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Abstract: An organization typically has various enterprise apps and Internet of Things
(IoT) systems. The usages of these systems are typically well reflected by the packets
transmitted to the network. This paper presents a unique approach to strive for energy
savings in organizations by exploiting fact observables in networks. DPI is employed to
dissect passing network packets and predict their protocols. Data Plan Development Kit
(DPDK) is adopted to push the hardware limit and speed up the inspection. A web-
based customizable dashboard is incorporated to allow human observation according to
the characteristics of the organization. Several API endpoints are provided to extend
the functionalities, such as ML/AI integration. An energy-sensing model is proposed to
measure the energy usage or generation by various connected systems, such as IoTs, smart
ACs, and solar panel controllers. The results demonstrate that the working prototype
improves processing efficiency, enabling the system to handle large volumes of data up to
10GB, achieving an average packet processing efficiency of 99.991%. The system can also
accurately identify various protocols, mapping the cybersecurity risks and anomalies, with
an average packet loss rate of only 0.83%. The standardized UAT confirms the system’s
usability, reliability, and robust security. The findings of this study are expected to
provide a practical, reliable, efficient, and user-friendly network monitoring solution while
contributing to the development of open-source and flexible network traffic monitoring
and green technology.

Keywords: Data Plane Development Kit (DPDK); Deep Packet Inspection (DPI); En-
ergy efficiency; Green networking; nDPI

1. Introduction

The drive toward growth usually forces an increase in carbon emissions (Zagloel et al.,
2023). This inevitability can be observed in many fields. For example, in the education
industry, each student requires certain amounts of resources. Online/remote learning is no
exception because it also uses computing and networking resources in the server (Shirota
et al., 2019)(Feliana et al., 2023). However, digital resources are generally perceived as
greener solutions (Domingos et al., 2024)(Kusrini et al., 2023). Being greener is often
managed by digitally representing something that was originally physical (Whulanza,
2023). This can be translated as a digital twin or industry 4.0 in general (Rehman et al.,
2023).
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In today’s connected world, machines/things are also receiving and sending data (Jha
et al., 2022). The opportunity brought by being connected is enormous (Whulanza, 2023),
including the chance to be greener, as discussed earlier. However, the other side of this
coin is the risk of increasing complexity due to the huge amount and various types of data
traversing the network (Hananto et al., 2024). An adequate resource to monitor network
data needs to be provided.

This study seeks a niche opportunity to strive for security and energy awareness based
on meticulous observation of network activity. Deep packet inspection (DPI), a more
capable form of network monitoring, is employed to dissect passing network packets and
predict their protocols. DPDK is adopted to push the limit of the hardware of the network
adapter and speed up the inspection. Then, a web-based dashboard is incorporated for
human observation. Several API endpoints are also provided to extend the functionalities,
such as allowing ML/AI to learn and suggest certain insights. These contributions form
an awareness tool that can be useful for continuous effort toward network and energy
efficiency. Several motivating use cases of the tool are as follows:

— Seeking to reduce energy usage of networking devices. In a production network,
inefficiency can be caused by (i) useless or redundant transmissions, (ii) excessive
control packets, (iii) unnecessary packet encapsulation, and (iv) unintended packets.
Case (i) can be caused by improper configuration in lower layers of the network. Case
(ii) can be caused by improper configuration in various layers or unexpected changes
in the network topology. Case (iii) can be caused by outdated software or hardware
(including firmware). Case (iv) may result from various types of cyber-attacks.
A poorly monitored and guarded network becomes an additional attack vector to
disrupt digital and physical assets, which may lead to higher energy consumption.

— Business activity baselining and anomaly detection (Yeremia Nikanor Nugroho,
2023) Business processes may involve humans and machines/IoT which send/receive
data to/from the network. Characterizing their traffic during normal operation is
important so that anomalies can be realized when they occur. Anomalies can be
caused by multiple sources, such as

• Human or system error during the operation
• Insider or outsider cyber attacks
• Behaviour mismatch/incompatibility of new system (from update, upgrade, or

newly procured) that was unidentified during preparation
• Decisions on special occasions (which are not well identified and prepared in

low-maturity organizations)

Anomalies may pose various impacts to the organization, including decreasing the
efficiency of the system (such as a smart room controller that cannot turn the cooling
off and excessively chill the room) and increasing the carbon footprint.

— Ensuring that the invested modern/smart solutions work as expected. Many modern
solutions have their own separate dashboard, such as building management, energy
generation and usage, general room and ambient appliances IoT, plumbing/water
and sewage, industrial control systems (ICS), and supervisory control and data
acquisition (SCADA). In addition, various information systems exist within organi-
zations. Depending on the system, unexpected behaviour may be realized from their
traffic in the network. Early detection can facilitate rapid mitigation and response,
thereby preventing further losses.
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— Continuous improvement and auditing. Modern systems and network infrastruc-
tures are typically active 24/7 and may grow (capacity and topology wise) along
with the organization. Audit and continuous improvement are both best practices
for a mature organization.

In the realm of logging and monitoring which produce large amounts of data, ML/AI
has also shown promising advancement to perform automatic decision-making (Zhu et al.,
2023). However, improving efficiency is often (and ideally is) a long-term commitment
(Chairina and Tjahjadi, 2023). With various dynamics in the organization’s business
process, the decision or intervention fed by network traffic monitoring should be done
widely, accountably, and below the authority/responsibility of certain officers (needless to
say: human). This niche requires a visual representation of the data (Park et al., 2021),
which is most conveniently provided by a customizable dashboard in our contribution.

As of 2024, there are 5.35 billion internet users globally, constituting 66.2% of the
world’s population (Kemp, 2024). This number represents an increase of 1.8% over the
past year, with 97 million new users accessing the internet for the first time in 2023
(Kemp, 2024). Additionally, the projected number of IoT devices worldwide is expected
to reach 32.1 billion by 2030 (Vailshery, 2024). This unprecedented growth has resulted
in vast data volumes and increasingly dynamic online activities. Traditional tools, such
as firewalls or intrusion detection systems, are limited to examining data at the network
(Layer 3) or transport (Layer 4) layers of the OSI model, analyzing only packet headers
(Ghosh and Senthilrajan, 2019). In contrast, DPI operates up to the Application Layer
(Layer 7), enabling more comprehensive analyses, including examining the content of
transmitted data (Özbay and Dalkılıç, 2023).

Given the rising diversity and complexity of network traffic, ISPs and telecommuni-
cation companies increasingly rely on DPI for traffic monitoring and anomaly detection.
However, commercial DPI solutions are often closed-source and expensive, making them
inaccessible for broader use (Raza et al., 2024). Therefore, an open-source DPI system
capable of effectively monitoring, analyzing, and managing network data traffic is needed.
Such systems should be scalable, cost effective, and accessible to a wider community.

Based on previous work on the comparison of accuracy among various DPI toolkits
or libraries (Çelebi et al., 2023), the highest accuracy score was achieved by nDPI (91
points), an open-source toolkit capable of recognizing a wide range of protocols and widely
used by the developer community. It was followed by PACE (82 points), a commercial
toolkit focusing on in-depth protocol analysis but limited in accessibility due to its licensed
nature. UPC MLA (79 points), designed to detect protocols through a machine learning
approach, offers flexibility but requires significant training data. Finally, Libprotoident
(78 points) is a lightweight toolkit suitable for simple protocol detection but limited in
the number of protocols it can recognize.

Therefore, the DPI toolkit used in this work is nDPI (ntop DPI), developed by ntop
for high-accuracy data packet analysis and available as open-source software. One of the
main drawbacks of nDPI is its relatively slow performance when processing large volumes
of data. Many studies have discussed ways to improve the performance of nDPI, such
as employing multithreading approaches (Deri, 2021), algorithm optimization (Sarhan et
al., 2024), or specialized hardware usage (Deri et al., 2024). However, these methods are
often insufficient to handle increasing workloads. As a more effective approach, integrating
nDPI with the DPDK has been proposed. DPDK is a technology designed to enhance
the performance of data packet processing by reducing network operations overhead.
It enables faster and more efficient packet processing through low-level programming
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and direct hardware access. Therefore, a system that is easy to use, understand, and
implement efficiently and quickly is needed.

Several key challenges are addressed in this study. First, the emergence of new Inter-
net protocols, such as Quick UDP Internet Connections (QUIC) and HTTP/3, presents
challenges in effective detection and analysis (Joarder and Fung, 2024). Without accurate
detection, these protocols can conceal harmful or unlawful content, thereby compromising
data security and integrity. Second, with increasing data volumes, efficient DPI systems
are essential for handling large-scale data without compromising speed or accuracy, par-
ticularly in identifying complex threats hidden within packet payloads (Raza et al., 2024).
Third, the accurate identification of network protocols, especially in critical sectors such
as banking, is vital for ensuring network security and mitigating cyber threats (Ali, 2019).
Finally, existing open-source solutions often lack comprehensive capabilities for detecting
and monitoring rapidly evolving or complex protocols. Addressing these gaps is crucial
for creating accessible and effective network monitoring systems (Sapp et al., 2021).

The scope of this study is outlined as follows. It focuses on protocols supported
by nDPI, which includes over 400 types defined in its library. It evaluates the DPI
system performance under various network traffic conditions and the adoption of emerging
protocols. The technical implementation focuses on DPI using nDPI and DPDK, along
with the development of an intuitive web-based interface. Legal and policy considerations
are beyond the scope of this study. System implementation and testing are limited to
controlled environments, requiring further validation in production settings. Additionally,
the system is tailored for specific organizational or institutional contexts, necessitating
additional adaptation for broader applicability.

In summary, this paper makes the following technical contributions:

— Contribute a new mechanism to the open-source nDPI library that enables real-time
output display within the backend.

— Integration of nDPI as an engine capable of sending analyzed data to a web-based
dashboard for enhanced accessibility and visualization.

— Creation of a user-friendly web dashboard equipped with various features, including
AI-powered notification analysis, to assist users in effectively understanding and
analyzing network traffic.

— Providing an open-source DPI monitoring solution that is easy to use, accessible to
the public, and designed for independent development and customization.

2. Methods

2.1 Deep Packet Inspection (DPI)

Network deep packet inspection (DPI) was introduced to address the limitations of
manual port-based approaches in network traffic classification, leveraging payload analysis
to detect protocols and hidden threats within network traffic (Ramey, 2024). Various
DPI deployments are illustrated in Figure 1. Data capture and analysis can be performed
separately or integrated into a single workflow. The data collected from the network can
be stored in files for further analysis. The main principles of DPI are pattern matching
and event analysis. Since the algorithm should be executed against a large number of
packets, the basic low-level method that has been matured over decades (used by routers,
switches, and NICs) is chosen over ML/AI-based high-level method.
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(a)

(b)

(c)
Figure 1 Illustration of DPI deployment: (a) direct analysis, (b) pattern matching, and

(c) event analysis

Patterns identified through byte sequences or regular expressions are often easy to
detect, making this technique quite popular. However, challenges arise when searching
for patterns that cannot be described using regular expressions, such as when data must
be decoded before the patterns can be identified. For example, identifying expired SSL
certificates from HTTPS connections with a specific list of IP addresses is a task that is
too complex to accomplish with regular expressions.

The event-based analysis architecture is employed for more complex detection. In
this approach, packets are processed into events, which are analyzed using predefined
scripts. Once the packets are decoded, the script engine processes the generated events.
This method allows for the application of more complex processing algorithms and the
addition of new DPI-related features within these scripts.

This method utilizes algorithms in computer programs to replace the pattern-matching
component. These algorithms can be either stateful or stateless. Stateful algorithms can
store data or states to be used in subsequent events, whereas stateless algorithms react
directly to the events (Harwahyu et al., 2024).

The nDPI library provides the main functionality of DPI (Özbay and Dalkılıç, 2023).
It was inspired by the OpenDPI software, which was GPL-licensed but no longer main-
tained. nDPI is compatible with Linux, Windows, MacOS, and BSD operating systems.
It can identify over 400 application protocols and report associated metadata, such as
TLS certificates, browser names, and encryption details (Deri, 2021).

DPDK is adopted herein to increase computing efficiency. DPDK is a software frame-
work designed to accelerate the development and performance of the data plane in network
systems (Belkhiri et al., 2022). Developed by Intel, DPDK provides APIs for processing
data packets directly through software, enhancing network systems’ overall performance
and efficiency. The adoption of DPDK in the proposed approach optimizes the processing
speed, aiming to reduce the unnecessary bottleneck of the additional computation. Ac-
cording to an existing study (Attawna et al., 2023), DPDK implementation significantly
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increases the data rate of general processing in software-defined networking switches, with
up to 8 folds increases under higher load compared to the baseline implementation found
in OpenVSwitch. (Vorbrodt, 2023) presented a performance comparison study of the
top three implementation strategies found in the market for network packet processing,
namely, the standard Linux kernel, using input-output library, and DPDK. The study
found that DPDK yields the highest performance, which is more than 733% compared to
the second best, which is the using input-output library.

Figure 2 Comparison of default/standard processing and processing using DPDK (left)
and the usage of DPDK in the proposed system (right)

DPDK bypasses the OS kernel, allowing applications to interact directly with hard-
ware, as illustrated in Figure 2. This approach eliminates the additional overhead typically
incurred when data packets pass through the kernel. Furthermore, DPDK is optimized for
multicore architecture, enabling applications to execute tasks in parallel and significantly
improve overall performance (Yen, 2021).

Figure 3 shows the protocol identification process performed by nDPI. This process
begins with the capture of incoming data packets, which are then classified based on their
signatures or the information contained within the packets.

2.2 Website-based interface

A web-based graphical user interface (GUI) is developed using Vue.js and WebSocket
protocol to ensure real-timeness. ZeroMQ (ZMQ) is utilized as the communication tech-
nology between the backend and frontend. ZMQ offers performance benefit, which has
been demonstrated in 5G/cellular controller (Jonnavithula et al., 2024), industrial IoT
(Sarasola et al., 2024), enterprise microservice architecture (Ibrahim, 2024), machine
learning nodes (Wang et al., 2024), and so on. The usage of ZeroMQ to handle in-
ternal communication between elements in the proposed system is illustrated in Figure
4. ZeroMQ facilitates fast and efficient data exchange through various communication
patterns, such as publish-subscribe, request-reply, and push-pull. By leveraging ZeroMQ,
this monitoring system enables direct real-time data transmission between the backend
components and the web interface, ensuring high performance and low latency without
overhead.
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Figure 3 Proposed protocol detection algorithm

This web-based system comprises several interconnected components/microservices
as follows:

• The frontend is responsible for presenting information to users through intuitive
visualizations. It displays real-time monitoring data using graphs, tables, and in-
teractive widgets, providing a dynamic and responsive user experience.

• The backend acts as a bridge between the user interface and the data processing
system. It handles data reception, processing, and real-time transmission. Addi-
tionally, the server temporarily stores data during monitoring sessions to ensure
system responsiveness.

• Data handler, which stores collected data in a database to ensure efficient and
organized access. The database allows permanent data storage, ensuring availability
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even after monitoring sessions are completed or the application is closed.
• Application programming interface (API) endpoints, which provide flexible data

access between the user interface and the backend system. They enable efficient
data retrieval for real-time communication and non-critical data access that does
not require immediate updates.

• The monitoring engine performs a deep analysis of network traffic to detect protocols
or specific patterns. This component is essential for identifying and classifying
potential threats or anomalies. The analysis is conducted using algorithms designed
for high efficiency and accuracy.

• Notification system that delivers immediate alerts to users when anomalies or issues
are detected in the monitored data. Notifications can be sent through various chan-
nels, such as email or instant messaging, to ensure that users can take necessary
actions promptly.

Figure 4 Communication architecture using ZeroMQ

Since various components above communicate using ZMQ, we devise two communi-
cation strategies using ZMQ, as illustrated in Figure 5. Depending on the deployment
strategy, communication may happen inside a host machine or between different hosts
(i.e., host machine and backend API endpoints). Strategies are used to tradeoff between
simplicity (simple to maintain and less error prone), security, and performance (less bot-
tleneck).

The developed DPI system and its dashboard allow the detection of network traffic.
Normally, the energy usage is approximated for each transmitted packet (Azari et al.,
2022). In fact, network traffic correlates with the activities of humans and things that
are assisted by computer-based communications (Jia et al., 2019). Therefore, a model is
proposed herein to approximate their energy usage.
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(a)

(b)
Figure 5 Proposed communication architecture (a) between hosts and (b) between the

host and other endpoints

2.3 The energy sensing model

The total energy usage of the involved networking devices is estimated in the first
step. Second, the energy usage of each end node that transmits and/or receives the
data is estimated. These end nodes include personal smartphones/wearables, comput-
ers/workstations, casual room IoTs, industrial IoTs, and building management IoTs. The
generated packets may affect the workings (and thus, energy usage) of other non-connected
appliances/machineries depending on their communication purpose. For example, in an
eco-friendly smart campus, according to the number of registered students, the room air
conditioner is turned on to prepare for a class. To autonomously execute this smart ac-
tion, several packets are communicated via the network. Third, the energy usage of these
smart appliances is predicted based on the packet detected in the network.

The network is generalized as an undirected graph G(n,e) with n nodes/vertices and
e edges between two random nodes, defined as follows:

G = (N, E) (1)

where N = {n1, n2, . . . , ns} is the set of nodes, and E ⊆ N × N with |E| = e.
From this graph, an adjacency matrix can be established as follows:

Ai,j =
{

1, if there is an edge between node i and j
0, otherwise (2)

In today’s common single-site enterprise network, transmission distance has a negli-
gible impact on total energy consumption. Hence, the propagation delay caused by the
edge length in our graph is not included here.
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The probability that node i will start transmission at time t is denoted as Si(t). The
probability of node i to transmit a packet with length (in time) l is denoted as Li(l). Let
Ti(t) denote the probability that node i is in the transmitting state at time t. This can
be expressed as follows:

Ti(t) =
t∑

t=−∞
Si(t′)

∞∑
l=1

Li(l)I(t′ + l > t) (3)

where I (t′ + l > t) is an indicator function that equals 1 if the packet transmitted
at time t′ is still being sent at time t, i.e., if I covers the current time t, and 0 otherwise.
Note that if node i starts a transmission at time t′, it remains in the transmitting state
during packet l. In a continuous-time model, this can be rewritten using an integral as
follows:

Ti(t) =
∫ t

t′=−∞
Si(t′)

n∑
l=1

Li(l)I(t′ + l > t)dldt′ (4)

Node i consumes as much as etx,i energy unit per time when in the transmitting state.
Hence, the energy usage expected by node i due to transmission is

Etx,i (t1, t2) =
∫ t2

t1
etx,iTi(t)dt (5)

The base energy usage of each device i connected to the network (end or intermediary
device) is generalized as eON,i for each unit of time. Energy used by the device while
powered on. In the real usage of the proposed DPI system, known devices can be added
to the database along with their energy profile. In this mathematical model, let EON be
the total base energy usage during [t1,t2], defined as follows:

EON (t1, t2) =
n∑

i=1

∫ t2

t1
eON,iPON,i(t)dt (6)

Each transmitted packet traverses the network to reach its destination(s). Within
an organization, the destination node can be a gateway router or an end node, such as a
computer or Internet of Things (IoT) node. In our graph G, the sending and receiving
nodes may be separated by 1 (directly connected) or more edges (via an intermediary node
such as an access point or networking switch). When a packet arrives at the immediate
intermediary device, it is forwarded to 1 (unicast) or more (multicast or broadcast) nodes
depending on the packet type.

Each node i may generate a different number of packets for each packet type, each
of which represents different off-network activities or applications with a distinct energy
usage profile. It also represents a different set of destination nodes. For example, an IoT
controller can send packets to one smart AC to adjust the room temperature (impacting
the AC’s energy usage) or send packets to all smart ACs in the building to query the
current ambient condition (small or no impact on the AC’s energy usage). Let Yi(y)
denote the probability that the packet sent by node i is a type of y. Each packet of type
y from node i is generalized to be sent to end nodes specified by a set Di,y where

Ei,y ⊆ {1, 2, . . . , N} \ {i} (7)

In this case, node j is assumed to consume erx,j energy per time unit in its receiving
state. Over a period [t1,t2], it consumes energy to receive a packet

Erx,j (t1, t2) =
{∫ t2

t1
Ti(t)Yi(y)erx,jdt, ifj ∈ Di,y,

0, otherwise.
(8)
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Each type y packet represents off-network or application energy usage of eapp,y per
time unit. Note that eapp,y can be negative to represent energy generation (e.g., solar
panel installations). In real-world usage, eapp,y can be measured or set based on the
baseline of each application, updated with a certain calibration procedure, or learnt by
ML algorithms. The expected application energy usage that can be sensed via the packets
generated by node i over a period of [t1,t2] is

Eapp,i(t1, t2) =
∫ t2

t1
Si(t)

∑
yi

Yi(y)eapp,ydt (9)

Finally, we need to count the energy usage by intermediary nodes that receive and
forward packets. With adjacency matrix A, the set of intermediary nodes M(i,j) along a
path from node i to node j can be defined as follows:

M(i, j) = {k ∈ N \ {i, j} |∃ a path(i → k → j) : Ai,k = Ak,j = 1, or no path exist} (10)

We can express the energy used by all intermediary nodes between nodes i and j as

Efwd,k (t1, t2) =
{∫ t2

t1
t(erx,k + etx,k)dt, if k ∈ M(i, j),

0, otherwise.
(11)

Up until this point, we have obtained the expressions for energy used for powering on
the nodes, EON , for the sender node to transmit packet, Etx, for the intermediary nodes to
forward the packet, Efwd, for the destination node to receive the packet, Erx, and for the
off-network applications controlled by the packet, Eapp. Finally, the total energy used by
the whole network and the connected application for duration [t1,t2] can be summarized
as follows:

Etot(t1, t2) =
∫ t2

t1

n∑
i=1

EON,i(t1, t2) + Etx,i(t1, t2) + Eapp,i(t1, t2)

+
∑

∀j∈N\i

Erx,j(t1, t2) +
∑

∀k∈N\{i,j}
Efwd,k(t1, t2)

 (12)

3. Results and Discussion

The development of the network traffic monitoring system based on DPI using the
DPDK framework resulted in the development of a prototype called DeepNet as the
PoC. The system comprises two primary modules: the nDPI module and the DPDK
module. The nDPI module is responsible for classifying protocols within network traffic,
leveraging its ability to identify over 400 protocols, including encrypted and unencrypted
traffic. Meanwhile, the DPDK module accelerates packet processing by bypassing the
OS kernel and directly interacting with the NIC, enabling high-speed and low-latency
operations. The system is further enhanced by a user-friendly web dashboard for real-
time visualization of network traffic statistics, protocol details, and anomaly detection,
making it a comprehensive tool for network monitoring and management.

The integration results of the nDPI module into the network traffic monitoring sys-
tem include several adjustments to ensure seamless functionality. The nDPI module was
successfully integrated into the developed network traffic monitoring system, enabling
accurate and efficient protocol classification. The use of DPDK to accelerate packet pro-
cessing in the network traffic monitoring system has been successfully implemented using
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DPDK version 21. The results of this implementation include the creation of compiled
files optimized with DPDK. These files were built using a custom Makefile specifically
designed for DPDK integration to ensure efficient packet processing within the system.
Additionally, the module successfully transmits these data to the website and other end-
points using ZMQ. The DPDK framework will be implemented in the subsequent stages
to accelerate packet processing in network traffic, further enhancing the developed net-
work traffic monitoring system. Packet processing in network traffic has been successfully
implemented using DPDK, with configurations set to 128 huge and using 4 threads, con-
cluding with the DPDK state operating on the specified port.

The developed dashboard displays general information about the monitored network
traffic, while the events page provides detailed information on events occurring within the
network traffic. The Configuration page allows users to configure the network traffic
monitoring system. Figure 6 shows the code structure of the developed website.

On the dashboard page, information is displayed in alignment with the user require-
ments carefully designed and outlined in the previous sections. This page serves as the
primary interface for monitoring network traffic, offering users a clear and comprehensive
view of key metrics and activities. Several functionalities have been developed and imple-
mented to ensure that the dashboard effectively meets its intended purpose. As detailed
in earlier chapters, these functionalities provide real-time insights and actionable data to
enhance user experience and support decision-making. The information presented on the
dashboard includes memory, traffic, detected, protocol, and risk statistics.

Figure 6 Functional structure of the proposed tool

The Events page serves as a detailed interface that provides comprehensive informa-
tion about events occurring within the network traffic. It is designed to provide users with
an in-depth view of network activities, enabling better understanding and analysis of traf-
fic patterns and anomalies. This page is equipped with several functionalities to ensure
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accurate event tracking and real-time data presentation. This page displays information
about events occurring in the network traffic. This includes a list of events and their
detailed information. The system demonstrates advanced network detection by providing
in-depth insights into events and traffic details, a capability not previously developed in
an open-source framework.

The Configuration page is designed to allow users to configure various aspects of the
network traffic monitoring system, ensuring that it operates effectively and aligns with
their specific needs. The Configuration page displays information related to the configu-
ration of the network traffic monitoring system. The page provides options to customize
the monitoring system according to user requirements. The configuration settings can
be adjusted, and the system can accept these parameters. One notable feature is the
ability to configure notifications, which can be tailored to user needs and enhanced with
AI-driven analysis, allowing alerts to be sent directly to the user’s email address. The
proposed system is evaluated under the following experimental setup:

3.1 Protocol Detection

This testing was conducted to determine whether the nDPI module can accurately
detect protocols within the network traffic. The testing method involved browsing various
websites and applications using a search engine. The test output is a Boolean array de-
noting the detection status (success/fail). The test was performed using 791,615 packets
consisting of 40,686 flows. Each flow represents a 2-way reciprocal connection-oriented
communication. This represents 132 common application types. Additionally, the test
continued with the detection of 30 and 220 specific flows from the Skype protocol with
30 flows and Microsoft with 220 flows. From this test, the nDPI module can successfully
detect all protocols within network traffic. The module can identify HTTP, MDNS (we-
bRTC), SSDP, TLS, QUIC, and even specific protocols, such as WhatsApp, YouTube,
Microsoft, Zoom, and Reddit.

Table 1 shows an example of specific protocol detection, namely, Skype and Microsoft,
which also commonly appears in local networks, enterprise networks, and the Internet.
The test was done 5 times to measure the consistency. The results show that the accuracy
is 96.67% and 99.55% for Skype and Microsoft, respectively.

Table 1 Result of detection testing, example for Skype and Microsoft flows

Iteration Skype Flow Microsoft Flow
1 29 221
2 27 223
3 30 221
4 29 220
5 30 220

3.2 Anomaly Detection

The performance of anomaly detection was evaluated to determine whether the net-
work traffic monitoring system can successfully identify anomalies within the network
traffic. The results of anomaly detection testing using sample anomalous traffic created
with tools available in Linux and Kali Linux are presented below.
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Table 2 Result of anomaly detection test

No. Test type Description and command to generate the anomaly Result
1 Packet

Fragmenta-
tion

Sent fragmented packets using: sudo hping3 -I eth0 -f
-p 80 -S 192.168.1.102

Detected

2 Malformed
Packet

Sent malformed packets using: sudo ping -s 65507
192.168.1.102

Detected

3 Uncommon
TLS ALPN

Sent TLS handshake with uncommon ALPN using:
openssl s client -connect testurl.com:443 -alpn http/2

Detected

4 Crawler/
Bot Traffic

Sent requests with uncommon user agent us-
ing: wget –header=”User-Agent: Googlebot”
http://testurl.com

Detected

5 TLS Cer-
tificate
Expire

Accessed website with expired TLS certificate us-
ing: echo — openssl s client -connect 192.168.1.3:8006
2¿/dev/null — openssl x509 -noout -dates

Detected

3.3 Network performance test

First, throughput testing was conducted to determine the capability of the system
to process packets in network traffic. The test used Iperf to send data across the network
with varying bandwidths. The testing duration was set to 60 s, and the packet size was
1400 bytes. The results are shown in Figure 7 and Table 3.

Table 3 Comparison of the throughput of DeepNet and the host’s default implementation

File Size DeepNet (pps) Host (pps) Comparison
(DeepNet/Host)(%)

100 Kb 18.93 18.94 99.95%
1 Mb 83.89 83.95 99.92%
10 Mb 717.78 717.78 100.00%
100 Mb 7450.00 7450.00 100.00%

1 Gb 58830.00 58830.00 99.73%
10 Gb 69910.00 69910.00 99.91%

This result reveals two distinct trends based on the file size. For small file sizes
ranging from 100 KB to 10 MB, the achieved throughput was relatively low and nearly
identical for both DeepNet and the default implementation, with values ranging between
18.93 and 717.78 ups. This is attributed to the high protocol overhead ratio compared to
the payload for small file sizes, which limits the number of packets processed per second.
At this stage, the performance of both systems was nearly identical, indicating that the
DeepNet optimization had no significant impact.

For large file sizes ranging from 100 MB to 10 GB, the throughput increased signifi-
cantly, peaking at approximately 69,910 ups for DeepNet and 69,970 ups for the System.
With larger file sizes, the protocol overhead became relatively smaller compared to the
payload, allowing the systems to utilize network resources more efficiently. The stable
increase in throughput for larger files demonstrates the system’s ability to handle data
efficiently without major hardware or software bottlenecks. Table 3 presents the detailed
values of the throughput quality assessment results.
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Figure 7 Comparison of throughput (pps) under various analysis loads

Figure 8 Packet processing time under various load sizes

Second, we conducted packet processing time testing to evaluate the speed of Deep-
Net, which leverages nDPI-based deep packet inspection (DPI) technology, in processing
packets within network traffic. The test involved data sizes ranging from 100 KB to 10
GB to observe trends in packet processing time based on varying traffic volumes. The
testing duration was set to 60 s, and the packet size was 1400 bytes. The results indicated
that packet processing time increased with larger data sizes; however, the system main-
tained efficiency for larger data sizes (1 GB to 10 GB), with only a marginal increase in
processing time compared to the preceding sizes. The initial processing times for smaller
data sizes were likely influenced by protocol overhead, which should be addressed in future
system optimizations. Figure 8 and Table 4 show that the proposed system performs well,
particularly in processing large data sizes. The nDPI technology effectively contributes to
the detection of deep network protocols without causing significant increases in process-
ing time for large datasets. However, the processing time for smaller data sizes highlights
opportunities for optimization, particularly in reducing the protocol overhead impact.

Third, packet loss testing aimed to measure the percentage of lost packets during
DeepNet data processing. Packet loss indicates that the processing is slower than the
load arrival rate, packets are queued, and one or more packets will be dropped (i.e.,
lost and not processed) if it is waiting too long in the queue. The test was conducted
by transmitting data of various sizes, ranging from 100 KB to 10 GB, to evaluate the
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system’s performance consistency in handling network traffic. The testing duration was
set to 60 s, and the packet size was 1400 bytes. According to the results shown in Table
4, the system demonstrates stable performance with a very low packet loss rate (0.001%)
for large data sizes (1 GB to 10 GB). However, for smaller data sizes (100 KB), the packet
loss rate was relatively high, reaching 4.42%, possibly due to initial processing overhead or
resource limitations during small packet transmissions. Overall, the results indicate that
the DeepNet maintains excellent reliability for large data sizes, with nearly zero packet
loss. The significant reduction in packet loss for larger data highlights the efficiency of the
algorithms and the system’s stability in handling high-intensity traffic, making DeepNet
suitable for large-scale network environments.

Table 4 Packet loss test results

Variation Packets Processed Total Packets Packet loss(%)
100 Kb 1307 1378 4.42%
1 Mb 6128 6161 0.53%
10 Mb 54551 54591 0.073%
100 Mb 536485 536511 0.0048%

1 Gb 5191183 5191217 0.00065%
10 Gb 6297546 6297569 0.00036%

Table 5 Memory usage test results

Variation Memory Capacity (MB) Memory Peak (MB) Memory Peak (%)
100 Kb 4000 26.66 0.66%
1 Mb 4000 33.23 0.83%
10 Mb 4000 99.56 2.4%
100 Mb 4000 762.56 19.06%

1 Gb 4000 4000 100%
10 Gb 4000 4000 100%

Lastly, the memory usage testing was aimed at evaluating the extent of the Deep-
Net’s memory resources while processing network traffic with varying data sizes. Table 5
presents the memory usage results based on data sizes ranging from 100 KB to 10 GB,
with a testing duration of 60 s and a packet size of 1400 bytes. The results indicate that
memory usage increased proportionally with the processing size of the data. For data
sizes up to 100 MB, memory usage remained below the system’s maximum capacity of
4 GB. However, the system reached its maximum memory capacity for larger data sizes
of 1 GB and 10 GB, highlighting its inability to store all data in memory at once. To
address this limitation, the system implemented a data eviction mechanism to ensure the
continuous processing of new data. The findings also demonstrate the efficiency of the
system in using memory, as memory usage for smaller data sizes (100 KB to 10 MB)
was relatively low, remaining below 20%. For larger data sizes (1 GB to 10 GB), mem-
ory usage reached 10%, suggesting the need for further optimization to improve resource
efficiency in handling high-volume traffic, such as data compression techniques or batch
processing.
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3.4 User Acceptance Test

User Acceptance Testing (UAT) was conducted to evaluate the quality and perfor-
mance of the DeepNet from the user’s perspective. This test involved users representing
network owners or system administrators who would use DeepNet in a production environ-
ment. This UAT was also aligned with the ISO/IEC 25010:2011 standard, which defines
the quality characteristics of software to ensure that the DeepNet meets the user’s re-
quirements (Imran et al., 2024). The following ISO/IEC 25010:2011 aspects were applied
during testing:

Table 6 Result of anomaly detection test

Page Feature Test Description Status
System Accessibility

Check
Ensures the dashboard is fully accessible, includ-
ing navigation via keyboard and screen readers.

Pass

System Browser
Compati-

bility

Tests the dashboard’s compatibility across mul-
tiple browsers (e.g., Chrome, Firefox, Safari).

Pass

System Security
Testing

Ensures configurations are secure, preventing
unauthorized changes to system settings.

Pass

Dashboard nDPI
Memory
Statistics

Displays memory usage by detected protocols
using nDPI technology.

Pass

Dashboard Traffic
Statistics

Shows network traffic statistics by detected pro-
tocol categories.

Pass

Dashboard Detected
Protocols

Lists detected protocols in the network traffic. Pass

Dashboard Protocol
Statistics

Provides detailed protocol statistics, including
packet counts and data volume.

Pass

Dashboard Risk
Statistics

Displays identified risk statistics based on net-
work traffic patterns.

Pass

Event Monitoring
Flow Event

Monitors network flows in real-time to detect
anomalies or suspicious patterns.

Pass

Configuration On/Off
Connection

Backend

Enables or disables backend connection to the
central server.

Pass

Configuration On/Off
Notification

Enables or disables notifications to the adminis-
trator.

Pass

Configuration On/Off
Analyst AI

Enables or disables AI-based anomaly detection
modules.

Pass

Configuration Email Noti-
fications

Configures email settings for receiving activity
or anomaly notifications.

Pass

Configuration IP and Port
Endpoint

Configures the IP address and port endpoint for
data transmission to the server.

Pass

Configuration Data
Collection
Interval

Sets the data collection interval for efficient
monitoring.

Pass
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Functionality: The test evaluated the system’s core functionality, such as the ability
to detect and display protocol statistics, risk statistics, and network anomalies on the dash-
board. Key functionalities, such as configuration management (e.g., enabling/disabling
backend connections, notifications, and AI-based anomaly detection), were tested to con-
firm that they functioned as expected. This test also indicates that the provided func-
tionality can be used with the proposed energy sensing model to approximate the energy
usage or generation by various connected network systems.

Performance Efficiency: Real-time monitoring and data processing performance
was tested to ensure that the system could handle large volumes of network traffic without
lag or data loss. The data collection interval configuration was validated to ensure optimal
performance under various network conditions.

Usability: We assessed the dashboard and configuration interface for ease of use
and clarity of the presented information. The test participants were asked to assess the
intuitiveness of navigation and the presentation of key metrics, such as traffic statistics
and detected protocols.

Reliability: Tests were conducted to evaluate the system’s stability during high-
traffic scenarios and its ability to recover gracefully from unexpected interruptions. The
network risks and anomalies were consistently monitored under varying conditions to
ensure reliability.

Compatibility: Compatibility tests were performed to confirm that the web inter-
face operated correctly on different browsers and devices. The system’s integration with
existing network setups, including configuring endpoints and email notifications, was also
verified.

The UAT results are shown in Table 6. This table shows that the provided features
in all provided pages are working as expected and are within the acceptable test criteria
(pass).

4. Conclusions

The DPI-based system with DPDK is effective in performing network monitoring.
DPDK enhances data processing efficiency with optimal speed and high accuracy. Under
various loads tested during the evaluation, the system can reach an average throughput
of 99.991%. The system can accurately identify various protocols, including associated
risks and anomalies. The error detection rate remains under 4%. The detection result is
sufficient to be used with the proposed energy sensing model to approximate the energy
usage or generation by various networked systems. By leveraging nDPI, the system over-
comes the limitations of open-source resources, providing a more affordable solution for
detecting complex protocols with an average packet loss rate of 0.83%. The system also
passes the UAT based on the ISO/IEC 25010:2011 standard. This study presents a new
possibility to observe the activities of various systems in an organization to increase effi-
ciency, such as avoiding anomalies that may lead to energy inefficiency. Future research
will assess the accuracy of the energy model and equip it with prediction capabilities that
may be achieved using ML approaches.
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portal]. https : / / www . diva - portal . org / smash / get / diva2 % 5C % 3A1789103 /
FULLTEXT01.pdf

Wang, S., Qian, L., Yi, C., Wu, F., Kou, Q., Li, M., Chen, X., & Lan, X. (2024). Sadma:
Scalable asynchronous distributed multi-agent reinforcement learning training frame-
work. International Workshop on Engineering Multi-Agent Systems (EMAS), 64–
81. https://doi.org/10.1007/978-3-031-71152-7 4

Whulanza, Y. (2023). Cohering existing technology with greener and modern innovation.
International Journal of Technology, 14 (2), 232–235. https://doi.org/10.14716/
ijtech.v14i2.6435

Yen, T. A. (2021). Flexips: A keep-tracking scalable network function design and im-
plementation. 2021 2nd International Conference on Electronics, Communications
and Information Technology (CECIT), 607–613. https://doi.org/10.1109/CECIT53797.
2021.00112

https://doi.org/10.1080/17538157.2021.1982949
https://doi.org/10.1080/17538157.2021.1982949
https://scholarworks.utep.edu/open_etd/4136/
https://scholarworks.utep.edu/open_etd/4136/
https://doi.org/10.1109/ICACS60934.2024.10473274
https://doi.org/10.1109/ICACS60934.2024.10473274
https://doi.org/10.1016/j.techsoc.2023.102227
https://doi.org/10.1016/j.techsoc.2023.102227
https://doi.org/10.1177/09636625211049531
https://doi.org/None
https://doi.org/None
https://doi.org/10.1109/ACCESS.2024.3352897
https://doi.org/10.1109/ACCESS.2024.3352897
https://doi.org/10.12720/jait.10.2.60-65
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.diva-portal.org/smash/get/diva2%5C%3A1789103/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2%5C%3A1789103/FULLTEXT01.pdf
https://doi.org/10.1007/978-3-031-71152-7_4
https://doi.org/10.14716/ijtech.v14i2.6435
https://doi.org/10.14716/ijtech.v14i2.6435
https://doi.org/10.1109/CECIT53797.2021.00112
https://doi.org/10.1109/CECIT53797.2021.00112


International Journal of Technology 16(6) 2062-2083 (2025) 2083

Zagloel, T. Y. M., Harwahyu, R., Maknun, I. J., Kusrini, E., & Whulanza, Y. (2023).
Developing models and tools for exploring the synergies between energy transition
and the digital economy. International Journal of Technology, 14 (8), —. https:
//doi.org/10.14716/ijtech.v14i8.6906

Zhu, J., He, S., He, P., Liu, J., & Lyu, M. R. (2023). Loghub: A large collection of
system log datasets for ai-driven log analytics. Proceedings of the 2023 IEEE 34th
International Symposium on Software Reliability Engineering (ISSRE), 355–366.
https://doi.org/10.1109/ISSRE59848.2023.00071

https://doi.org/10.14716/ijtech.v14i8.6906
https://doi.org/10.14716/ijtech.v14i8.6906
https://doi.org/10.1109/ISSRE59848.2023.00071

	Introduction
	Methods
	Deep Packet Inspection (DPI)
	Website-based interface
	The energy sensing model

	Results and Discussion
	Protocol Detection
	Anomaly Detection
	Network performance test
	User Acceptance Test

	Conclusions

