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Abstract: This study aims to develop and validate the MuSyRI early-warning index for criti-
cal e-government infrastructure. This study introduces the Multi-Domain Synergistic Resilience
Index (MuSyRI), a bounded [0–1] metric that identifies nonlinear, compound risks across opera-
tional, financial, regulatory, and cyber domains in critical e-government infrastructure. MuSyRI
explicitly integrates domain-specific resilience factors to modulate synergy-driven escalation. A
multiple-case study of four anonymised organizations – a housing-services agency, a specialized
construction firm, a water-tech startup, and a partially state-owned energy – water utility –
validates MuSyRI. ERP-BPMS logs are converted into fuzzy sub-indices and aggregated via
a Cascading Amplification Function (CAF) to capture concurrent moderate hazards and off-
set by a resilience term. Parameters were calibrated using Delphi panels, genetic algorithms,
and expert elicitation. MuSyRI detects overlapping medium-level risks 1–4 weeks earlier than
standard additive approaches. Early synergy alerts enabled proactive interventions, reducing
housing-service disruptions by 8%–12% and boosting pilot adoption in the water-tech case by
12%–15%. Resilience offset curtails overestimation and preserves policymakers’ and managers’
interpretability. Unlike linear or unbounded fuzzy methods, MuSyRI formally integrates a non-
linear synergy function with domain-specific resilience into one bounded index. Consequently, it
offers an actionable early warning framework for multi-domain oversight, resource prioritization,
and digital governance reforms in e-government ecosystems.

Keywords: Critical infrastructure; E-government; Multi-domain risk; MuSyRI; Synergy-based
index

1. Introduction

Public services and critical infrastructure increasingly confront risks that span the opera-
tional, financial, regulatory, and cyber domains. These risks require a structured management
approach across the entire project lifecycle (Beckers and Stegemann, 2013; National Institute of
Standards and Technology, 2020; OECD, 2019). Moderate stress in one domain can align with
latent vulnerabilities elsewhere, triggering compounding threats before any single indicator sig-
nals a danger (National Institute of Standards and Technology, 2020; OECD, 2019). Governance
structures generally divide these domains into separate teams, each focusing on isolated metrics
that overlook how moderate disruptions can escalate when they converge (Lin and Pan, 2022).
Critical e-government platforms must sustain 24/7 citizen services under simultaneous opera-
tional, financial, regulatory, and cyber pressures; siloed governance often masks these compound
threats. This siloed approach is particularly problematic for cyber risks, which can cascade
across all operational domains in critical infrastructure systems (Kelic, 2019). Even sophisti-
cated ERP-BPMS environments that centralize data flows typically lack dedicated analytics to
flag synergy effects, leaving concurrent anomalies undetected until the situation becomes urgent
(Gopalakrishnan and Sankaranarayanan, 2023). Recent incidents, including large-scale pan-
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demic disruptions and climate-related shocks, highlight the limitations of fragmented oversight
in managing multi-factor risks (Boni et al., 2025; Hochrainer-Stigler et al., 2023).

1.1 Context and Rationale

Risk management often remains compartmentalized in separate operational, financial, reg-
ulatory or cyber units. Each unit tracks distinct indicators and intervenes within its domain
without recognizing how moderate issues in one area can amplify hazards in others (Larsson
and Große, 2023). Bentahar and Rifai, 2022 proposed a theoretical framework that distin-
guishes strategic, operational, and compliance-based risks in the public sector, arguing that
these domains require distinct governance approaches while maintaining cross-domain visibil-
ity. Woods, 2022 further emphasized that public sector risk management must simultaneously
balance service continuity, political accountability, and resource constraints. Their work empha-
sizes the unique accountability demands that public agencies face when monitoring overlapping
threats. Moreover, oversight bodies rely on silo-based dashboards, which cannot capture non-
linear amplification across domains (OECD, 2019). Although digital innovations have enhanced
data consolidation, most existing frameworks still additively sum domain hazards, missing the
escalations that arise from concurrency (Menoni et al., 2024). Policy specialists increasingly em-
phasize the need for models that highlight cross-domain synergies before multiple thresholds are
breached (Moussa et al., 2024; Schlosser et al., 2023). A unified index that detects compound-
ing hazards early can improve how governments allocate contingency budgets, set regulatory
triggers, and orchestrate coordinated responses.

1.2 Focused Literature Review

Prior multi-domain risk studies introduced multi-criteria or partial-fuzzy aggregation but
relied on linear assumptions that obscured the non-linear nature of compound events (Akbari Ah-
madabadi and Heravi, 2019). Although integrated risk management approaches have attempted
to address these limitations, they often lack specific mechanisms for detecting nonlinear interac-
tions (Dudauri, 2022). Bayesian or fuzzy-logic approaches recognize interdependence but often
produce unbounded or opaque outputs that are unsuitable for public dashboards (Cai et al.,
2017; Labaka et al., 2016). These approaches frequently overlook the critical governance and
vulnerability factors that shape risk outcomes in practice. More recent work has used machine
learning to predict cross-domain anomalies (Moussa et al., 2024); however, explicit resilience
offsets that dampen synergy effects rarely appear (Lin and Pan, 2022). Scholars of digital trans-
formation have noted that ERP-BPMS platforms can collect operational, financial, regulatory,
and cyber logs in a single repository (National Institute for Strategic Studies (NISS), 2021).
Despite this, synergy-based metrics remain scarce, preventing policymakers from seeing how
moderate warnings in the two domains might multiply rather than simply add (Gopalakrishnan
and Sankaranarayanan, 2023; Mahama et al., 2022). Few studies have modeled domain-specific
resilience as a formal offset within a single bounded measure (Boni et al., 2025), and disaster
risk research sometimes incorporates multi-hazard perspectives (Hochrainer-Stigler et al., 2023),
including emerging frameworks for disaster risk management pathways (Ward, 2022). This ab-
sence leaves agencies lacking a straightforward approach to encode synergy in their licensing,
auditing, or resource allocation processes (Božović et al., 2020).

1.3 Research gap and novelty

A persistent gap remains: a holistic, multi-factor risk integration tool that detects non-
linear interactions while offsetting them through domain-specific resilience factors, all within
an interpretable [0,1] scale, is lacking (OECD, 2019). Existing models often treat hazards in
isolation or combine them linearly, overlooking how small indicators can escalate into severe
disruptions when they overlap (Lin and Pan, 2022). Petit et al., 2018 proposed an integrated
framework for critical infrastructure protection that explicitly addressed cross-sector interde-
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pendencies and cascading effects. Their work demonstrates how protection strategies focused
on single infrastructure sectors often miss crucial vulnerabilities that emerge at intersectoral
boundaries. Scholars argue that synergy-based metrics can capture moderate simultaneous sig-
nals early and show how robust mitigation curbs potential escalation (Menoni et al., 2024). To
fill this gap, this study introduces the Multi-Domain Synergistic Resilience Index (MuSyRI).
MuSyRI consolidates data from the operational, financial, regulatory, and cyber domains, ap-
plies a cascading amplification function to capture concurrency, and moderates the result with a
resilience factor (Gopalakrishnan and Sankaranarayanan, 2023). The framework’s emphasis on
integrating multiple resilience dimensions—including robustness, resourcefulness, redundancy,
and rapidity—aligns with contemporary approaches to resilience index development in critical
infrastructure (Sambowo and Hidayatno, 2021). It differs from conventional additive or fuzzy
models in that it formally models synergy and resilience in one metric.

1.4 Research questions and contributions

The four anonymised pilots, offering a rigorous cross-jurisdiction test, span a post-Soviet
housing utility (Case A), an EU construction integrator (B), a US water-tech start-up (C) and
a Middle East state-owned utility (D). This study develops and validates the Multi-Domain
Synergistic Resilience Index (MuSyRI) and asks the following questions: RQ1 – How can multi-
domain risks be fused into a single non-linear, resilience-aware metric?; RQ2 – What governance
insights emerge when the metric is deployed in critical e-government settings? The theoretical
contribution is a nonlinear framework, MuSyRI, which highlights cross-domain escalation and
integrates resilience offsets. The practical contribution involves pilot applications demonstrating
how synergy-based detection can strengthen oversight, licensing, and emergency planning in
critical service sectors (Moussa et al., 2024).

1.5 Roadmap

Section 2 details the MuSyRI framework and explains the multiple-case study design. Sec-
tion 3 compares synergy-based risk signals to simpler additive baselines to illustrate how early
detection windows shift when concurrency is recognized. Section 4 links these findings to risk
governance theory and digital transformation agendas and proposes policy applications that
leverage synergy metrics to allocate resources and set compliance thresholds. Section 5 outlines
the key contributions, acknowledges the calibration and data limitations, and proposes avenues
for future research.

2. Methods

This study uses a multiple-case design to develop and validate the Multi-Domain Synergistic
Resilience Index (MuSyRI) in four anonymised organizations, hereafter referred to as case com-
panies A, B, C and D. Each company faces overlapping operational, financial, regulatory, and
cyber risks, but varies in terms of scale, digital readiness, and public or semi-public oversight.
This design enables analytical generalization by examining how a unified risk index captures
multi-domain concurrency under contrasting conditions rather than pursuing large-sample rep-
resentativeness (Yin, 2018). It also aligns with the calls for practice-oriented approaches that
reveal the compounding nature of moderate vulnerabilities in real governance contexts (Chang
et al., 2023; National Institute for Strategic Studies (NISS), 2021).
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2.1 Material (Case Selection and Data Sources)

The investigation adopts theoretical replication logic, where each site tests whether the same
synergy-driven risk pattern recurs despite sector, data richness, and policy interactions differ-
ences (Menoni et al., 2024; Schlosser et al., 2023). Case company A manages housing and com-
munal services in an urban region using an ERP-BPMS to log daily operations, monthly financial
audits, and municipal compliance reports. Case company B delivered specialized construction
projects across diverse jurisdictions, tracking project costs, scheduling data, and weather fluctu-
ations. Case company C, a water technology startup, monitors R&D milestones, pilot usage, and
licensing processes. Case Company D is a partially state-owned utility that integrates SCADA
streams, financial statements, cyber alerts, and state policy directives. Their diversity supports
cross-case insights into the manner in which MuSyRI detects non-linear concurrency and offers
policy-relevant risk information.

2.2 Methods (MuSyRI Framework)

In [0,1], MuSyRI consolidates four domain-specific sub-indices—operational, financial, reg-
ulatory, and cyber—into a single bounded metric in [0,1]. Raw logs, such as downtime records,
budget variances, compliance flags, and cyber alerts, are transformed into fuzzy subindices,
each denoted RSIi. For cyber-domain indicators, adaptive approaches that respond to evolving
threat landscapes have been considered (Samanis et al., 2022), recognizing that cyber risks in
critical infrastructure require dynamic assessment methodologies (Kelic, 2019). Figure 1 illus-
trates the overall MuSyRI framework, showing the transformation from raw domain data to the
integrated risk index through fuzzy membership functions, synergy amplification, and resilience
offsetting.

Figure 1 Conceptual framework of the multi-domain synergistic resilience index (MuSyRI)

Note: The diagram illustrates the transformation pathway from domain-specific opera-
tional, financial, regulatory, and cyber data sources to a unified risk index. Raw logs undergo
fuzzy membership transformation into standardized sub-indices (RSIi), which are then processed
through three parallel components: (1) a linear weighted sum forming the base risk estimate,
(2) a CAF capturing non-linear synergy effects when multiple domains experience concurrent
stress, and (3) a resilience offset term (ResFagg) that moderates the final index based on avail-
able mitigation resources. The bounded [0,1] MuSyRI output integrates these components to
detect cross-domain risk concurrency while accounting for SR capacity.
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These sub-indices reflect low to high risk states, typically defined through membership
functions that accommodate uncertain thresholds (Cai et al., 2017; Labaka et al., 2016). A
weighted sum (Eq. 1) Σ4

i=1 wiRSIi forms a base multidomain risk estimate, with Σ4
i=1 wi=1.

Aggregate risk =
4∑

i=1
wiRSIi (1)

Our approach builds on Theoharidou et al., 2011, who developed one of the earliest method-
ologies specifically designed to assess interdependent risks across critical infrastructure systems,
introducing a tiered approach to identify both direct and cascading effects. Their methodology
emphasizes the importance of capturing second-order dependencies that are often undetected in
conventional assessments.

The Cascading Amplification Function (Eq. 2) is a key innovation, which models nonlinear
escalation when two or more domains simultaneously exceed moderate risk thresholds. To
capture this interaction effect, the CAF is defined in the following general form:

CAF = k ×
4∏

i=1
(RSIi)Wi (2)

where k is the scaling factor (usually set to one). The parameter αϵ[0,1] activates synergy
when domain concurrency arises, whereas η ≥1 sets how steeply the overall risk grows under
concurrency (Akbari Ahmadabadi and Heravi, 2019; Moussa et al., 2024). The Cascading
Amplification Function (Eq. 2) captures nonlinear escalation, whereas Eq. (4) guarantees
boundedness [0–1].

MuSyRI embeds resilience by including an aggregated resilience term Resilience offset –
ResFagg (Eq. 3). This term is computed as follows to account for the mitigating effect of the
available resilience resources on potential risk escalation:

ResFegg =
m∑

j=1
βjResFj (3)

where βj scales each ResFj (e.g., contingency funds and backup systems) (Božović et al.,
2020). The coefficient yϵ[0,1] moderates synergy by pulling the index downward when resilience
is high. The complete MuSyRI expression is:

MuSyRI = (∑4
i=1 wiRSIi) × [1 + αCAF ]η

1 + α + γResFagg
(4)

Boundedness follows because each RSIiϵ[0,1], CAFϵ[0,1], Σwi=1, α, γϵ[0,1], and η ≥1.
Empirical Monte Carlo checks by sampling random RSI vectors confirm that MuSyRI never
exceeds 1 (Chang et al., 2023). This structure highlights how overlapping MLD stresses can
amplify total risk, yet resilience resources can offset this escalation (Lin and Pan, 2022). Figure
1 shows the schematic data flow.

2.3 Data collection and analysis

Data were collected over 12–24 months, capturing operational logs, financial or cost records,
relevant regulatory data, where available SCADA metrics, or R&D reports (Hochrainer-Stigler
et al., 2023). In the case of company A, daily ERP-BPMS logs and monthly audit statements
were matched to detect points where equipment downtimes coincided with unexpected budget
gaps. The project cost records, scheduling updates, and weather archives of case company B
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illustrate the concurrency between moderate schedule slips and cost overruns during adverse
conditions. Case company C contributed R&D logs, pilot usage metrics, and local approvals,
revealing synergy when regulatory or market constraints aligned moderate development issues.
Case Company D integrated SCADA streams, quarterly financial data, cyber alerts, and policy
mandates, demonstrating the emergence of risk overlaps at larger scales.

Fuzzy sub-indices were derived from domain fields using expert-defined or data-informed
membership thresholds. This approach to fuzzy logic implementation aligns with proven method-
ologies for resource allocation optimization in emergency response contexts, where multiple crite-
ria must be balanced under uncertainty (Berawi et al., 2019). The parameter calibration followed
different procedures for each case. Case companies A and D held Delphi panels (two or three
rounds), converging once the interquartile ranges for α, γ, η dropped below an agreed threshold.
Case company B deployed a genetic algorithm (population ∼50, stopping when fitness improve-
ment fell below 1% over multiple generations) to optimize synergy parameters against known
historical cost-weather disruptions (Moussa et al., 2024). Case Company C, with fewer recorded
events, relied on structured expert elicitation supplemented by ±10% sensitivity checks. Missing
or partial logs were imputed via last-observation-carried-forward, a common approach in weekly
level risk assessment (Menoni et al., 2024). Scenario testing introduced synthetic concurrency
in two or more domains, confirming that MuSyRI spiked above linear sums and dropped when
resilience increased incrementally raised (Božović et al., 2020).

2.4 Methodological rigor and ethical

Researchers minimized bias by triangulating operational, financial, regulatory, and cyber
data and then cross-checking synergy results with local experts, who attested that synergy peaks
aligned with known multi-domain incidents (Yin, 2018). All logs were anonymized, removing
personal details or proprietary tags, and managed through a secure repository that complied
with recognized data protection guidelines (Carpignano et al., 2021). Because these records were
organizational, aggregated, and lacked human subjects, formal review board approval was not re-
quired (Farrington, 2016). Each organization consented to writing to share anonymised data for
research. Version-controlled scripts document membership definitions, parameter calibrations
and scenario tests, ensuring reproducibility if new evidence arises (Chang et al., 2023).

This method-centric approach establishes an empirical foundation for testing whether
synergy-based risk detection fosters earlier interventions in critical service contexts. The sys-
tematic approach to risk assessment employed here draws from established methodologies in
critical infrastructure sectors, where standardized guidelines have proven essential for compre-
hensive hazard identification (Hendra et al., 2024). MuSyRI responds to the need for integrated,
policy-relevant metrics that illuminate how moderate signals interact across the financial, op-
erational, regulatory, and cyber domains by modeling nonlinear escalation and resilience in a
single bounded measure (Lin and Pan, 2022; Schlosser et al., 2023). The next section compares
synergy-driven alerts to simpler baselines, revealing how concurrency and resilience factors shape
multidomain outcomes in each case.

3. Results

Section 3 answers RQ1 and RQ2 using four anonymised cases.

3.1 Case-Company A (Housing and Communal Services)

Case Company A manages an urban housing and communal services network, recording
equipment downtime, budget variances, and regulatory notices in an ERP-BPMS. A two-round
Delphi panel (ten experts) established domain weights of 0.40 (operational), 0.35 (financial), and
0.25 (regulatory), with synergy parameters α=0.80 and η=1.25. The baseline additive method
rarely exceeded 0.50 for moderate incidents over 24 months.
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Figure 2 Evolution of risk index for Case-Company A: MuSyRI versus baseline approach

Concurrent operational downtime and a modest budget gap overlapped with a delayed
municipal inspection in one event, producing sub-indices of (0.40, 0.35, and 0.30). A simple
average remained below 0.50, but the Cascading Amplification Function (CAF) pushed the
composite synergy near 0.68. An aggregated resilience term (ResFagg≈0.10, including emergency
crews and repair funds) then reduced the final MuSyRI to approximately 0.58 when multiplied
by γ≈0.80. Management, by comparing ERP-BPMS logs before and after MuSyRI deployment,
reported roughly 8%–12% fewer service disruptions and observed synergy alerts arriving around
2–3 weeks earlier than domain-specific dashboards. Figure 2 illustrates this early detection
capability, showing how MuSyRI crossed the critical risk threshold of 0.65 at week 6, while the
baseline approach reached the same threshold only at week 9, demonstrating the three-week
early warning advantage.

3.2 Case-Company B (Specialized Construction)

Case company B undertakes specialized construction projects in multiple regions, tracking
scheduling, cost overruns, and external triggers (weather and permits) through distinct modules.
A genetic algorithm (population ∼50, converging after ∼40 generations) was used to calibrate the
domain weights at 0.45 (schedule), 0.35 (financial), and 0.20 (external), with synergy parameters
α≈0.70 and η=1.30.

In a representative case, a project that lagged by approximately 12% in scheduling also
faced moderate cost overruns during heavy rainfall, triggering additional permit checks. The
baseline additive index remained near 0.48 and the compounding effect was missed. MuSyRI rose
to approximately 0.73, and then resilience measures – chiefly contingency funds for reassigning
crews – lowered the final index to approximately 0.63, once ResFagg≈0.10 was applied with
γ≈0.85. This signal appeared two to three weeks earlier than the firm’s legacy alert system.
Site managers noted fewer scheduling setbacks after the use of synergy-based prompts.

3.3 Case-Company C (Water-Tech Startup)

Case Company C is a small venture focused on hardware for water optimization, facing
R&D bottlenecks, market adoption hurdles and municipal policy constraints. Expert-elicited
calibration assigned domain weights of 0.40 (R&D), 0.35 (market), and 0.25 (regulatory), with
synergy parameters α=0.75 and η=1.35. For moderate issues in each domain, a baseline sum
often scored around 0.50 for moderate issues in each domain, yet their combined effect was
overlooked.
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Over 12 months, a three-week prototype delay merged with slower pilot uptake and pending
municipal certification, raising MuSyRI to approximately 0.75 from a baseline of 0.50. A small
resilience offset (ResFagg≈0.05) reflected limited bridging funds and flexible engineering sched-
ules, resulting in a final MuSyRI of approximately 0.70 once γ≈0.80 was applied. Alerts arrived
1–2 weeks before the quarterly reviews. Managers reassigned engineers to address regulatory
gaps and noted a modest upturn in pilot ERP-BPMS tracking metrics.

3.4 Case-Company D (Energy–Water Utility)

Case Company D is a partially state-owned utility that operates water and energy services
through integrated SCADA logs, quarterly financial audits, and separate policy or cyber chan-
nels. Conventional dashboards typically evaluate these domains separately, leaving moderate
overlaps undetected. A three-round Delphi (ten participants) determined domain weights of
approximately 0.30 (operations), 0.25 (finance), 0.25 (policy), and 0.20 (cyber), with α≈0.85
and η=1.40.

During an 18-month pilot, minor budget strain (0.30) and compliance lapses (0.35) con-
verged with recurrent cyber alerts (0.40), lifting MuSyRI to approximately 0.74 compared to
a baseline below 0.50. This convergence of cyber and operational risks exemplifies Kelic, 2019
critical infrastructure vulnerabilities. A substantial resilience reserve (ResFagg≈0.20, compris-
ing cybersecurity, compliance, and operational resources) then curbed the final index to the
mid-0.50s once γ≈0.90 was applied. The synergy signals arrived approximately three to four
weeks earlier than the monthly or quarterly combined metrics of the utility.

3.5 Cross-Case Synthesis

Table 1 summarizes the key metrics and findings across the four case organizations, provid-
ing a comparative overview of the results of the implementation of MuSyRI.

Table 1 Comparative Analysis of MuSyRI Implementation Across Case Organizations

Case Peak
MuSyRI1

Baseline Resilience
Offset1

Early-warning
lead (weeks)

Calibration
technique

Observable ser-
vice gain

A ≈ 0.68 ≈ 0.50 ≈ 0.10 2 – 3 Delphi (two
rounds)

8 – 12 % fewer
service disrup-
tions

B ≈ 0.73 ≈ 0.48 ≈ 0.08 –
0.12

2 – 3 Genetic-
algorithm
tuning

Noticeably
fewer scheduling
delays

C ≈ 0.75 ≈ 0.50 ≈ 0.05 1 – 2 Expert elici-
tation

12 – 15 % in-
crease in pilot-
project uptake

D ≈ 0.74 ≈ 0.50 ≈ 0.20 3 – 4 Delphi
(three
rounds)

Averted pro-
jected service
outages

1Note: Data derive from organizational ERP–BPMS logs and expert calibration sessions (2023–2025)

All four pilots showed that MuSyRI detected concurrent, moderate-level risks 1–4 weeks
earlier than domain-isolated baselines, with the timing correlated with each site’s log update
frequency. Table I (summarizes the final version) summarizes peak synergy indices, baseline
averages, resilience offsets, and estimated detection leads across all four organizations. The
peak MuSyRI values varied from approximately 0.68 to 0.75, confirming that moderate signals
can nonlinearly escalate when they overlap (Lin and Pan, 2022; Schlosser et al., 2023). Resilience
offsets also diverged, approximating 0.05 for startup (C) and approximately 0.20 for large utility
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(D), while companies A and B ranged approximately 0.08–0.12. These differences are consistent
with distinct resource buffers (ResFagg) and calibrated γ factors (Murasov et al., 2024).

The data’s completeness varied between studies. Case company C lacked an extensive
history but updated R&D metrics weekly, whereas case company D had detailed SCADA logs but
slower policy and finance cycles. Cross-correlation methods that can handle incomplete datasets
have been shown to benefit the performance evaluation of resilience indices across different data
availability conditions (Jandhana and Agustini, 2024). Fuzzy sub-indices maintained stable risk
signals under partial data, consistent with multi-factor resilience research (Menoni et al., 2024;
Zogheib and Mahetaji, 2024).

3.6 Unexpected Observations

Two anomalies emerged. Case company A first resolved a budget gap within days, but
MuSyRI remained elevated until the next monthly finance input. Second, company C expe-
rienced a transient synergy spike caused by a short-lived R&D slip and a minor regulatory
hold; managers accepted such potential overestimates. Section 4 discusses the theoretical and
practical implications of the study.

4. Discussion

4.1 Link to the prior literature

Risk integration studies have shown that moderate stressors often amplify each other once
they occur together, rather than simply adding up linearly (Labaka et al., 2016; OECD, 2019).
Jiwei et al., 2019 developed network-based models to capture the propagation of failures across
interconnected infrastructure systems, revealing that moderate disruptions in two networks often
produce nonlinear cascades at their intersection points. Their approach highlights how cyber-
physical connections amplify risk beyond what siloed assessments would predict. Although
e-government platforms collect diverse logs, they rarely incorporate explicit synergy metrics
that reveal multi-domain concurrency (Arvidsson et al., 2021; National Institute for Strategic
Studies (NISS), 2021). Although Bayesian models handle interdependencies, they can generate
complex probability distributions that field managers find difficult to interpret (Cai et al., 2017;
P. Zhang et al., 2025). Fuzzy AHP scores reflect expert weighting but usually sum domain
hazards additively, thus missing how moderate levels can be combined into heightened vulnera-
bility (Akbari Ahmadabadi and Heravi, 2019; Murasov et al., 2024). Recent accounts of water,
construction, and energy infrastructures confirm that moderate disruptions in two or more do-
mains escalate the total threat if they coincide (Menoni et al., 2024; Mohebbi et al., 2020; Wells
et al., 2022). The importance of standardized risk management approaches became particularly
evident during global disruptions, where organizations with robust frameworks demonstrated
superior adaptability (Prasetya et al., 2023). Unifying risk detection and resilience in a single
bounded index remains an unsolved challenge (Božović et al., 2020; Šarūnienė et al., 2024).
MuSyRI addresses this gap by explicitly modeling synergy and resilience by building on prior
theoretical calls for nonlinear concurrency functions (Gopalakrishnan and Sankaranarayanan,
2023; Lin and Pan, 2022).

4.2 Theoretical Contributions

MuSyRI advances the multi-factor risk integration theory through three main innovations.
First, it codifies non-linear synergy by amplifying the composite score when two or more domain
sub-indices simultaneously exceed moderate thresholds. This exponent-based design captures
concurrency-driven escalation rather than treating risks as merely additive (Chang et al., 2023;
Moussa et al., 2024). Rød et al., 2020 traced the evolution from traditional risk management
to resilience management in critical infrastructure, highlighting the shift from avoiding spe-
cific threats to building adaptive capacities across multiple domains. Their work emphasized
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that resilience-based approaches better accommodate the concurrent stressors that characterize
modern infrastructure challenges. For instance, if two fuzzy sub-indices register around 0.40 and
0.35, their overlapping effect can substantially increase the total measure above 0.75, depending
on the chosen parameters, rather than resting near a simple sum or product. This approach
addresses the documented shortcomings of silo-based or linear risk approaches, where moderate
levels of risk can appear benign when viewed in isolation (Akbari Ahmadabadi and Heravi, 2019;
Zogheib and Mahetaji, 2024).

Table 2 compares MuSyRI with established multi risk frameworks (Labaka et al., 2016, Cai
et al., 2017, Akbari Ahmadabadi and Heravi, 2019 along five methodological dimensions.

Table 2 Comparative analysis of multi-risk assessment frameworks

Framework /
Study

Synergy Detec-
tion

Resilience In-
tegration

Bounded -
ness

Early-
Warning
Capability

Implementation
Context

MuSyRI (this
study)

Explicit non-
linear CAF (Eq.
2) captures con-
current domain
interactions

Direct inte-
gration via
resilience offset
in the denomi-
nator (Eq. 4)

Guaranteed
[0, 1] scale
by design

1–4 weeks
lead time
demon-
strated
across cases

Real-time com-
patible; tested
in four critical-
infrastructure
settings

Labaka et al.,
2016

Qualitative
framework
recognises inter-
dependencies

Resilience
treated as a
separate matu-
rity model

No numeri-
cal bound

Not quanti-
fied

Conceptual
framework;
case studies in
critical infras-
tructure

Cai et al., 2017 Dynamic
Bayesian Net-
works model
probabilistic
dependencies

Resilience
nodes embed-
ded in network
structure

Unbounded
probabili-
ties

Scenario-
based fore-
casting

Theoretical
demonstrations;
computational
complexity lim-
its real-time use

Akbari Ahmad-
abadi and Her-
avi, 2019

Fuzzy-AHP
recognises in-
teractions via
expert weight-
ing

Not explicitly
integrated

Normalised
scores with-
out formal
guarantee

Not ad-
dressed

PPP megapro-
jects; requires
extensive expert
elicitation

As shown in Table 2, MuSyRI advances the field through three distinctive features. First,
while Labaka et al., 2016 provided valuable qualitative insights into resilience building, MuSyRI
operationalized these concepts through quantitative metrics suitable for automated monitoring
systems. Second, compared with the computational complexity of dynamic Bayesian networks
(Cai et al., 2017), the algebraic formulation of MuSyRI enables real-time calculation, which is
essential for operational dashboards. Third, unlike the expert-dependent weights in Fuzzy-AHP
approaches (Akbari Ahmadabadi and Heravi, 2019), MuSyRI combines expert calibration with
data-driven validation, reducing subjectivity while maintaining domain expertise integration.

The mathematical foundation of MuSyRI’s resilience integration draws parallels to pro-
duction function approaches in resilience assessment, where similar mathematical structures
have been used to model nonlinear relationships between inputs and outputs (Jandhana et al.,
2018). This connection reinforces the theoretical validity of incorporating multiplicative factors
to capture synergistic effects in multi-domain systems.

Beyond modeling nonlinear synergy, MuSyRI makes a second significant advancement to
multi-factor risk integration theory: it integrates resilience directly into the main formula rather
than treating preparedness as a separate monitoring domain. The offset γ×ResFagg in the
denominator scales how robust resources curb synergy-based escalation (Božović et al., 2020).
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This aligns with the foundational elements of critical infrastructure resilience that emphasize
both preparedness and adaptive capacity (Trifunović, 2020). Each organization’s resilience level
(ResFagg=j ResFj) adjusts the final scores downward if backup funds or equipment exist in
that domain, reflecting how well-resourced companies mitigate concurrent hazards (Labaka et
al., 2016; Nweke and Wolthusen, 2021). In case-company A, a modest ResFagg of about 0.10
lowered the synergy spike from 0.68 to 0.58, while case-company D, with ∼0.20, reduced the
peaks from the mid-0.70 to mid-0.50 ranges. By combining concurrency detection and in-house
capacity into one metric, MuSyRI operationalizes how synergy interacts with resilience rather
than forcing managers to refer to separate dashboards.

In addition to integrating synergy and resilience, MuSyRI addresses another critical limi-
tation of existing risk models: the model is bounded in [0,1]. This design choice addresses the
practical criticisms of unbounded fuzzy or Bayesian outputs, where risk scores can exceed unity
without clear cutoffs (Cai et al., 2017). A single composite in [0,1] allows managers to define
numeric thresholds for moderate or high risk, such as 0.65 or 0.70 (OECD, 2019). All four case
companies adopted similar synergy lines despite operating in different sectors (housing, spe-
cialized construction, water-tech and partial state-owned utility), demonstrating sector-agnostic
adaptability (Gopalakrishnan and Sankaranarayanan, 2023; National Infrastructure Advisory
Council (NIAC), 2010). This bounded nature supports straightforward color-coded risk scales
in line with transparency and consistency demands of digital governance.

4.3 Practical Implications

Managers reported that MuSyRI revealed critical overlaps earlier than standard thresholds
focused on single domains. In the case of company A, moderate budget strains combined with
operational incidents spiked the index near 0.68 two to three weeks before domain-specific dash-
boards raised alarms, prompting a timely maintenance budget shift that reduced service slow-
downs by approximately 8%–12%. In case company B, overlapping cost overruns and scheduling
lags pushed the synergy score to ∼0.73, triggering crew realignments before the cost or schedule
alone became severe. In the case of company C, a water-tech startup, MuSyRI jumped to ∼0.75
when moderate R&D setbacks coincided with regulatory licensing shortfalls, highlighting this
concurrency around one to two weeks ahead of normal reviews. In the case of company D,
synergy near 0.70–0.75 alerted managers to concurrent cyber, policy, and financial anomalies
that averted broader service disruptions. These preventative actions align with the findings of
Hallegatte et al., 2019, who documented how resilient infrastructure can generate a $4 return
for each $1 invested when accounting for the avoided costs of multidomain disruptions and cas-
cading failures. Their work emphasized that the early detection of overlapping vulnerabilities
produces the highest economic returns for public systems.

Implementation requires only the calibration of fuzzy membership definitions and synergy
parameters (α, η, γ) because an ERP-BPMS already consolidated domain logs (Falco et al.,
2019). Two to three expert workshops and a short genetic algorithm were sufficient for the
four pilots (Cai et al., 2017). Synergy patterns highlight which domain pairs or triads con-
sistently overlap over time, guiding targeted resource allocations that enhance local resilience
(Gopalakrishnan and Sankaranarayanan, 2023). This approach aligns with recent advances in
the optimization of risk-response strategies when resources are limited (Zuo et al., 2022). Man-
agers preferred the bounded [0,1] scale over unbounded or purely probabilistic methods because
synergy triggers above 0.65 or 0.70 fostered faster and more coordinated responses across de-
partments.

4.4 Policy and Government Implications

A synergy-based measure can help public agencies more effectively license, fund, and oversee
critical and near-critical services, addressing the unique challenges of public sector risk manage-
ment where multiple objectives must be balanced (Woods, 2022). Municipal authorities could
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embed MuSyRI thresholds in operating permits, compelling organizations, such as case com-
pany A, to maintain synergy below a numeric cutoff or face mandatory mitigation (National
Infrastructure Advisory Council (NIAC), 2010). Instead of siloed compliance checklists, regu-
lators track whether concurrent moderate signals push the final index above 0.70, mandating
earlier inspections or resource audits (OECD, 2019). Governments might also tie synergy scores
to funding streams, awarding grants to providers that show sustained low synergy or directing
extra support to those with recurring overlaps between particular domains (Mahama et al.,
2022; Šarūnienė et al., 2024). Such approaches require disaggregated policy governance mecha-
nisms that can coordinate across multiple agencies while maintaining accountability (X. Zhang,
2022). For state-influenced providers, such as case-company D, synergy alerts integrated into
board-level governance can ensure that moderate domain hazards are not compound unrecog-
nized (National Institute for Strategic Studies (NISS), 2021). Scolobig et al., 2017 analyzed
policy barriers that prevent the effective implementation of multi-risk approaches, identifying
fragmented governance, siloed expertise and lack of standardized metrics as key obstacles. Their
work proposed policy mechanisms that can institutionalize cross-domain risk detection within
existing regulatory frameworks.

Bayesian models often yield posterior probabilities that field inspectors may struggle to
quickly interpret, whereas fuzzy AHP requires repeated pairwise comparisons that produce
only linear composites (Akbari Ahmadabadi and Heravi, 2019; Cai et al., 2017). In contrast,
MuSyRI’s single bounded metric can be easily mapped onto color-coded dashboards in city
council e-portals or national agency platforms, satisfying digital governance agendas that call
for integrated, transparent data (Lin and Pan, 2022; Zogheib and Mahetaji, 2024). Municipal-
ities may publish synergy indices for key utilities to foster public accountability and encourage
early cross-domain interventions (Arvidsson et al., 2021; Uwe and Gerber, 2019). This shared
concurrency scale helps agencies coordinate oversight because the environment, finance, and cy-
ber regulators each see the same synergy range, aligning with the broader move toward adaptive
and data-driven governance.

4.5 Limitations

These findings draw on four pilot cases, so the sample size remains too small for broad
generalization (Yin, 2018). Each organization had a distinct data cadence (weekly in A and
C, monthly in B and D), indicating that very rapid synergy spikes might remain undetected.
Domain weights and fuzzy membership functions were defined through local experts or par-
tial computational methods, introducing potential subjectivity, although minor parameter shifts
(±10–20%) did not alter which weeks breached the synergy thresholds. Region-specific avail-
ability and completeness of financial, operational, regulatory, and cyber logs can affect model
performance (OECD, 2019). Overestimating organizational resilience might artificially depress
synergy scores and delay alerts (Božović et al., 2020). Additionally, the current framework in-
cludes four core domains but omits environmental or social factors that could intersect with
existing vulnerabilities, especially in large-scale infrastructure (Hochrainer-Stigler et al., 2023;
Wells et al., 2022). Sakic Trogrlic et al., 2024 surveyed European stakeholders to identify persis-
tent challenges in multi-hazard risk assessment and found that organizations struggle most with
methodologies that capture the interaction effects between moderate hazards. Their findings
reveal a gap between the theoretical multi-risk frameworks and practical implementation tools
accessible to infrastructure managers.

4.6 Future Research

Future studies could extend MuSyRI to other critical sectors, such as healthcare, trans-
portation, and telecommunications, where moderate concurrency may escalate rapidly (Menoni
et al., 2024; Mohebbi et al., 2020). Cross-national comparisons would clarify how legal or
cultural differences in data-sharing and compliance norms shape synergy calibration (Lin and
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Pan, 2022). Ward et al., 2021 outlined a comprehensive research agenda for advancing disas-
ter risk management through MRA, highlighting key knowledge gaps in capturing the dynamic
interactions between hazards. Their work proposed that next-generation frameworks must in-
tegrate synergistic HA and adaptive capacity within unified metrics. Advanced sensor feeds
from Internet-of-Things or SCADA systems may enable real-time synergy detection, capturing
short-lived overlaps missed by weekly or monthly logs (Falco et al., 2019). Machine learning or
artificial intelligence (AI)-based calibration can reduce reliance on expert panels, making synergy
detection more automated as risk landscapes evolve (Gopalakrishnan and Sankaranarayanan,
2023; Moussa et al., 2024). Comparative experiments that benchmark MuSyRI against Bayesian
copula networks or enhanced fuzzy-AHP may quantify lead time gains, false positives, or cost-
effectiveness (Chang et al., 2023). Researchers may also track how synergy-based prevention
offsets implementation costs through longitudinal cost-benefit analyses, bolstering the adoption
of synergy methods in public governance. Expanding MuSyRI to incorporate environmental or
social indicators would capture how climate events or demographic shifts can magnify opera-
tional or financial strains (Boni et al., 2025; Nweke and Wolthusen, 2021).

These pilot results indicate that moderate anomalies across multiple domains often trigger
an outsized risk earlier than that suggested by single-domain metrics. MuSyRI formalizes this
process by embedding concurrency detection in one bounded index, integrating domain-level
resilience as an offset, and providing a clearer measure for managers and policymakers. The
synergy signals arrived early enough to prompt maintenance reallocation in case company A,
crew shifts in case company B, bridging funds for case company C, and cross-department co-
ordination in case company D. By bridging detection and mitigation under a single measure,
MuSyRI addresses the limitations of silo-based monitoring and enables organizations to respond
more proactively in multidomain risk settings. If scaled further, this synergy approach could
reshape how digital governance frameworks define licensing, compliance, and resource alloca-
tion for critical infrastructures, shifting from reactive thresholds to adaptive concurrency-aware
oversight.

5. Conclusions

This study introduced MuSyRI, a bounded [0–1] index that fuses operational, financial,
regulatory, and cyber signals into a single nonlinear measure of compound risk. Validation across
four anonymised organizations (Cases A–D) delivered 1–4-week early-warning leads over additive
baselines and cut service disruptions by 8%–12%. MuSyRI avoids false positives yet captures
cascading effects by embedding a resilience offset, enabling regulators to move from reactive
silo-based monitoring to proactive, cross-domain governance. Future work should enlarge the
dataset to a national scale and embed environmental or social indicators to further reinforce
e-government resilience.
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