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Abstract: The shipbuilding industry in developing countries is a sector that heavily relies on manual 
welding methods of Shielded Metal Arc Welding (SMAW) and Flux-Cored Arc Welding (FCAW). 
The reliance on manual welding skills often leads to substantial rework due to inconsistencies in weld 
quality and variations in welder proficiency. There is an observation that many welders drop 
performance due to fatigue problems after a period of working or changes in working conditions. 
Therefore, this study aimed to develop an Artificial Intelligence (AI)-driven to monitor the changes 
concerning the performance of welder using wearable sensors and a Convolutional Neural Network-
Long Short-Term Memory (CNN-LSTM) model in improving recognition accuracy of six FCAW 
welder performance levels. Data of six welder hand movements were collected during 1G, 2G, and 
3G positional welding and analyzed using CNN-LSTM. During the analysis, the hand movement 
data of six levels of welder skills were classified by the number of discontinuity records. The model 
achieved a total accuracy exceeding 95%, showing its effectiveness in skill assessment and real-time 
welder monitoring. These results show the potential of AI-powered systems to improve welding 
productivity and reduce project delays in shipbuilding. 

Keywords: Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM); Flux-Cored Arc Welding 
(FCAW); Performance; Welder 

1. Introduction 

Manual welding systems are methods relying heavily on the skill of welders (Moore and Booth, 
2014), often leading to low production rates due to the challenging conditions of work that demand 
significant physical stamina (Sakuma et al., 2001). This issue has been addressed in many modern 
countries, particularly with the development of clean industry initiatives. As a result, industrial 
robots and mechanized equipment have become essential for high-volume welding production 
(Kahnamouei and Moallem, 2024). In highly competitive manufacturing environments, industries 
are increasingly pursuing alternative technologies to optimize production processes. For small to 
medium production volumes, robotic systems often outperform manual and automated production 
in terms of cost per unit (Chodha et al., 2021). Recent advancements in robotic welding systems 
have main benefits, including improved productivity, welding quality, worker safety, workspace 
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flexibility, and reduced labor costs (Villaverde and Maneetham, 2024; Kah et al., 2015). The rise of 
robotic applications has also reduced operator input, enabling improved automated control over 
welding parameters, robotic motion paths, and fault detection as well as correction (Schwab et al., 
2008) 

Efforts to improve robotic systems to match human capabilities have introduced additional 
complexity and increased investment costs. Various sensor systems have been incorporated to 
improve the effectiveness of robotic welding, achieving positivity in precise and accurate 
movements (Kah, 2021; De Graaf and Aarts, 2013). For instance, infrared thermography methods 
have been adopted for real-time adaptive weld quality monitoring in robotic welding. Smart 
systems such as artificial neural networks (ANNs) are also used to handle complex tasks and 
improve how machines are controlled. These AI-powered tools help robots adjust to changes in the 
environments, learn how different inputs lead to certain results, and make decisions based on the 
present occurrence (Sudhakaran et al., 2013; Nagesh and Datta, 2010; Pires et al., 2006). Despite all 
the progress made, robotic sensors are still not flexible or quick to react as human senses when 
working in constantly welding conditions. 

How fast and well Shielded Metal Arc Welding (SMAW) and Flux-Cored Arc Welding (FCAW) 
get done depends a lot on how skilled the welders are. When welders are not very experienced or 
make mistakes, it can slow down ship construction projects (Gazali and Baroroh, 2022). To solve 
these problems, Pribadi and Shinoda (2018) created a wearable device with motion sensor such as 
accelerometer and gyroscope to keep track of workers in shipyard. This device could identify 
common movements made by workers, which helped in starting to measure productivity. Building 
on this, (Pribadi and Shinoda, 2020) improved the method by using a 9-degree-of-freedom (DOF) 
inertial measurement unit (IMU) and a multilayer perceptron (MLP) algorithm, achieving high 
accuracy in classifying welder activities. Further studies (Pribadi and Shinoda, 2022) focused on 
monitoring wrist-hand motions during basic welder training, using wearable sensors and Support 
Vector Machines (SVM) to assess skill acquisition. The analysis show the potential of wearable 
technology and AI in improving training efficiency as well as welder performance. Relating to the 
discussion, this study builds on the foundation of previous findings by applying similar methods 
to FCAW processes. 

FCAW offers several advantages, such as higher deposition rates and improved productivity 
(Mohamat et al., 2012), making it a preferred welding method for various joint configurations. 
Recent studies have also examined advancements in FCAW, with scientometric analyses showing 
developing trends and technological developments in the field (Świerczyńska et al., 2024). 
Following the discussion, hybrid welding methods combining FCAW and other processes have 
shown improved mechanical properties as well as process efficiency (Prajapati et al., 2018). Studies 
have also investigated the impact of welding groove configurations on the mechanical properties 
of FCAW joints, signifying the importance of process optimization (Çevik, 2018). Moreover, the 
distinct electrode handling methods in FCAW introduce unique motion patterns that fall under 
human activity recognition (HAR), necessitating advanced analytical methods. Several studies have 
explored the use of motion sensors to monitor and identify various types of movements, with AI 
being used for human motion classification (Genc et al., 2024; Khatun et al., 2022; Mutegeki and 
Han, 2020; Shiranthika et al., 2020). This study incorporates AI methods based on Convolutional 
Neural Network-Long Short-Term Memory (CNN-LSTM) algorithms to address these challenges, 
aiming to improve recognition accuracy more than the achievement of traditional SVM methods. 

The incorporation of deep learning methods, particularly Convolutional Neural Network (CNN) 
and Long Short-Term Memory (LSTM) has significantly advanced HAR by enabling strong feature 
extraction and temporal sequence modeling. CNN excels in spatial feature extraction (Liu, 2018), 
particularly in image and sensor data. Meanwhile, LSTM captures temporal dependencies in 
sequential data (Malashin et al., 2024), making the models highly suitable for HAR applications 
comprising time-series data, such as motion tracking through accelerometers and gyroscopes 
(Ignatov, 2018). The workflow of CNN-LSTM models typically includes data preprocessing, feature 
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extraction via CNN layers, temporal sequence modeling with LSTM levels, and final classification. 
This architecture increases the ability of the system to recognize complex activities over time, 
leading to improved classification accuracy compared to traditional machine learning methods 
(Hammerla et al., 2016). 

Several studies have shown the efficacy of CNN-LSTM models in various HAR applications. For 
example, (Perez-Gamboa et al., 2021) developed a CNN-LSTM model for HAR with wearable 
sensors, achieving high classification accuracy. Similarly, (Lee et al., 2021) reviewed CNN-based 
deep learning applications in welding study, signifying the potential of CNN for real-time welding 
quality monitoring. Other studies have incorporated hierarchical deep LSTM networks for HAR 
using wearable sensors, further improving recognition accuracy (Wang and Liu, 2020). The growing 
incorporation of AI in welding and HAR applications shows the potential of CNN-LSTM models 
in industrial environments. 

Deep learning methods including CNN and LSTM, have been successfully implemented in 
various machine learning applications, such as license plate recognition (Tan et al., 2022), 
depression detection (Tey et al., 2023), as well as violence detection (Abdullah et al., 2023). These 
applications show the versatility of CNN-LSTM architectures in real-time monitoring and 
classification tasks. The implementation of deep learning for HAR in welding is a logical extension 
of these methods, leveraging AI for precision monitoring and productivity improvement. 

Various AI-driven applications have explored the capabilities of CNN-LSTM models outside 
HAR. For instance, combined CNN-LSTM models have been applied to heating, ventilation and air 
conditioning (HVAC) system optimization (Sari et al., 2023) and bankruptcy prediction (Pham et 
al., 2025), showing the effectiveness of predictive analytics. These studies reinforce the potential of 
AI-driven HAR models for industrial applications, such as welding skill assessment and 
productivity monitoring. 

This study develops a sensor-based monitoring method for welder skill assessment as an 
alternative to robotic welding. By leveraging CNN-LSTM models, this study aims to improve the 
recognition accuracy concerning the skill levels of FCAW welders, contributing to AI-driven 
solutions for workforce development and quality assurance in shipyard operations. This method 
helps get better on jobs and gives industries in developing countries a low-cost way to improve 
each work. 

2. Methods 

The method of this study consisted of three main stages, namely data acquisition, pre-processing, 

and classification. These stages were designed to analyze the hand-motion data collected during 

FCAW welding processes in 1G, 2G, and 3G positions using wearable sensors. 

2.1. Data Acquisition 
Data was collected through hands-on experiments in a laboratory, focusing on recording the 

welding work done using FCAW method. The setup started with the preparation of tools and 
materials, checking the welding procedure specification (WPS), inspection the carbon-steel pieces 
to be welded, and ensure all safety rules were followed. Moreover, the welding tasks included the 
actual welding, slag removal, and grinding the surface. The metal pieces used were A36 carbon 
steel, made up of two plates with a V-groove to help with the welding. The V-groove measured 3 
mm at the bottom and 32 mm at the top, with specimen dimensions of 150 mm × 300 mm × 12 mm. 
During the process, several welders were tasked with welding three specimens each, corresponding 
to the 1G, 2G, and 3G positions. The welding process was conducted using a Weiro WM350F FCAW 
machine with ESAB Weld 71T-1 flux-cored electrodes 1.2 mm in diameter. This experiment was 
conducted in the Ship Production Technology and Management Laboratory at the Institut 
Teknologi Sepuluh Nopember. Additionally, certified welding inspectors visually inspected the 
welds to identify any discontinuities. Based on Figure 1(a), the visually identified welding 
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discontinuities were divided into several sections, labeled with numbers from 1 to 5. A more 
detailed explanation of the welding discontinuities was shown in Table 1. 

 
(a) 

 
(b) 

Figure 1 (a) 3G Welding Result with discontinuities, (b) 3G Welding Result without discontinuities 
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An example of the obtained discontinuity analysis results from the previous discussion was used 
as a criterion for assessing welder performance. These criteria consisted of six performance levels 
classified based on the discontinuities of the welder. According to the relationships shown in Table 
1 and Figure 1, poor weld quality was associated with an excessively high travel speed, as 
evidenced by the irregular patterns in the gyroscope sensor data and the total time used to complete 
one welding layer. Consequently, high-quality welds were characterized by a longer travel speed, 
with gyroscope sensor data showing a more stable pattern and a longer time used to complete one 
welding layer. 

 

Table 1 3G Welding Discontinuity Type 
No. Discontinuity Type Cause of Occurrence 

1, 2, 3, 
and 5 

Incomplete Fusion the weld metal did not fully fuse with the base metal, allowing the 
appearance of base metal to be untouched, there was unsymmetric 
waving, the electrode angle was too narrow, quick travel speed, electrode 
speed to fast and did not fill at the edges 

4 Incomplete 
Penetration 

The electrode was not filled perfectly, causing any full penetration with a 
preceding weld bead because the travel speed was quick. 

 
2.2. Data Pre-Processing 
Raw data collected during the welding process were classified into three sensor types, namely 

accelerometer, gyroscope, and magnetometer, each with three axes (x, y, and z). The data were 
annotated with information on welder identification on SubID. In addition, it consisted of six 
welders as shown in Table 2 using the example on the sixth welder. The annotated data were 
imported into a database for subsequent classification. 

For deep learning classification, the sensor data recorded at a frequency of 25 Hz were segmented 
into 10-second windows, producing 250 data points per sensor for each window. The segmented 
data were then prepared for training and testing in the classification stage. 

 
Table 2 Pre-Processed Data Identification on the Sixth Welder 
Elapsed 
Time 
(sec) 

Acc x 
(g) 

Acc y 
(g) 

Acc z 
(g) 

Gyr X 
(deg/s) 

Gyr Y 
(deg/s) 

Gyr Z 
(deg/s) 

Mag X 
(T) 

Mag Y 
(T) 

Mag Z 
(T) 

SubID 

0 0.9 -0.12 0.363 0.915 0.183 0.244 -8.98E-05 -7.18E-05 1.23E-04 6 

0.04 0.896 -0.11 0.359 2.805 0.732 1.28 -9.86E-05 -9.59E-05 1.22E-04 6 

0.08 0.91 -0.111 0.361 2.439 2.683 0.671 -1.08E-04 -1.20E-04 1.38E-04 6 

0.12 0.902 -0.117 0.37 1.463 1.037 0 -8.24E-05 -1.06E-04 1.28E-04 6 

0.16 0.908 -0.106 0.356 -0.976 2.561 -0.244 -7.51E-05 -1.13E-04 1.37E-04 6 

0.2 0.89 -0.11 0.359 -1.768 0.732 -0.61 -5.28E-05 -9.85E-05 1.42E-04 6 

0.24 0.908 -0.113 0.371 -2.5 -0.61 -1.098 -7.04E-05 -7.83E-05 1.48E-04 6 

0.28 0.906 -0.11 0.357 -2.805 -1.22 -0.854 -5.83E-05 -1.50E-05 1.12E-04 6 

0.32 0.904 -0.111 0.356 -2.866 -1.28 -0.854 -6.85E-05 -2.78E-05 1.16E-04 6 

0.36 0.912 -0.114 0.361 -2.317 -0.976 -0.488 -8.94E-05 -6.33E-05 1.20E-04 6 

 
2.3. Data Classification 
The classification process used a CNN-LSTM deep learning model to analyze motion data from 

accelerometer, gyroscope, and magnetometer sensors, as shown in Figure 2. Each sensor captured 
X, Y, and Z-axis values at 25 Hz, generating 25 data points per second along each axis. During the 
process, a windowing method was applied to structure the input data, where each 10-s window 
contained 250 timesteps per axis. The segmented data were then classified using a hybrid CNN-
LSTM model, where CNN layers extracted spatial features, and LSTM levels modeled sequential 
dependencies, improving the classification accuracy for complex motion activities. The 
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classification process included hyperparameter tuning, window size optimization, epoch count 
optimization, activation functions optimization, and loss functions to improve model performance. 
In addition, a confusion matrix was used to measure accuracy, precision, and recall to evaluate 
classification effectiveness. The testing phase validated the ability of the model to differentiate 
activity patterns based on sensor data, ensuring reliable classification results. 

 

Figure 2 Flowchart of Classification using CNN-LSTM 

3. Results and Discussion 

The data collected during the experimental phase were processed using a CNN-LSTM algorithm 
to classify the welder performance during FCAW. The classification focused on six performance 
categories based on discontinuity analysis. CNN-LSTM model was trained and achieved the 
highest accuracy using a configuration of parameters consisting of three hidden layers, each 
containing 100 hidden nodes. ReLU activation function was applied to introduce non-linearity, 
while Adam optimizer was used to improve learning efficiency. The model was trained for a 
maximum of 1,000 epochs, ensuring extensive learning over the dataset. Following this discussion, 
a window size of 250 was used, signifying the input data was segmented into time-series sequences 
of 250 samples each. Throughout the training process, the model processed a total of 1,148 data 
samples. After completing all 1,000 epochs, the model achieved an impressive accuracy of 99.30%. 
Subsequently, testing of the model was performed with an excluded dataset from training and 
included outcome from training as shown in Table 3 and 4. 

The confusion matrix results for the six-welder performance (W1 to W6) showed the classification 
accuracy of the model under different conditions. When all conditions were included, the model 
achieved a high true positive rate of 97.69%, with most predictions correctly associated with actual 
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welder performance levels. During the process, misclassification was minimal as observed in W1, 
where 46 samples (7.86%) were correctly classified, with only a few misclassified as other levels. 

However, when certain conditions were excluded, the true positive rate dropped significantly to 
60.10%, showing a decline in model performance. Increased misclassification was particularly 
significant for W4 and W5, where multiple samples were incorrectly predicted as W6 (W4 → W6: 
50 samples (7.26%)). Through these results, the model was unable to differentiate between specific 
welder performance levels due to changes in external influencing factors. The results showed that 
despite CNN-LSTM model performing well under controlled conditions, its robustness in varying 
conditions required improvement, potentially through further hyperparameter tuning, additional 
feature extraction, or data augmentation to improve generalizability. 

 
Table 3 Testing Included Data of Welder's Performance with six level of criteria Result 

Confusion Matrix (Include) 

 W1 W2 W3 W4 W5 W6 

W1 46 (7.86%) 0 (0.00%) 5 (0.85%) 0 (0.00%) 3 (0.51%) 2 (0.34%) 

W2 2 (0.34%) 55 (9.40%) 4 (0.68%) 8 (1.37%) 3 (0.51%) 3 (0.51%) 

W3 9 (1.54%) 5 (0.85%) 62 (10.60%) 1 (0.17%) 4 (0.68%) 3 (0.51%) 

W4 7 (1.20%) 1 (0.17%) 5 (0.85%) 106 (18.12%) 5 (0.85%) 5 (0.85%) 

W5 2 (0.34%) 3 (0.51%) 1 (0.17%) 5 (0.85%) 112 (19,15%) 3 (0.51%) 

W6 2 (0.34%) 2 (0.34%) 3 (0.51%) 6 (1.03%) 4 (0.68%) 98 (16.75%) 

Data Length: 173     
True Positive: 97.69%     

 
Table 4 Testing Excluded Data of Welder Performance with six levels of criteria Result 

Confusion Matrix (Exclude) 

  W1 W2 W3 W4 W5 W6 

W1 15 (2.18%) 3 (0.44%) 10 (1.45%) 8 (1.16%) 12 (1.74%) 7 (1.02%) 

W2 11 (1.60%) 26 (3.77%) 18 (2.61%) 16 (2.32%) 18 (2.61%) 9 (1.31%) 

W3 19 (2.76%) 16 (2.32%) 36 (5.22%) 5 (0.73%) 11 (1.60%) 18 (2.61%) 

W4 16 (2.32%) 7 (1.02%) 10 (1.45%) 35 (5.08%) 23 (3.34%) 50 (7.26%) 

W5 6 (0.87%) 6 (0,87%) 10 (1.45%) 23 (3.34%) 39 (5.66%) 40 (5.81%) 

W6 18 (2.61%) 8 (1.16%) 10 (1.45%) 48 (6.97%) 32 (4.64%) 50 (7.26%) 

Data Length: 203       
True Positive: 60.10%       

 
In the previous study (Pribadi and Shinoda, 2021), this finding conducted a comparison to 

classify data using SVM and CNN-LSTM. Table 5 showed a comparative analysis of CNN-LSTM 
and SVM algorithms for welder performance classification. As SVM indicated faster processing 
times for data training and testing, CNN-LSTM outperformed SVM in terms of total training and 
test data accuracy. On the other hand, SVM showed better generalizability on the excluded test 
data. 

CNN-LSTM model showed superior spatial and temporal learning capabilities due to its 
incorporation of convolutional as well as sequential layers, which enabled effective feature 
extraction and forecasting. Despite the longer processing times, higher training accuracy and the 
included test data of the model signified its suitability for applications requiring strong 
performance classification in complex datasets. 
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Table 5 Comparison of SVM and CNN-LSTM 

No. SVM (Support Vector Machines) 
CNN-LSTM (Convolutional Neural Networks-Long 
Short-Term Memory) 

1 Shorter duration for total data processing Longer total data processing duration 

2 
Lower accuracy of training data compared 
to CNN-LSTM 

Higher accuracy of training data compared to SVM 

3 
Similar accuracy results were obtained for 
the test data. 

Similar accuracy results were obtained for the test data. 

4 
Higher accuracy for excluding test data 
compared to CNN-LSTM 

Lower accuracy for exclude test data compared to 
CNN-LSTM 

4. Conclusions 

In conclusion, the experimental results showed that CNN-LSTM model effectively classified the 
welder performance in FCAW based on discontinuity analysis, achieving a high true positive rate 
of 97.69% in controlled conditions. The ability of the model to capture spatial and temporal 
dependencies contributed to its superior classification accuracy. However, when external 
conditions were excluded, the performance significantly declined to 60.10%, showing its sensitivity 
to varying environmental factors and potential overfitting to specific training conditions. 

A comparative analysis with SVM showed that while the model offered faster processing times 
and better generalizability for excluded test data, CNN-LSTM outperformed SVM in training 
accuracy as well as total classification performance. The results signified that CNN-LSTM was well-
suited for applications requiring detailed and accurate performance classification, despite the 
required improvements in model robustness. Future improvements, such as hyperparameter 
optimization, additional feature extraction, and data augmentation, could further increase the 
generalizability as well as reliability of the proposed model across diverse operating conditions. 
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