication bottleneck becomes particularly acute in heterogeneous networks
with clients who are resource-constrained. To address this challenge, this study proposes a novel
FL framework that leverages black-box optimization, specifically the zeroth-order (ZO) method,
to reduce communication overhead. The proposed method, named ZO-FedSGD, reframes the
learning process to eliminate the need for transmitting high-dimensional model parameters. In-
stead, each communication round involves exchanging only a constant number of scalar values,
including a random seed and function evaluations, making the communication cost independent
of the model size. Extensive experiments were conducted to compare ZO-FedSGD with the
existing FedAvg algorithm on the MNIST datasets. The evaluation focused on model accuracy
and total communication efficiency. Our results reveal a trade-off: ZO-FedSGD required more
rounds to converge and achieved a slightly lower final accuracy. However, it demonstrated supe-
rior communication efficiency—to reach 90% accuracy, ZO-FedSGD required approximately 104

communicated parameters, compared to 106 for FedAvg, representing a two-order-of-magnitude
reduction. In conclusion, this study validates ZO-FedSGD as a viable and highly efficient alter-
native for FL in communication-constrained scenarios. It offers a new direction for designing
scalable FL systems and a promising solution to the statistical heterogeneity problem.
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1. Introduction

Federated learning (FL) (Zhang et al., 2021; Q. Yang et al., 2019; McMahan et al., 2017) is
a machine learning (ML) framework that trains models on decentralized data without the need
for data aggregation. By exchanging only model updates between clients and a central server,
FL facilitates distributed learning while reducing communication costs associated with data
transmission and preserving data privacy (Wei et al., 2020). Consequently, it has been applied
to fields where ML was previously challenging due to privacy concerns, such as healthcare (Guan
et al., 2024; Teo et al., 2024; Nguyen et al., 2023; Kairouz et al., 2021; Rieke et al., 2020), the
Internet of Things (IoT) (Dritsas and Trigka, 2025; Jiang et al., 2025; Y. Yang et al., 2025;
Nguyen et al., 2021), and so on (L. Li et al., 2020).

However, in recent years, the scale of deep learning models has grown, leading to a significant
increase in the number of parameters. For instance, while the BERT model (Devlin et al., 2019)
introduced in 2018 had 340 million parameters, the DeepSeek-R1 model (Guo et al., 2025)
released in 2025 has 671 billion parameters. Exchanging several hundred billion parameters,
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each represented by a 32-bit value, among hundreds of clients would result in communication
loads ranging from tens of gigabytes to tens of terabytes for each round, even when only the model
parameters are transmitted. In practice, this is not feasible (S. Wang et al., 2019). Researchers
have explored several techniques for reducing communication load to address this challenge.
These include quantization, which lowers the numerical precision of the parameters (Reisizadeh
et al., 2020), and sparsification, which transmits only the most important updates (J. Li et al.,
2024); and knowledge distillation, which exchanges compact knowledge representations instead
of full model parameters (Wu et al., 2022). However, all of these methods still require sending
some form of parameter-related information and, therefore, remain inherently dependent on the
model size. In addition, recent studies have actively investigated the integration of black-box
optimization (BBO) with FL as a promising direction for achieving communication efficiency
(Ma et al., 2025; Z. Li et al., 2024). For example, DeComFL (Z. Li et al., 2024) leveraged zeroth-
order (ZO) optimization to eliminate the dependence of the communication cost on the model
dimensionality, thereby reducing the per-round cost from O(d) to O(1). Such research highlights
the potential of BBO-based methods in alleviating large-scale FL communication bottlenecks.
Current ZO-based FL methods either require complex perturbation schemes or do not perform
experiments under non-IID conditions.

Building on this line of work, the present study proposes a fundamental method that com-
bines ZO optimization with stochastic gradient descent (SGD), one of the most basic yet widely
used optimization techniques. In particular, we propose the ZO optimization-driven FedSGD
(ZO-FedSGD) method, in which clients use ZO gradient estimators instead of true gradients.
ZO-FedSGD aims to reduce communication costs while maintaining model accuracy. Through
comparative experiments with the established FedAvg method (McMahan et al., 2017), we
demonstrate that ZO-FedSGD can achieve stable convergence even under stringent communi-
cation constraints. The novelty of this study lies in its simple and communication-efficient ZO
optimization-based algorithm. This is particularly useful for privacy-sensitive federated learning
scenarios where communication resources are constrained, such as IoT devices developed in the
field of tiny ML (Lin et al., 2023). In practice, ZO-FedSGD can be implemented by replacing the
local backpropagation with a two-point function evaluation on each client, sending the estimated
gradients to the server, and aggregating them as in the standard FedSGD.

2. Methods

In this study, we propose ZO-FedSGD that adapts the zero-order optimization to FL. The
fundamental idea is to replace the high-dimensional model parameter vectors communicated by
methods such as FedSGD with model-size-independent scalar information based on the principles
of ZO methods.

2.1 Problem Formulation

In FL, the global objective function F:Rd→R can be defined as the weighted average of all
clients’ loss function as shown in Equation (1):

F (W ) = 1
n

K∑
k=1

nk fk (w), (1)

where w is the d-dimensional model parameter vector, K is the total number of clients,
fk:Rd→R is the loss function on client k, nk is the number of data points on client k, and n is
the total number of data points. ZO-FedSGD optimizes its global objective function by treating
it as a black-box function whose gradient is not computable.
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2.2 Algorithm

In ZO-FedSGD, we find the optimal parameter x for this problem by applying two-point
estimation. The update equation for the two-point estimation used in our approach is shown in
Equation (2):

wt = wt−1 − αrt

rt ∼ Nd(0, σ2I) (2)

αt = η
nkfk(wt−1 + rt)− nkfk(wt−1 − rt)

n∥rt∥

where wt is the model parameter vector at round t, and η is the learning rate. rt is a d-
dimensional random vector sampled from a d-dimensional normal distribution, whose covariance
matrix is expressed as σ2I using the identity matrix I. The term σ2 is the variance of the normal
distribution and is a hyperparameter that adjusts the dispersion of each element in the random
vector. The term αtrt corresponds to the approximate gradient in the ZO method. The server
calculates the update coefficient αt, which aggregates the function values fk(wt−1 + rt) and
fk(wt−1 − rt) evaluated on each client.

The ZO-FedSGD algorithm is based on FedSGD. Its most distinctive feature is that it com-
municates only four items instead of directly communicating high-dimensional gradient vectors:
two scalar evaluation values calculated by each client, a random seed for sharing random vectors,
and the global model update coefficient αt. Consequently, the communication cost for model up-
dates becomes O(1) independent of the model size. Figure 1 shows an overview of ZO-FedSGD.
The detailed procedure of this process is shown in Algorithms 1 and 2.

Figure 1 Overview of ZO-FedSGD
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Algorithm 1: The Proposed ZO-FedSGD Method (Server-side)
Inputs : The number of clients K, the learning rate η, the number of rounds t
Server Executes:
Initialization: w0 ← initial global model
∀k : w0

k ← w0

for t = 1, 2, . . . do
foreach k ∈ K in parallel do

l+k,t, l−k,t ← ClientEvaluate(seedt)
end
Generate random vector rt with seed seedt

l+t =
∑

k∈K
nk
n l+k,t, l−t =

∑
k∈K

nk
n l−k,t

αt = CalculateAlpha(l+t , l−t )
wt = wt−1 + αtrt // ▷ update global model
foreach k ∈ K in parallel do

ClientUpdate(αt, seedt)
end

end
Function CalculateAlpha(l+t , l−t ):

αt = η
nkl+t − nkl−t

n∥rt∥
return αt

Algorithm 2: The Proposed ZO-FedSGD Method (Client-side)
Function ClientEvaluate(seedt):

Generate random vector rt with seed seedt

l+k,t = fk

(
wk

t−1 + rt

)
l−k,t = fk

(
wk

t−1 − rt

)
return l+k,t, l−k,t

Function ClientUpdate(αt, seedt):
Generate random vector rt with seed seedt

wk
t = wk

t−1 + αt · rt // ▷ update local model

In each round, the server first sends a random seed, seedt, to all clients. Each client uses
this seed to generate a random vector rt. Then, the client evaluates its local loss function fk on
its local model wt−1 at two points, wk

t−1+rt and wk
t−1-rt, and sends the resulting loss values, l+k,t

and l−k,t, back to the server. The server computes a weighted average of these values from all
clients, weighted by the number of data points nk for each client. Using the aggregated results,
l+t and l−t s the server calculates the update coefficient αt and updates the global model. In
two-point estimation, if the two obtained loss values are nearly the same, the next parameter
could be nearly the same as the previous parameter. Conversely, if these have a large difference,
the value is updated to worsen the direction (Liu et al., 2018; Nesterov and Spokoiny, 2017).

In our preliminary experiments using Algorithms 1 and 2, we encountered a divergent
learning process. To stabilize the training, we introduce a stabilized version of CalculateAlpha,
which gates the update by explicitly comparing three losses; l+t , l−t and the previous loss lt−1.
The server selects the direction with the smallest loss (setting αt ∈+1,-1) and suppresses the
update (αt=0) whenever neither perturbation improves upon loss lt−1. This modification is
detailed in Algorithms 3. This approach prevents updates that degrade the solution, thereby
achieving stable learning. When αt ∈+1,-1, the next model parameter is set to the best-evaluated
parameter from the previous step. In this sense, the update rule can be viewed as a special case
of the CE method (Rubinstein and Kroese, 2004; Rubinstein and Kroese, 2019), which makes
the approach reasonable.
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Algorithm 3: The Stabilized CalculateAlpha Function
Function CalculateAlpha(l+, l−, lt−1):

αt = {−1, +1, 0},
if l+t = min(l+, l−, lt−1) then

αt = 1
end
else if l−t = min(l+, l−, lt−1) then

αt = −1
end
else if lt−1 = min(l+, l−, lt−1) then

αt = 0
end
return αt

3. Result and Discussion

In our evaluation experiments, we conducted a performance comparison between ZO-
FedSGD and FedAvg, a conventional FL method, which served as the baseline.

3.1 Experimental Setting

We used the MNIST dataset (60,000 training images and 10,000 test images) (LeCun et al.,
1998) for our experiments and utilized FedScale (Lai et al., 2022) as the execution environment.
For the model, we employed a LeNet (LeCun et al., 1989)-based CNN, which is the default
implementation in FedScale.

The data distribution was evaluated under two settings: IID and non-IID. For the IID
condition, the training data were distributed randomly and equally among all clients. In contrast,
for the non-IID condition, the data were partitioned such that each client holds training data
consisting of only two label types.

To evaluate statistical variations and ensure the reliability of our results, each experimental
condition was executed three times with different initial random seeds. The mean performance
and confidence interval (CI)s across these multiple runs demonstrate the statistical significance
of our findings.

The evaluation metrics are prediction accuracy (i.e., classification accuracy on the test data)
and communication cost (i.e., the total cost required to reach a specific target accuracy). The
communication cost for FedAvg is calculated as 2 × (number of model parameters) × (number
of rounds) because the model is communicated twice per round. The cost for ZO-FedSGD is
calculated as 4 × (number of rounds) because it involves the communication of a random seed,
two evaluated values, and the update coefficient α in each round. The experimental conditions
are detailed in Table 1. The “Data Used per Round” in each experiment is denoted as (number
of updates per round) × (minibatch size).

Table 1 Summary of experimental settings. The proposed ZO-FedSGD is evaluated against
FedAvg under IID and Non-IID settings

Condition Method Data
Distribution

Number of
Clients

Data distributed
per Client

Data Used per
Round

Condition1 ZO-FedSGD IID 10 6000 1 × 6000
Condition2 ZO-FedSGD Non-IID 10 6000 1 × 6000
Condition3 FedAvg IID 10 6000 3 × 2000
Condition4 FedAvg Non-IID 10 6000 3 × 2000
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3.2 Prediction Accuracy

Figure 2 shows the prediction accuracy results for the four experimental conditions. Figure
2 plots the number of rounds on the horizontal axis and the achieved accuracy on the vertical
axis. As shown in Figure 2, FedAvg reached over 95% accuracy within 2,000 rounds. In contrast,
ZO-FedSGD accuracy remained at approximately 92% even after 30,000 rounds. Furthermore,
the CIs across three independent runs with different initial seeds demonstrate that both al-
gorithms exhibit stable and consistent convergence behavior, with relatively small performance
variance across different initializations. This statistical consistency validates the reliability of our
experimental results and indicates that random initialization effects do not cause the observed
performance differences.

(a) (b)
Figure 2 Top-1 test accuracy for MNIST classification under IID and Non-IID data

distributions: (a) Top-1 test accuracy of the ZO-FedSGD algorithm. (Conditions 1, 2) (b)
Top-1 test accuracy of the FedAvg algorithm. (Conditions 3, 4)

The lower final accuracy of ZO-FedSGD can be attributed to the inherent low learning
efficiency of ZO methods and the algorithm employed in this experiment, which restricts the
update coefficient αt to one of three values (-1, 0, or 1). With the fixed update coefficient for
the search, the model is unable to make fine adjustments in the vicinity of the optimal solution,
which may have led to stagnated convergence. We expect that this accuracy limitation could
be overcome by introducing more advanced BBO techniques, such as Bayesian optimization (X.
Wang et al., 2023), which balances exploration and exploitation, or by using ZO methods with
adaptive learning rates (Chen et al., 2019).

Although not included in the comparison conditions in this experiment, we found that
setting the hyperparameter σ2 for the variance of the multidimensional normal distribution
used in two-point estimation to a smaller value slowed down the learning speed but tended to
improve the maximum accuracy across all rounds. Therefore, it is expected that a more accurate
model can be obtained by determining an appropriate σ2 for a predetermined number of rounds.

3.3 Communication Cost

Figure 3 and Table 2 show the results for the communication cost of ZO-FedSGD and Fe-
dAvg. Figure 3 plots the achieved accuracy on the horizontal axis against the total number of
communicated parameters required to reach that accuracy on the vertical axis. The quantitative
comparisons in Table 2 demonstrate that ZO-FedSGD has a significant advantage in commu-
nication efficiency. For example, ZO-FedSGD required only 50,720 communicated parameters
to achieve 90% accuracy under IID conditions, whereas FedAvg required 5,285,280. This two-
order-of-magnitude reduction in total communication is achieved by our method, which utilizes
zeroth-order optimization to reduce the per-round communication volume to O(1) making it
independent of the model size. However, as Table 2 also indicates, this efficiency entails a trade-
off. ZO-FedSGD required a much larger number of rounds to converge, and its final accuracy
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was lower than that of FedAvg. To reach the same 90% accuracy (IID), ZO-FedSGD required
3,680 rounds, whereas FedAvg required only 121 rounds. This reflects the fundamental differ-
ence in learning efficiency between the first-order methods, which use the true gradient, and the
ZO methods, which approximate the gradient using only the limited information from function
evaluations. ZO-FedSGD offers a compelling solution for resource-constrained federated envi-
ronments where communication bandwidth is the primary bottleneck that dramatically reduces
the communication burden while maintaining competitive accuracy levels.

Figure 3 Communication cost of the ZO-FedSGD and FedAvg algorithms required to reach a
target Top-1 test accuracy on the MNIST dataset. The plot compares the cumulative number
of communicated parameters under both IID and non-IID data distributions, with each curve

representing the average of three independent runs. (Conditions 1, 2, 3, and 4)

Table 2 Number of rounds and communication cost required for ZO-FedSGD and FedAvg to
achieve target Top-1 test accuracy on MNIST under IID and non-IID settings. (Conditions 1,

2 and 4)

Condition Accuracy(%) Round Communicated params
ZO-FedSGD IID 70.0 2000 8,000

80.0 3680 14,720
90.0 12680 50,720

ZO-FedSGD
Non-IID 70.0 2090 8,360

80.0 3820 15,280
90.0 14050 56,200

FedAvg IID 70.0 14 611,520
80.0 29 1,266,720
90.0 121 5,285,280

FedAvg Non-IID 70.0 21 917,280
80.0 73 3,188,640
90.0 304 13,278,720
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4. Conclusions

In this study, we proposed and experimentally evaluated ZO-FedSGD based on the ZO
method to address the challenge of communication costs in FL associated with the increasing
scale of models. The experimental results revealed a clear trade-off between communication
and learning efficiency when comparing our proposed method to the existing FL approach,
FedAvg. ZO-FedSGD required a higher number of rounds to converge and did not reach the
same final model accuracy as FedAvg. However, in terms of the total communication cost re-
quired to achieve a certain level of accuracy, the proposed method demonstrated overwhelming
efficiency. Specifically, achieving 90% accuracy on MNIST required approximately 104 communi-
cated parameters with ZO-FedSGD, while FedAvg required around 106, representing a reduction
of roughly two orders of magnitude. This substantial reduction highlights that ZO-FedSGD is
a viable and practical option in environments where communication resources are severely con-
strained. In conclusion, this study presents a new direction for breaking through the limitation
of communication efficiency in FL. It is expected to contribute to the future development of
FL technologies for large-scale models and to efforts addressing the data heterogeneity prob-
lem. Nevertheless, this study did not experiment with additional datasets, such as CIFAR-10
or Fashion-MNIST, or with more complex architectures, such as CNN-4, ResNet-8, and MLP-3.
Extending the evaluation in these directions represents a key for future research. Future work
will focus on improving accuracy by incorporating advanced BBO methods, such as adaptive
noise, variance reduction, and Bayesian sampling. Additionally, we plan to verify the scalability
of our approach with regard to the number of clients and model size.
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Supplementary Materials

S1. Federated Learning (FL)

FL is a distributed ML framework proposed by McMahan et al., 2017. Conventional ML
aggregates all data on a server for training. On the other hand, FL only exchanges information,
e.g., model parameters, without aggregating clients’ raw data. This approach is expected to
enhance data privacy and reduce communication load.

S2. Black-Box Optimization

BBO (Y. Wang et al., 2018; Golovin et al., 2017; Hansen et al., 2010) is a general term for
optimization problems that do not use analytical information about an objective function, such
as its gradient. It must be optimized using only the objective function value. An example of
BBO is the hyperparameter optimization of ML models (Turner et al., 2021; Feurer and Hutter,
2019).



International Journal of Technology 17(1) 250-260 (2026) 258

ZO methods (Liu et al., 2020; Golovin et al., 2019) are optimization techniques that solve
BBO problems by approximating the gradient of the objective function f : Rd→ R using finite
differences. ZO methods are inspired by gradient-based optimization methods. ZO methods ap-
proximate the gradient from evaluations at multiple randomly perturbed points. As an example,
one of the update equations for two-point estimation is shown in Equation (S1).

∇̂f(xt) = f(xt + µu)− f(xt − µu)
2µ

u, (S1)

where xt ∈ Rd is current parameter, is a hyperparameter, and u is a random direction vector
sampled from a standard normal distribution. ∇̂f(xt) denotes the approximated gradient at the
point xt. The two-point estimation evaluates points xt+µu and xt-µu, then approximates the
gradient direction and magnitude from their difference. ZO methods tend to exhibit slower
convergence because they cannot utilize the true gradient. However, they provide a powerful
solution for problems in which gradient computation is infeasible (Ghadimi and Lan, 2013).
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