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Abstract: Timely and accurate identification of rice leaf diseases is critical for optimizing crop 
productivity and safeguarding global food security. This study developed an innovative deep 
learning framework that incorporates the DenseNet121 architecture, optimized through a modified 
Parrot Optimization Algorithm (POA), to achieve precise classification of rice leaf diseases. The 
modified POA, an enhanced variant of the original algorithm, integrates Mutation random 
opposition-based learning (mROB) and Brownian motion mechanisms to improve optimization 
efficiency. The proposed model demonstrates superior performance by effectively tuning critical 
hyperparameters, including batch size, learning rate, dropout rate, and the number of neurons. 
Evaluations conducted on the RLD dataset revealed that the modified POA-DenseNet121 model 
outperformed established pretrained models, such as VGG19, DenseNet201, InceptionV3, 
EfficientNetB0, and ResNet50. The proposed model achieved remarkable performance metrics, 
including 98.5% accuracy, 98.6% precision, 98.4% recall, and 98.5% F-measure. Furthermore, the 
application of optimization strategies, including step decay learning schedules and early stopping, 
enhanced the model’s robustness and minimized the risk of overfitting. This study underscores the 
potential of the modified POA-DenseNet121 framework as a scalable and efficient tool for advancing 
agricultural diagnostics and addressing challenges in rice disease management. 

Keywords: Disease detection; Parrot optimization algorithm; Rice leaf disease; Transfer learning; Technological 
development 

1. Introduction 

Rice is a fundamental food source for nearly half of the global population, making its stable 
production crucial for global food security (Chen et al., 2020). However, rice-based agriculture faces 
persistent economic, ecological, and social challenges, with diseases posing one of the most 
significant threats. The International Rice Research Institute (IRRI) estimates that rice diseases can 
cause yield losses of up to 80%, further aggravating food insecurity (Ritharson et al., 2024; Yusuf et 
al., 2024). Traditional disease detection methods, such as visual inspection and laboratory tests, are 
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time-consuming, error-prone, and costly, especially across large-scale farms (Naqi et al., 2025a; Shah 
et al., 2023). 

Advancements in artificial intelligence (AI), particularly deep learning, have shown promise in 
revolutionizing agricultural diagnostics. Convolutional neural networks (CNNs) have emerged as 
effective tools for automatically learning hierarchical features from disease images, thus facilitating 
accurate rice disease classification (Chakrabarty et al., 2024; Pattnaik et al., 2021). Despite their 
effectiveness, training CNNs from scratch is resource-intensive and requires large annotated 
datasets that are often unavailable in the field of agriculture. Transfer learning mitigates this by fine-
tuning pre-trained CNNs, enabling high performance even with limited data (Naqi et al., 2025b; 
Yuan et al., 2022; Ayesha et al., 2021). 

Nevertheless, the performance of CNN depends heavily on optimal hyperparameter settings, 
such as learning rate, batch size, and number of filters, making hyperparameter tuning a critical 
step. Traditional methods, such as manual tuning, grid search, and random search, are often 
inefficient, computationally expensive, and time-consuming (Rehman et al., 2023; 2021). These 
challenges have driven researchers to reframe hyperparameter tuning as a complex optimization 
problem, which has been increasingly addressed through metaheuristic algorithms (Mohammed et 

al., 2025).  
Inspired by natural phenomena such as evolution, swarm behavior, and physics, metaheuristic 

algorithms offer a strategic exploration of high-dimensional and nonlinear search spaces. Their 
adaptability and effectiveness have been widely demonstrated in deep learning model optimization 
for various applications. For example, Artificial Bee Colony (Farea et al., 2024), Artificial Namib 
Beetle Optimization (Rao and Vasumathi, 2024), and Jaya Artificial Ecosystem-Based Optimization 
(Babu and Philip, 2024) have been employed to fine-tune CNNs. However, the No Free Lunch (NFL) 
theorem (Wolpert and Macready, 1997) asserts that no single algorithm performs best across all 
problems, prompting the need for tailored or hybrid approaches. 

In this context, the Parrot Optimizer Algorithm (POA) (Lian et al., 2024), inspired by the 
behaviors of Pyrrhura molinae parrots, offers a compelling optimization framework. Although 
effective, the original POA struggles with premature convergence and limited exploration. This 
study introduces a modified POA (mPOA) that integrates mutated random opposition-based 
learning (mOBL) and Brownian motion to enhance population diversity and convergence speed to 
overcome these limitations. 

The proposed approach combines CNNs with mPOA to optimize rice leaf disease detection 
using transfer learning. The method demonstrates superior accuracy, precision, recall, and F1-score 
across disease classes by fine-tuning a comprehensive set of CNN hyperparameters. This integration 
of deep learning and MHO highlights the growing potential of AI in precision agriculture, 
particularly for scalable and cost-effective disease diagnostics. 

Overall, this study contributes a novel, hybridized optimization framework that addresses 
critical challenges in CNN training and demonstrates its effectiveness in improving rice crop health 
monitoring, thereby supporting global food security efforts. 

This study demonstrates that models developed for the detection of rice leaf diseases exhibit 
limited generalizability to novel environments and cultivars, primarily due to variations in leaf 
morphology and background conditions. Future work will incorporate multilocation datasets and 
domain adaptation. The potential of the model for real-time, mobile-based diagnostics offers 
practical benefits for timely agricultural interventions. 

The key contributions of this study are as follows: 
1. Various preprocessing methods, including contrast enhancement, normalization, noise 

reduction, and data augmentation, were applied to improve the leaf image quality for more effective 
detection of rice leaf diseases. 

2. Proposed a modified POA incorporating mutated random opposition-based learning and 
Brownian motion strategies to enhance the performance of the traditional POA for superior 
optimization. 
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3. The modified POA was applied for efficient hyperparameter optimization of DenseNet121, 
thereby improving disease detection. 

4. Thorough evaluation of the presented model using rice disease was performed to confirm its 
effectiveness. 

5. A comparative analysis of the presented model in contrast to other advanced rice disease 
detection methods available in the literature was performed. 

 The manuscript is organized as follows: Section 2 provides a review of recent deep learning 
approaches for rice leaf disease detection. Section 3 describes the CNN architecture and the TL 
approach. Section 4 introduces POA and its mathematical formulations. Section 5 presents the 
modified POA. Section 6 outlines the proposed RLD detection model and its performance 
evaluation. Finally, Section 7 concludes the paper and explores potential avenues for future 
research. 

2. Literature Review 

Recent studies on rice leaf disease detection have evolved from traditional ML to advanced deep 

learning models. Goluguri et al. (2021) combined deep CNN with LSTM and artificial fish swarm 
optimization, achieving 97.5% accuracy but faced scalability issues due to computational demands. 

Daniya and Vigneshwari (2023) proposed a Rider Water Wave-based neural network that achieves 

90.8% accuracy and is limited by single-dataset testing. Hossain et al. (2024) introduced a deep 
learning-based CP Optimizer model with ConvNeXt-L and CVAE, but its computational 

complexity hinders real-time use. Preethi et al. (2024) developed a hybrid DNN with Enhanced 

Artificial Shuffled Shepherd Optimization that achieved 97.29% accuracy, which was constrained 
by reliance on high-resolution images. These studies highlight the need for efficient, scalable 

models, which this work addresses through mPOA and DenseNet121. 

3. CNN and Transfer learning 

CNNs excel in image classification by extracting complex features through convolutional, 
activation, pooling, and batch normalization layers (Manjupriya and Leema, 2025; Mohammed et 
al., 2025; Barakat et al., 2023). The classification section uses dense and dropout layers to categorize 
features, with softmax activation for multi-class tasks (Maijeddah et al., 2024; Ibrahim et al., 2024). 
Hyperparameter tuning (e.g., learning rate, dropout factor) is critical but challenging due to the vast 
search space (Emam et al., 2024; Mahmmod et al., 2023; Gaspar et al., 2021). Transfer learning 
addresses data scarcity by leveraging pretrained models, such as DenseNet121, which uses dense 
connectivity to enhance feature reuse and mitigate vanishing gradients (Mofrad and Valizadeh, 
2023). This study employs DenseNet121 with transfer learning, fine-tuning the classifier while 
optimizing hyperparameters using mPOA. 

3.1. DenseNet pretrained models 
DenseNet is a powerful convolutional neural network (CNN) architecture with significantly 

enhanced transfer learning performance across various vision tasks. It features a distinctive dense 

connectivity pattern, where each layer receives inputs from all preceding layers, thereby 

encouraging feature reuse and mitigating vanishing gradient issues. DenseNet models come in 
various depths, including DenseNet-121, DenseNet-169, and DenseNet-201, with 121, 169, and 201 

layers,, respectively. These variants balance computational cost and representational power, 

allowing practitioners to select a model based on task complexity and available resources. Table 1 
provides a summary of the pre-trained models, particularly those trained on the ImageNet dataset. 

All DenseNet versions include four dense blocks composed of 1×1 and 3×3 convolutional layers, 

separated by convolution, pooling, and normalization transition layers. These models are typically 
pre-trained on large datasets, such as ImageNet, to capture generalized visual features useful for 
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transfer learning. Figure 1 shows the architecture of DenseNet-121, as initially applied to the 

ImageNet dataset. 
Transfer learning with DenseNet involves fine-tuning a pretrained model rather than training 

from scratch. Freezing early convolutional layers, which detect common low-level features such as 
edges, accelerates training and reduces overfitting, especially with small datasets. However, too 
many layers may limit the model’s ability to learn high-level, task-specific features. Thus, selecting 
an appropriate fine-tuning strategy is essential for achieving optimal performance. 

The diagram includes the following components: D represents the dense blocks, 𝑇 denotes the 
transition layers, FC stands for fully connected layers, DL refers to dense layers, and C where 
represents the initial convolution and pooling layers. 
 

Table 1 Architectural settings for different DenseNet CNN architectures trained using ImageNet 

Layers DenseNet-121 DenseNet-169 DenseNet-201 Output size 

    DenseNet-121 DenseNet-169 DenseNet-201 

Input     224 × 224 × 3  
Conv.  7 × 7 𝑐𝑜𝑛𝑣, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2   112 × 112 × 64  
Pooling  3 × 3max𝑝𝑜𝑜𝑙 , 𝑠𝑡𝑟𝑖𝑑𝑒 = 2   56 × 56 × 64  
Block-1  [

1 ×  1 𝑐𝑜𝑛𝑣
3 ×  3 𝑐𝑜𝑛𝑣

] × 6   56 × 56 × 256  

TL-1 
                 1 × 1 𝑐𝑜𝑛𝑣 

2 × 2 avg𝑝𝑜𝑜𝑙 , 𝑠𝑡𝑟𝑖𝑑𝑒 = 2 
  56 × 56 × 128 

28 × 28 × 128 
 

Block-2  [
1 ×  1 𝑐𝑜𝑛𝑣
3 ×  3 𝑐𝑜𝑛𝑣

] × 12   28 × 28 × 512  

TL-2 
 1 × 1 𝑐𝑜𝑛𝑣 

2 × 2 avg𝑝𝑜𝑜𝑙 , 𝑠𝑡𝑟𝑖𝑑𝑒 = 2 
  28 × 28 × 256 

14 × 14 × 256 
 

Block-3 
[
1 ×  1 𝑐𝑜𝑛𝑣
3 ×  3 𝑐𝑜𝑛𝑣

]

× 24 

[
1 ×  1 𝑐𝑜𝑛𝑣
3 ×  3 𝑐𝑜𝑛𝑣

] × 32 [
1 ×  1 𝑐𝑜𝑛𝑣
3 ×  3 𝑐𝑜𝑛𝑣

]

× 48 

14 × 14
× 1024 

14 × 14 × 1280 14 × 14 × 1792 

TL-3 
            1 × 1 𝑐𝑜𝑛𝑣 

2 × 2 avg𝑝𝑜𝑜𝑙 , 𝑠𝑡𝑟𝑖𝑑𝑒 = 2 
 14 × 14 × 512 

7 × 7 × 512 
14 × 14 × 600 
7 × 7 × 600 

14 × 14 × 896 
7 × 7 × 896 

Block-4 
[
1 ×  1 𝑐𝑜𝑛𝑣
3 ×  3 𝑐𝑜𝑛𝑣

]

× 16 

[
1 ×  1 𝑐𝑜𝑛𝑣
3 ×  3 𝑐𝑜𝑛𝑣

] × 32 [
1 ×  1 𝑐𝑜𝑛𝑣
3 ×  3 𝑐𝑜𝑛𝑣

]

× 32 

7 × 7 × 1024 7 × 7 × 1664 7 × 7 × 1920 

CL 
 7 × 7global avg𝑝𝑜𝑜𝑙 

1000 − D fc, softmax 
 1 × 1 × 1024 1 × 1 × 1664 

1 × 1 × 100 
1 × 1 × 1920 

 

 
Figure 1 Main DenseNet-121 CNN architecture as applied to ImageNet data 

4. Parrot Optimization Algorithm 

The POA developed by Lian et al. (2024) is a novel and effective metaheuristic algorithm inspired 
by the behavioral traits of domesticated Pyrrhura Molinae parrots, such as foraging, remaining 
stationary, vocalizing, and exhibiting caution toward unfamiliar entities. These behavioral patterns 
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serve as the foundational principles for the POA development. This section presents an overview 
of the POA and its foundational mathematical framework. 

4.1. Initial POA stage 
The POA, introduced by Lian et al. (2024), is an innovative population-based metaheuristic 

approach, where each parrot in the population symbolizes a potential solution to the optimization 
issue. The position of each Pyrrhura Molinae within the search space is mapped to the parameters’ 
values, thereby defining a possible solution. Parameters such as the population size (N_pop), the 
highest number of iterations (MaxIter), and the search region boundaries denoted by the lower 
bound (lwb) and the upper bound (upb) are considered for POA initialization. This start process is 
mathematically expressed in Equation 1. 

𝑃𝑖
0 = 𝑙𝑤𝑏 + 𝑟 ∗ (𝑢𝑝𝑏 − 𝑙𝑤𝑏)                                (1) 

Here, r signifies a number randomly produced in the range of [0, 1] and 𝑃𝑖
0 denotes the 𝑖𝑡ℎ 

Pyrrhura Molinae position in the starting stage. 

4.2. Conduct of POA hunting 
During the hunting phase in POA, the parrots assess the possible location of food by observing 

its surroundings or by referring to the position of the leader. Subsequently, they move toward the 
identified region.  Consequently, Equation 2 governs the variation in their position. 

𝑃𝑖
𝑐𝑢𝑟𝐼𝑡+1 = (𝑃𝑖

𝑐𝑢𝑟𝐼𝑡 − 𝑃𝑏𝑒𝑠𝑡) ∗ 𝐿𝑣(𝐷) + 𝑟(0, 1) ∗  (1 −
𝑐𝑢𝑟𝐼𝑡

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)

2𝑐𝑢𝑟𝐼𝑡

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
∗ 𝑃𝑚𝑒𝑎𝑛

𝑐𝑢𝑟𝐼𝑡    (2) 

Where, 𝑃𝑖
𝑐𝑢𝑟𝐼𝑡 defines the current region and 𝑃𝑖

𝑐𝑢𝑟𝐼𝑡+1 indicates the location after the next update. 
𝑃𝑚𝑒𝑎𝑛
𝑐𝑢𝑟𝐼𝑡 signifies the average location within the existing population, and Lv(D) refers to a Levy 

distribution that characterizes the flight pattern of the parrots. 𝑃𝑏𝑒𝑠𝑡 represents the optimal position 
achieved up to this point, from the start stage to the current phase, and indicates the leader’s current 

position. 𝑐𝑢𝑟𝐼𝑡 represents the current iteration.  (𝑃𝑖
𝑐𝑢𝑟𝐼𝑡 − 𝑃𝑏𝑒𝑠𝑡) ∗ 𝐿𝑣(𝐷) represent movement in 

relation to one’s position based on the owner and 𝑟(0, 1). (1 −
𝑐𝑢𝑟𝐼𝑡

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)

2𝑐𝑢𝑟𝐼𝑡

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
∗ 𝑃𝑚𝑒𝑎𝑛

𝑐𝑢𝑟𝐼𝑡 refers to the 

monitoring of the overall position of the population to better direct the search for the food’s location. 
The average position of the current swarm, 𝑃𝑚𝑒𝑎𝑛

𝑐𝑢𝑟𝐼𝑡 is computed using the mathematical expression 
depicted in Equation 3 and the Lv(D) can be determined using the rule defined in Equation 4. 𝛾 is 
given a magnitude of 1.5. 

𝑃𝑚𝑒𝑎𝑛
𝑐𝑢𝑟𝐼𝑡 =

1

𝑁𝑝𝑜𝑝
∑ 𝑃𝑘

𝑐𝑢𝑟𝐼𝑡𝑁𝑝𝑜𝑝
𝑘      (3) 

{
 
 
 

 
 
 

𝐿𝑣(𝐷) =
𝜇−𝜎

|𝑣|
1
7

𝜇~𝑁𝑝𝑜𝑝(0, 𝐷)

𝑣~𝑁𝑝𝑜𝑝(0,𝐷)

𝜎 = (
𝜏(1+𝛾)∗sin(

𝜋𝛾

2
)

𝜏(
1+𝛾

2
)∗𝛾.2

1+𝛾
2

)

𝛾+1

     (4) 

4.3. POA staying conduct 
The highly social Pyrrhura molinae primarily demonstrates a characteristic behavior of swiftly 

flying to a specific area on its owner’s body, where it stays motionless for a particular period.  This 
behavior is mathematically expressed by Equation 5. 

𝑃𝑖
𝑐𝑢𝑟𝐼𝑡+1 = 𝑃𝑖

𝑐𝑢𝑟𝐼𝑡 + 𝑃𝑏𝑒𝑠𝑡 ∗ 𝐿𝑣(𝐷) + 𝑟(0, 1) ∗  𝑜𝑛𝑒𝑠(1, 𝑑)    (5) 

𝑜𝑛𝑒𝑠(1, 𝐷) signifies all-1 vector of the D dimension, 𝑃𝑖
𝑐𝑢𝑟𝐼𝑡 + 𝑃𝑏𝑒𝑠𝑡  represents the flight to the host, 

and the procedure of randomly halting at a portion of the host's body is defined by 𝑟(0, 1) ∗
 𝑜𝑛𝑒𝑠(1, 𝑑). 
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4.4. Conduct of PO communication 
Parrots, belonging to the Pyrrhura Molinae family, are inherently social creatures with a strong 

tendency for group communication. Their communication behavior includes both hovering to join 
the flock and interacting without flying. The POA assumes that these actions have an equal chance 
of occurring. The center of the flock corresponds to the mean position of the current population. 
Equation 6 provides a mathematical expression for this phenomenon. 

𝑃𝑖
𝑐𝑢𝑟𝐼𝑡+1 = {

0.2 ∗ 𝑟(0, 1) ∗ (1 −
𝑐𝑢𝑟𝐼𝑡

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
) ∗ (𝑃𝑖

𝑐𝑢𝑟𝐼𝑡 − 𝑃𝑚𝑒𝑎𝑛
𝑐𝑢𝑟𝐼𝑡), 𝑝𝑟 ≤ 0.5

0.2 ∗ 𝑟(0, 1) ∗ 𝑒𝑥𝑝 (−
𝑐𝑢𝑟𝐼𝑡

𝑟(0,1)∗𝑀𝑎𝑡𝐼𝑡𝑒𝑟
) , 𝑝𝑟 > 0.5

               (6) 

4.5 POA: Fear of strangers’ conduct 
Parrots of the Pyrrhura Molinae species, like other birds, exhibit an instinctual fear of unfamiliar 

individuals. In response to this fear, they tend to seek safety by distancing themselves from 
strangers and finding refuge with their owners.  This behavior in POA is mathematically expressed 
through Equation 7. 

𝑃𝑖
𝑐𝑢𝑟𝐼𝑡+1 = 𝑃𝑖

𝑐𝑢𝑟𝐼𝑡 + 𝑟 (0, 1) ∗ cos (0.5𝜋 ∗
𝑐𝑢𝑟𝐼𝑡

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
) ∗(𝑃𝑏𝑒𝑠𝑡 − 𝑃𝑖

𝑐𝑢𝑟𝐼𝑡) − cos( 𝑟 (0, 1) ∗ 𝜋) ∗

(
𝑐𝑢𝑟𝐼𝑡

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)

2

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
*(𝑃𝑖

𝑐𝑢𝑟𝐼𝑡 − 𝑃𝑏𝑒𝑠𝑡)       (7) 

where 𝑟 (0, 1) ∗ cos (0.5𝜋 ∗
𝑐𝑢𝑟𝐼𝑡

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
) ∗(𝑃𝑏𝑒𝑠𝑡 − 𝑃𝑖

𝑐𝑢𝑟𝐼𝑡) represents the procedure of reorienting to fly 

toward the owner and cos( 𝑟 (0, 1) ∗ 𝜋) ∗ (
𝑐𝑢𝑟𝐼𝑡

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)

2

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
*(𝑃𝑖

𝑐𝑢𝑟𝐼𝑡 − 𝑃𝑏𝑒𝑠𝑡) indicates the procedure of 

going away from the strangers.  
In POA, the procedure continues until the specified circumstances for termination are fulfilled.  

The pseudocode is provided in Algorithm 1. 
 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏: PO algorithm pseudo − code 

1: PO parameter initialization 

2: Randomly initialized the position of the solution agents 

3: 𝑭𝒐𝒓 𝑖 = 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 𝑑𝑜 

4:        

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑓𝑖𝑛𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

5:        𝑭𝒐𝒓 𝑗 = 1: 𝑁𝑝𝑜𝑝 𝒅𝒐 

6:        𝑠𝑡 = 𝑟𝑎𝑛𝑑𝑖([1, 4] 

7:            𝑰𝒇 𝑠𝑡 == 1 𝑻𝒉𝒆𝒏 

8:                𝑓𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑢𝑐𝑡 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (2)  

9:           𝑬𝒍𝒔𝒆𝒊𝒇 𝑠𝑡 == 2 𝑻𝒉𝒆𝒏 

10:              𝑆𝑡𝑎𝑦𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑢𝑐𝑡 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (5) 

11:        𝑬𝒍𝒔𝒆𝒊𝒇 𝑠𝑡 == 3 𝑻𝒉𝒆𝒏 

12:              

C𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑢𝑐𝑡 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (6) 

13:        𝑬𝒍𝒔𝒆𝒊𝒇 𝑠𝑡 == 4 𝑻𝒉𝒆𝒏 

14:              

𝑓𝑒𝑎𝑟 𝑜𝑓 𝑠𝑡𝑟𝑎𝑛𝑔𝑒𝑟𝑠 𝑐𝑜𝑛𝑑𝑢𝑐𝑡 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (7) 

15:       𝑬𝒏𝒅 𝑭𝒐𝒓 

16: 𝑬𝒏𝒅 𝑭𝒐𝒓 

17: Return the best solution obtain 

5. Modified Parrot optimizer (mPOA) 

The following section presents an enhanced variant of the POA, referred to as the modified 
parrot optimization algorithm (mPOA), which seeks to improve the local search capabilities of the 
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POA and speed up the global search procedure to overcome its drawbacks. The main goal of mPOA 
is to reduce the issue of stagnation at local optima while achieving faster convergence. To provide 
a comprehensive overview, we begin by examining the difficulties with the traditional PO 
algorithm. 

 

5.1. Issues with the original POA 
Although effective, the original POA struggles with high-dimensional problems due to 

premature convergence and limited exploration. To overcome this, we propose a modified POA 
(mPOA) that integrates mOBL and BR. mOBL enhances start and accelerates convergence, whereas 
BR improves exploration. The effectiveness of mPOA was validated by optimizing a pretrained 
DenseNet-121 model for rice leaf disease detection, demonstrating improved performance in 
navigating complex search spaces and identifying optimal hyperparameter configurations. 

5.2. Opposition-based mutation learning approach 
OBL enhances convergence in metaheuristic algorithms by simultaneously exploring original 

and opposite solutions, increasing the chance of locating global optima. It is especially effective 
when initial solutions are suboptimal, accelerating convergence and improving performance by 
expanding the search space and enabling the selection of superior solutions from a broader solution 
pool (Adamu et al., 2022). The following subsection describes the incorporation of the OBL. 

Opposite values: In OBL, Equation 8 is used to determine the opposite of a real integer 𝑦 inside 
the interval [𝑙𝑤𝑏, 𝑢𝑝𝑏]. 

𝑦𝑂 = 𝑙𝑤𝑏 + 𝑢𝑝𝑏 − 𝑦        (8) 
where 𝑙𝑤𝑏 and 𝑢𝑝𝑏 denote lower and upper bounds, respectively 
Opposite vectors: If 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑛] is a vector, where 𝑦1, 𝑦2, … , 𝑦𝑛  ∈ 𝑅 and 𝑦𝑗 ∈ [𝑙𝑤𝑞 , 𝑢𝑝𝑞]. The 

opposite vector 𝑌𝑂 = [𝑦𝑂1, 𝑦𝑂2, … , 𝑦𝑂𝑛] is computed using Equation 9. 
𝑦𝑂 = 𝑙𝑤𝑏𝑞 + 𝑢𝑝𝑏𝑞 − 𝑦𝑞              (9) 

In OBL, the solution 𝑌 is substituted with its complementary counterpart 𝑌𝑂, determined by an 
activation function. If the fitness of 𝑌 represented as 𝑓(𝑌) is greater than that of 𝑌𝑂 denoted as 𝑓(𝑌𝑂), 
𝑌 is preserved; otherwise, Y is replaced with 𝑌𝑂. This updating process facilitates the evolution of 
the solution population by selecting the best solution between 𝑌 and 𝑌𝑂. This paper presents a 
modified version of this approach, referred to as the mutated random opposition-based learning 
(mROBL) strategy, which is outlined in Equation 10. 

𝑦𝑚𝑂𝐵𝐿 = 𝑙𝑤𝑞 + 𝑢𝑝𝑞 − 𝜀 × 𝑟             (10) 

In this context, 𝑟 denotes a value within the range [0,1], and 𝜀 represents the mutation scale, a 
small constant that regulates the mutation intensity. Unlike Equation (9), the mutated opposite 
solution, as outlined in Equation (10), introduces a higher degree of randomness. This increased 
randomness promotes greater diversity within the population, thereby improving the ability of the 
algorithm to efficiently escape from local optima. 

5.3. Brownian motion 
In the Brownian motion method, the length of each phase is governed by a normal gaussian 

distribution function, with a mean of zero (𝜇 = 0) and a variance of one (𝜎2 = 1). The function that 
describes this motion at a given point 𝑦 is specified in Equation 11 (Faramarzi et al., 2020). 

𝐹𝐵𝑅(𝑦, 𝜇, 𝜎) =
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

(𝑦−𝜇)2

2𝜎2
) =

1

√2𝜋
exp (−

𝑦2

2
)                               (11) 

here, 𝐹𝐵𝑅(𝑦, 𝜇, 𝜎) denotes the Brownian motion probability density function, the mean is 
represented by µ and the standard deviation by 𝜎.  

5.4. Start of the modified POA 
Produce a starting population of potential solutions within the search space’s stated limits. The 

initial population is enhanced by employing the mutated random (mROBL) strategy, which 
evaluates the fitness of each solution's opposite counterpart and updates the solution if the 
opposing counterpart demonstrates superior fitness, as described in Equation 10. Consequently, the 
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application of Equation 10 effectively enhances population diversity and aids in overcoming local 
optima by facilitating the transition of the population to unexplored regions of the search space. 

 

5.5. Fitness function 
The fitness function assesses how well a particular solution approximates the optimal solution 

for the given problem. The fitness value for each search agent is calculated using Equation (12). 

𝐹𝑖𝑡𝑖 = 𝛼 × 𝐸𝑟𝑟𝑖 + 𝛽 ×
𝑑𝑖

𝐷
      (12) 

The 𝛼 is assign a value of 0.7 and 𝛽 = 1 − 𝛼. The α parameter strikes an equilibrium between the 
number of feature subsets 𝐹𝑆 (𝑑𝑖) and the error rate (𝐸𝑟𝑟)𝑖 of classification. 

5.6. Modified POA fitness evaluation  
Each parrot fitness value is chosen using Eqn. (13) as follows: 

𝑖𝑓 𝑚𝑂𝐵𝐿𝑓𝑖𝑡 < 𝐹𝑖  𝑡ℎ𝑒𝑛 {
𝑌(𝑖, ∶) = 𝑌𝑚𝑂𝐵𝐿
𝐹𝑖 = 𝑚𝑂𝐵𝐿𝑓𝑖𝑡

         (13) 

5.7. modified POA update phase 
It is essential to evaluate the solutions at each iteration to find the best candidates and improve 

the freshly created solutions for subsequent phases. After computing each individual’s fitness, their 
positions are updated by applying the initial phases of the POA. The foraging behavior phases are 
implemented as described in Equations (2–4). The parameter St 𝜖 rand [1, 4] is then examined. If 
𝑆𝑡 = 1, the position is updated using the Brownian motion (BR) strategy as per Equation 11 instead 
of the Lévy strategy. Similarly, if 𝑆𝑡 = 2, the position is updated using BR based on Equation (11) 
instead of employing the staying behavior. Algorithm 2 presents the mPOA pseudo-code. 

 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟐:Modified POA pseudo − code 

1:  Initilize the mPOA parametres 

2:  Initilize the position of all agents using Eqn. (1)and evaluate their fitness  

3:  𝒇𝒐𝑟 i = Npop 𝒅𝒐 

4:        Perform mOBL on the initial population using Eqn. 10 and save results in 𝑌𝑚𝑂𝐵𝐿  

5:        Evaluete the fitness 𝑜𝑓 𝑌𝑚𝑂𝐵𝐿  and save result in 𝑚𝑂𝐵𝐿𝑓𝑖𝑡  

6:       𝑖𝑓 𝑚𝑂𝐵𝐿𝑓𝑖𝑡 < 𝐹𝑖  𝑡ℎ𝑒𝑛 

7:              𝑌𝑖 = 𝑌𝑚𝑂𝐵𝐿  

𝟖:       𝐞𝐧𝐝 𝐢𝐟 

𝟖:  𝐞𝐧𝐝 𝐟𝐨𝐫 

3: 𝑭𝒐𝒓 𝑖 = 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 𝑑𝑜 

4:        𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑓𝑖𝑛𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (12) 

5:        𝑭𝒐𝒓 𝑗 = 1: 𝑁𝑝𝑜𝑝 𝒅𝒐 

6:        𝑠𝑡 = 𝑟𝑎𝑛𝑑𝑖([1, 4] 

7:            𝑰𝒇 𝑠𝑡 == 1 𝑻𝒉𝒆𝒏 

8:                   𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑛. (11)  

9:           𝑬𝒍𝒔𝒆𝒊𝒇 𝑠𝑡 == 2 𝑻𝒉𝒆𝒏 

10:                  𝑈𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝐵𝑅 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝐸𝑞𝑛. (11) 

11:        𝑬𝒍𝒔𝒆𝒊𝒇 𝑠𝑡 == 3 𝑻𝒉𝒆𝒏 

12:                  𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑢𝑐𝑡 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (6) 

13:        𝑬𝒍𝒔𝒆𝒊𝒇 𝑠𝑡 == 4 𝑻𝒉𝒆𝒏 

14:                  

𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑓𝑒𝑎𝑟 𝑜𝑓 𝑠𝑡𝑟𝑎𝑛𝑔𝑒𝑟𝑠 𝑐𝑜𝑛𝑑𝑢𝑐𝑡 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (7) 

15:       𝑬𝒏𝒅 𝑭𝒐𝒓 

16: 𝑬𝒏𝒅 𝑭𝒐𝒓 

17: Return the best solution obtain 
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6. Proposed rice leaf disease model 

This section presents the methodology underlying the rice leaf disease detection model, which 
is designed to significantly enhance the performance of CNN architectures. The proposed approach 
integrates the mPOA with the DenseNet121 framework to optimize its performance for improved 
disease detection and classification. First, the mPOA is employed to determine the optimal 
DenseNet121 hyperparameter configurations. Transfer learning methods are then applied to train 
the DenseNet121. Upon completion of the training, the performance of the model is assessed on a 
separate validation set. More precisely, the training and validation datasets are used to optimize 
the hyper-parameters and train the DenseNet121, with the validation data being used for 
subsequent assessment. The methodology outlines a detailed pipeline for building the DL model, 
starting with the dataset acquisition and ending with the classification results generation. The 
presented model consists of several stages, as shown in Figure 2. These stages include data 
collection, preprocessing, hyperparameter tuning, learning, testing, and evaluation. 

 

Figure 2 Structural diagram of the proposed rice disease detection model 
 

6.1. Acquisition of datasets 
The data used in this study were obtained from the publicly accessible Kaggle cloud data 

repositor. It comprises 1,600 images distributed across four distinct classes: Hispa, Brown Spot, Leaf 
Blast, and Healthy leaves. Figure 3 depicts the class spread of the data. 
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Figure 3 Class Distribution of Rice Leaf Images in the Kaggle Dataset 

 
6.2. Data Preprocessing 
 Images of crop leaf diseases are frequently affected by substantial noise and poor contrast, 

thereby limiting the accuracy of disease detection. Since the clarity and sharpness of these images 
are critical for effective diagnosis, a useful strategy to enhance detection accuracy is to improve 
image clarity by eliminating noise frequencies. Accordingly, this study investigates various image 
preprocessing techniques aimed at addressing these challenges and improving the image quality of 
rice disease for more precise and reliable detection. 

6.2.1. Noise reduction 
Digital imaging plays a crucial role in image processing; however, noise from acquisition devices 

can hinder analysis, especially in rice disease classification. Noise reduction enhances signal quality 
and classification accuracy. It is essential to identify noise sources and apply effective reduction 
techniques (Huang et al., 2024). Nonlinear filters, such as the median filter, are particularly effective, 
preserving edges while suppressing noise by replacing each pixel with the median of its neighbors. 
This technique involves replacing each pixel median rate calculated from its surrounding pixels, as 
expressed in Equation 14. 

𝑋(𝑎,𝑏) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑦𝑖,𝑗 ∶ 𝑖, 𝑗 ∈ 𝑁)    (14) 

where 𝑁 defines the surrounding neighborhood at location  (𝑎, 𝑏). 

6.2.2. Image Normalization (INN) 
Normalization is a fundamental aspect of preprocessing, mostly in tasks involving image 

resizing and brightness normalization. These processes play a critical role in standardizing pixel 
values, which significantly enhances model convergence during training. In the initial stage of 
normalization, the brightness levels of the input images are adjusted to lie within the range of 0 to 
1, as outlined by Razmjooy et al. (2020). The mathematical formulation employed to achieve 
brightness normalization is given in Eq. (15). 

𝐼𝐶𝐾 = (𝐼𝐶 − 𝐼𝐶𝑚𝑖𝑛) ×
𝐼𝐶𝐾 𝑚𝑎𝑥−𝐼𝐶𝐾 𝑚𝑖𝑛

𝐼𝐶𝑚𝑎𝑥−𝐼𝐶𝑚𝑖𝑛
+ 𝐼𝐶𝐾 𝑚𝑖𝑛   (15) 

where 𝐼𝐶 is the input image limited to the range of 𝐼𝐶𝑚𝑎𝑥  and 𝐼𝐶𝑚𝑖𝑛, and 𝐼𝐶𝐾 contains the new 
adjusted image, whose limits are described by 𝐼𝐶𝐾 𝑚𝑎𝑥  and 𝐼𝐶𝐾 𝑚𝑖𝑛. The images in the dataset were 
scaled down to 224 × 224 each. 

6.2.3. Contrast enrichment 
The contrast is vital for image quality, representing brightness variability. Low contrast 

compresses the tonal range, causing blurriness. Enhancing contrast increases tonal variation and 
sharpness.  The methodologies and algorithms discussed in this study leverage techniques that 
apply histogram correction to address the challenges of low image contrast. Specifically, the 
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histogram equalization method has been identified as an effective approach to rectifying these 
issues (Razmjooy et al., 2020). 

6.2.4. Dataset augmentation 
Data augmentation is crucial in deep learning to overcome limited data and class imbalance, 

particularly in binary classification, where underrepresented (minority) classes can critically impact 
model performance. Scarcity of samples of key disease classes exacerbate these challenges in crop 
leaf disease detection. By artificially generating new images through techniques such as rotation, 
flipping, scaling, and color jitter, data augmentation increases dataset size, balances class 
distributions, and enhances the ability of the model to learn from minority classes. This 
preprocessing step effectively mitigates the risks of poor generalization and high misclassification 
costs associated with imbalanced datasets. A number of augmentation approaches are implemented 
in this study, as shown in Table 2. 

 
Table 2 Augmentation approaches and parameter values 

Approaches Values 

Shearing 0.2 
Zooming 0.25 
Width shift 0.2 
Height shift 0.2 
Rotation 10 
Feature-wise 
Centering 

True 

Fill mode Reflect 
Vertical flip True 
Horizontal flip True 

 
6.3. Optimization of the Hyperparameters 
Several models were evaluated to identify the most suitable pretrained CNN for rice leaf disease 

classification, including VGG16, DenseNet121, Xception, InceptionV3, and MobileNet, with 
DenseNet121 achieving the best performance. Consequently, DenseNet121 was selected and fine-
tuned using transfer learning by replacing its classifier and optimizing four key hyperparameters, 
including learning rate, batch size, dropout rate, and dense layer size. Together, these parameters 
define a 4-dimensional search space, with each point representing a unique mixture of 
hyperparameter values optimized to improve model performance. 

6.4. Training Stage 
In this stage, DenseNet121 is applied to the RLD dataset using a blend of feature extraction and 

fine-tuning methods. Initially, the network serves as a feature extractor, keeping its convolutional 
layers frozen to prevent updates during training. However, the added classifier is trained on the 
enlarged dataset using the features extracted from the frozen layers. This step aligns with the third 
phase described in Algorithm 3.  

The same data augmentation techniques as in earlier stages are used to enhance sample diversity 
and introduce new feature variations to maintain consistency. Fine-tuning is initiated for further 
optimization after the feature extraction process reaches a performance plateau with no significant 
improvement over several training epochs. The fine-tuned classifier comprises four key layers: a 
flattening layer, a dense layer, a dropout layer, and a final dense layer. The initial dense layer uses 
the ReLU activation function, with the mPOA determining the size of neurons and the dropout 
factor. The output layer, designed for multiclass classification, includes four neurons and employs 
the softmax activation function. This process corresponds to the second stage of Algorithm 3. All 
the last four layers of the DenseNet121 convolutional backbone are frozen at the optimization stage, 
allowing only these final layers and the added classifier to be trainable. These components are 
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trained simultaneously, as detailed in the fourth phase of Algorithm 3. The enhanced model 
undergoes additional training across multiple epochs until stable performance is achieved, marking 
the point where further improvements cease to occur. 

 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟑:  Learning Stage of Proposed Rice Leaf Diseases (RLD) Detection Model 

1:  𝐈𝐧𝐩𝐮𝐭:  Training set (RLD__Dtrain), test set (RLDDtest), hyperparameter values 

𝟐:  𝐎𝐮𝐭𝐩𝐮𝐭:  RLD Trained model 
       // 𝐏𝐡𝐚𝐬𝐞 𝟏:  𝐏𝐫𝐞𝐩𝐫𝐨𝐜𝐞𝐬𝐬𝐢𝐧𝐠 𝐒𝐭𝐚𝐠𝐞 
𝟑:   Perform data augmentation on RLD_Dtraain to generate  RLD_Dagtraain 

𝟒:   Resize images in RLD_Dagtraainto form RLD_Dagtraain  

𝟓:   Resize images in RLDDtest to form RLDDntest   

𝟔:   Reduce noise in RLDDagtrain  

𝟕:   Enhance contrast of images in RLDDagtrain 

       // 𝐏𝐡𝐚𝐬𝐞 𝟐:  𝐁𝐮𝐢𝐥𝐝𝐢𝐧𝐠 𝐃𝐞𝐧𝐬𝐞𝐍𝐞𝐭𝟏𝟐𝟏 𝐌𝐨𝐝𝐞𝐥 
8:    Load DenseNet121 without top layers as 𝐶𝑜𝑛𝑣_𝑝𝑎𝑟𝑡 
9:    𝐟𝐨𝐫 each layer in 𝐶𝑜𝑛𝑣_𝑝𝑎𝑟𝑡 𝐝𝐨  
10:         Set 𝐿𝑎𝑦𝑒𝑟. 𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 = 𝐹𝑎𝑙𝑠𝑒 
11:  𝐞𝐧𝐝 𝐟𝐨𝐫 
12:  Add 𝐶𝑜𝑛𝑣_𝑝𝑎𝑟𝑡 to the model   
13:  Add Flatten layer to the model 
14:  Add a Dense layer to the model 
15:  Add Dropout layer to the model 
16:  Add a Dense layer to the model 
       /
/𝐏𝐡𝐚𝐬𝐞 𝟑:  𝐓𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝐃𝐞𝐧𝐬𝐞𝐍𝐞𝐭𝟏𝟐𝟏 𝐌𝐨𝐝𝐞𝐥 𝐮𝐬𝐢𝐧𝐠 𝐅𝐞𝐚𝐭𝐮𝐫𝐞 𝐄𝐱𝐭𝐫𝐚𝐜𝐭𝐢𝐨𝐧 𝐌𝐞𝐭𝐡𝐨𝐝  
17:   𝐟𝐨𝐫 each epoch in range(1, n) 𝐝𝐨 
18:           Train the fine − tuned DenseNet121 on RLDDagtrainusing RLDDntest 

19:    𝐞𝐧𝐝 𝐟𝐨𝐫 
       //𝐏𝐡𝐚𝐬𝐞 𝟒:  𝐓𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝐃𝐞𝐧𝐬𝐞𝐍𝐞𝐭𝟏𝟐𝟏 𝐌𝐨𝐝𝐞𝐥 𝐮𝐬𝐢𝐧𝐠 𝐅𝐢𝐧𝐞 − 𝐓𝐮𝐧𝐢𝐧𝐠 𝐌𝐞𝐭𝐡𝐨𝐝  
20:   𝐟𝐨𝐫 each layer in 𝐶𝑜𝑛𝑣_𝑝𝑎𝑟𝑡. 𝑙𝑎𝑦𝑒𝑟𝑠[: −4] 𝐝𝐨  
21:           Set 𝐿𝑎𝑦𝑒𝑟. 𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 = 𝐹𝑎𝑙𝑠𝑒 
22:    𝐞𝐧𝐝 𝐟𝐨𝐫 
23:   𝐟𝐨𝐫 each layer in 𝐶𝑜𝑛𝑣_𝑝𝑎𝑟𝑡. 𝑙𝑎𝑦𝑒𝑟𝑠[−4: ] 𝐝𝐨  
24:           Set 𝐿𝑎𝑦𝑒𝑟. 𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 = 𝑇𝑟𝑢𝑒 
25:    𝐞𝐧𝐝 𝐟𝐨𝐫 
26:   𝐟𝐨𝐫 each epoch in range(1, n) 𝐝𝐨 
27:           Train the fine − tuned DenseNet121 on RLDDagtrainusing RLDDntest 

28:    𝐞𝐧𝐝 𝐟𝐨𝐫 

 
Several regularization techniques were employed to mitigate the risk of overfitting during model 

training. These include data augmentation (e.g., flipping, rotation, and scaling) as described in Table 
2, dropout layers (with optimized rates determined by mPOA), and early stopping based on 
validation loss trends. The model’s robustness was further validated by analyzing the convergence 
behavior between training and validation curves, as illustrated in Figure 4. Close alignment of these 
curves indicates reduced overfitting and strong generalization performance. 
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Figure 4 (a) Proposed model training and accuracy validation (b) 

 
6.5. Testing and evaluation of the results 

Five evaluation measures are used in this stage: F-score, Accuracy, Sensitivity, Specificity, and 
Precision. The effectiveness of the suggested RLD classification model is evaluated using these 
metrics, which are frequently employed in classification issues (Rahayu et al., 2025; Skhvediani et 
al., 2023; Nugroho et al., 2023). 

Accuracy: shows the percentage of appropriately identified samples (Hassan et al. 2022) and is 
calculated using Equation 16 

𝑡𝑟𝑃+𝑡𝑟𝑁

𝑡𝑟𝑃+𝑡𝑟𝑁+𝑓𝑎𝑃+𝑓𝑎𝑁
                                                        (16)  

Recall: measures how well a model can find all relevant instances in a dataset and is calculated 
using Eq. (17). 

𝑡𝑟𝑃

𝑡𝑟𝑃+𝑓𝑎𝑁
         (17) 

Precision: measures the positive classification precision and is determined using Equation 18 

𝑡𝑟𝑃

𝑡𝑟𝑃+𝑓𝑎𝑃
          (18) 

F-score: The F-score is a measure of test accuracy and is calculated using Equation 19. 
2×𝑟𝑒𝑐𝑎𝑙𝑙×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
         (19) 

where trP denotes the number of true positive predictions, trN denotes true negative predictions, 
faP represents false positive predictions, and faN denotes false negative predictions. 

7. Performance evaluation of the rice disease detection model 

This section provides an analysis of the results achieved using the proposed deep learning 
framework for rice leaf disease detection. The entire methodology was executed using the Kaggle 
notebook environment and implemented in Python, leveraging the TensorFlow library for model 
development and evaluation. 

7.1. Hyperparameter optimization using the modified POA 
This section details the optimization ranges for various hyperparameters tuned using the mPOA 

algorithm. Table 3 outlines the parameter arrangements for integrating the DenseNe121 with the 
mPOA, emphasizing the critical importance of each hyperparameter in enhancing the model’s 
effectiveness. The maximum number of iterations of the optimization algorithm was set to 50, with 
a population size of 30, representing the count of candidate solutions. The search space dimension, 
defined by the four hyperparameters, enables their simultaneous optimization. The learning rate, 
which governs weight adjustments during training, was constrained to a range of 1𝑒−7 to 1𝑒−3, 
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ensuring controlled updates that preserve previously learned features. The batch size, which 
represents the number of samples processed per iteration, had a search range of 1–64. The dropout 
rate used for regularization was varied between 0.1 and 0.9 to prevent overfitting. The number of 
neurons in the initial dense layer was optimized within a range of 50–550, allowing for flexible 
adjustment of model capacity.  

 
Table 3 mPOA-DenseNet121 parameter settings 

Parameter Value 

Maximum iteration count  50 
Size of the Population 30 
Dimension 4 
st [1,4] 
𝛽 1.5 
Learning factor (𝛼)  
Batch Size [1,64] 
Dropout factor [0.1,0.9] 
Count of Neurons [50,550] 
Maximum Training epochs 
of DenseNet121 

16 

 
To determine the optimal DenseNet121 training epoch count, several values were evaluated. We 

found that fewer than 16 epochs led to suboptimal accuracy; thus, the training epochs were set to 
16. The key goal of using the mPOA was to reduce the validation loss. The test set loss degree after 
16 training epochs served as the benchmark for evaluating the effectiveness of the proposed 
method. After training, the optimal values for the hyperparameters: dropout rate, batch size, and 
number of neurons in the initial dense layer) are determined. The following were the final 
optimized hyperparameter values determined by the POA: a learning rate of 0.0001, a dropout rate 
of 0.1, a batch size of 0.9, and 125 neurons in the first dense layer. The findings depict the efficacy 
of the modified POA in enhancing the efficiency of DenseNet121. Table 3 presents the parameter 
settings for the mPOA integrated with DenseNet121. 

 
Table 4 Optimum values of DenseNet121 hyperparameters found using mPOA 

Hyperparameter Optimum value 

Learning rate (𝛼) 0.0001 
Batch size 8 

Dropout rate 0.1 
Count of neurons  120 

 
7.2. DenseNet121 training using optimal values 
Here, the enhanced DenseNet121 is trained using the mPOA-determined optimal 

hyperparameters, serving as a feature extractor for the augmented training dataset. The 
effectiveness of the model was subsequently assessed on the validation dataset across a maximum 
of 16 epochs. The training process was halted early if no progress was detected over 10 consecutive 
epochs to mitigate overfitting. This approach utilizes the early stopping technique, as described by 
Prechelt (2002) and Bai et al. (2021). Given that the RLD dataset involves multi-class classification, 
the categorical cross-entropy loss was employed to optimize the DenseNet121 model. The Adam 
optimizer with a 2×10-7 learning used at the feature extraction stage. A decay learning rate schedule 
was implemented at the fine-tuning stage using the methodologies outlined by Iiduka (2021). This 
plan began with an initial learning rate that decreased by a factor of 0.2 after every 10 training 
epochs. The decision to adopt a smaller learning factor during fine-tuning aimed to maintain the 
essential features learned during the feature extraction stage while minimizing substantial 
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alterations. This ensures that the knowledge extracted from the initial phase is retained, enhancing 
the overall model performance. 

7.3. Evaluation of the efficacy of the presented model 
This section provides a comprehensive assessment of the efficacy of the presented model. To 

demonstrate the effectiveness of the mPOA in determining the optimum value of DenseNet121 
hyperparameters for the model and achieving superior accuracy, its results are compared with 
those obtained from a DenseNet121 configured using manual hyperparameter tuning. The 
hyperparameter settings optimized by the mPOA are detailed in Table 4. The manually tuned 
DenseNet121 model employed a batch size of 8, a dropout factor of 0.72, 120 neurons, and a 0.001 
starting learning rate of 0.001. The efficacy of the mPOA-enhanced DenseNet121 was assessed using 
standard metrics such as accuracy, precision, recall, and f-measure. Table 5 presents these metrics, 
offering a detailed assessment of the performance of the model. For the manually tuned 
DenseNet121 model, the accuracy, precision, recall, and F-measure were approximately 94.8%, 
94.8%, and 94.23%, respectively. Conversely, the DenseNet121 optimized with the mPOA 
demonstrated noticeably superior efficacy across all metrics. Specifically, the model achieved an 
accuracy of approximately 98.5%, precision of 98.6%, recall of 98.4%, and F-measure of 98.5%. These 
findings demonstrate the efficacy of the mPOA in enhancing the DenseNet121, enabling improved 
accuracy and reliability for rice leaf disease classification tasks. The considerable enhancement in 
performance metrics demonstrates the advantage of employing mPOA over manual 
hyperparameter tuning. Figures 4(a) and 4(b) illustrate the training and validation accuracy and 
loss curves, respectively, of the presented model, providing further evidence of its robust and 
reliable performance. 

 
Table 5 Comparison of classification results between mPOA optimized DenseNet121 and original 
POA enhanced DenseNet121 

Measures mPOA optimized DenseNet121 DenseNet121 

Accuracy 98.5 96.8 
Precision 98.6 96.7 
Recall 98.4 96.7 
F-measure 98.5 96.7 

 
7.4. Performance assessment of the mPOA DenseNet121 and original POA DenseNet121 models 
This section presents a comparative analysis of the optimized DenseNet121 using the modified 

parrot optimization algorithm (POA) and the original POA in the context of RLD classification. Both 
models were assessed based on their respective hyperparameter configurations and classification 
efficacy (Table 6). Both approaches share a similar learning factor of 0.0001. 

The DenseNet121 enhanced with mPOA showcases notable improvements in hyperparameter 
configurations compared to the original POA-optimized version. For example, the mPOA uses a 
smaller batch size of 8, as opposed to 13 in the original model, signifying a more streamlined 
training procedure with fewer examples per repetition. Furthermore, the dropout factor is 
significantly lowered to 0.1 in the modified model compared to 0.84 in the original model, 
demonstrating improved regularization and a reduced risk of overfitting. Additionally, the size of 
neurons in the first dense layer is decrease to 120 in the mPOA model, down from 180 in the original 
model, reflecting a more compact and efficient feature representation. These refined 
hyperparameter configurations significantly enhance the classification performance of the mPOA-
optimized DenseNet121 model. Evaluation measures such as accuracy, precision, recall, and F-
measure show notable improvements over those achieved by the original POA-optimized model. 

In summary, the findings underscore the effectiveness of the mPOA in optimizing DenseNet121 
for RLD classification, leading to superior performance outcomes. Figure5 provides a graphical 
comparison of the performance metrics for the mPOA-enhanced DenseNet121, original POA-
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enhanced DenseNet121, and standard DenseNet121, further illustrating the proposed approach’s 
efficacy. However, While the mPOA introduces additional computation during training, the final 
DenseNet121-based model remains efficient at inference time, making it suitable for deployment in 
constrained environments. The proposed model achieves a balance between accuracy and 
computational cost with fewer parameters (7.98 million) than VGG16 and faster inference (22 ms) 
than ResNet50, making it practical for real-world applications. 

 
Table 6 Comparison of classification results between mPOA optimized DenseNet121 and POA 

Measures MPOA-optimized DenseNet121 POA optimized DenseNet121 

Accuracy 98.5 97.2 

Precision 98.6 97.0 

Recall 98.4 97.2 

F-measure 98.5 97.1 

 

Figure 5 Comparison of mPOA DensNet121 with POA-DenseNet121 and original DenseNet121 
 

7.5. Performance assessment of the mPOA DenseNet121 model with other pretrained models 
This section presents a comparative evaluation of the proposed mPOA-DenseNet121 model 

against several widely recognized pretrained deep learning models, including VGG19, 
EfficientNetB0, InceptionV3, DenseNet201, and ResNet50, for rice leaf disease detection. These 
models were selected based on their proven performance in earlier research addressing disease 
detection challenges. The objective of this study is to judge the robustness and efficacy of the 
proposed approach by contrasting its performance with those of benchmark models. This analysis 
provides a comprehensive evaluation of the capability of the proposed model in rice leaf disease 
detection relative to established methods in the field. Table 7 provides a detailed comparison of 
mPOA-DenseNet121 with the aforementioned pretrained deep learning models. The results reveal 
that the presented model outperforms all others across all evaluated metrics, demonstrating its 
exceptional performance in accurately detecting RLDs. Notably, EfficientNetB0, InceptionV3, and 
ResNet50 emerged as the next best-performing models, achieving accuracies of 95.2%, 94.8%, and 
94.6%, respectively. However, these results are still outperformed by the proposed mPOA-
DenseNet121 model, underscoring its superiority. This significant improvement across all 
performance metrics highlights the mPOA-DenseNet121 model’s capability in achieving precise 
classification of rice leaf disease images. The graphical representation of this comparative analysis 
is illustrated in Figure6, further emphasizing the effectiveness of the presented method over 
existing methods. 

Although an exhaustive hyperparameter search could yield marginal improvements in theory, 
such approaches are computationally intensive and often impractical for real-world applications. 
In this study, the use of the modified POA achieves a balance between performance and resource 
efficiency. We define a model as "good enough" when it consistently achieves over 98% accuracy, 

95.5 96 96.5 97 97.5 98 98.5 99

Modified POA optimized DenseNet121

Original POA optimized DenseNet121

DenseNet121

F-measure Recall Precision Accuracy
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precision, recall, and F-measure levels suitable for field deployment. The lower bounds of model 
usefulness emerge in scenarios involving poor image quality, occlusions, or mixed infections, which 
may impact classification accuracy. Meanwhile, the performance observed in this study reflects an 
upper bound based on the current dataset and scope of optimization. 

 
Table 7 Comparison of classification results between mPOA enhance DenseNet121 with other pre-
trained models 

Model Accuracy Precision Recall F-
measure 

ResNet50 94.6 94.7 94.6 94.6 
InceptionV3 94.8 94.8 94.8 94.8 
VGG19 84.9 84.7 84.7 84.7 
EfficientNetB0 95.2 95.1 95.1 95.1 
DenseNet212 90.2 90.2 90.2 90.2 
mPOA 
DensNet121 

98.5 98.6 98.4 98.5 

 

 

Figure 6 Comparison of mPOA DensNet121 with other pretrained models 

8. Conclusions and Future Work 

This study introduces an mPOA-DenseNet121 model tailored for rice leaf disease detection, 
leveraging deep learning and optimization developments. The proposed model demonstrated 
outstanding performance in all evaluation metrics compared with popular pretrained models, such 
as EfficientNetB0, DenseNet201, VGG19, InceptionV3, and ResNet50. This outstanding 
performance highlights the mPOA’s efficacy in optimizing critical hyperparameters to enhance 
DenseNet121’s classification accuracy. The findings underscore the potential of the proposed 
approach in addressing challenges associated with rice leaf disease detection, offering a reliable and 
accurate tool for agricultural diagnostics. Furthermore, the practical use of this model extends to 
the development of lightweight mobile or embedded devices that can assist farmers with disease 
detection and suggest targeted treatment strategies, such as fungicide application, irrigation 
changes, or crop rotation, thereby improving agricultural decision-making. Despite the high 
accuracy, one limitation is the potential decline in model performance when the model is exposed 
to entirely different rice varieties or novel environmental conditions. Building on the current 
findings, several avenues for future research include (1) evaluating the model’s performance on 
diverse crop disease datasets to generalize its applicability across agricultural domains, (2) 
exploring hybrid optimization algorithms that combine POA with other metaheuristic approaches 
to further enhance model performance, (3) developing lightweight versions of the model suitable 
for deployment on edge devices with limited computational resources, and (4) extending the 

75 80 85 90 95 100

ResNet50
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EfficientNetB0

DenseNet212

Modified POA DensNet121
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framework to include disease severity estimation, providing farmers with actionable insights for 
targeted interventions. 
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