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Abstract: Visual Odometry Estimation (VOE) is an important problem of Visual SLAM that helps 
autonomous vehicles, robots, and blind people explore the environment and find their way. The 
problem of VOE has been studied for a long time and has achieved impressive results based on 
applying deep learning (DL) to solve computer vision problems. However, VOE still faces challenges 
requiring a considerable amount of data to train the estimation model and operate in new 
environments. The Multi-Layer Fusion framework (MLF-VO-F) is proposed previously with the 
combination of multi-layer fusion and loss functions. However, this method still has large error 
results when performed on indoor data collected with low light, as the TQU-SLAMB-D. To reduce 
errors and improve VOE results for building navigation systems in indoor environments, we improve 
the MLF-VO-F, called improved MLF-VO-F by adding a loss function LF2F to obtain the loss function 
Limproved to increase the self-supervision ability of the learning model when training in both positive 
and negative directions as on the KITTI dataset and TQU-SLAM-B-D. Our proposed method results 
in a reduction in error when evaluating the KITTI dataset. Improved MLFVO-F is compared to be 
better than MLF-VO-F, MotionHint, and DeepVO (the trel measure of MLF-VO-F is 3.9% with the 
sequence 9th (Seq #9) and is 4.88% with the sequence 10th (Seq #10), while the trel measure of the 
improved MLF-VO-F is 2.6% with the Seq #9 and is 3.5% with the Seq #10). In particular, our 
improvement is evaluated and compared with the MLFVO-F on the TQU-SLAM-B-D, the results have 
been significantly improved, details in the subset 5th (Sub #5), the error of MLF-VO-F with the Errd 
measure, is 19.97 m but has decreased to 0.68m on our proposed method, or the error of the RMSE 
measure has decreased from 20.62 m to 0.81 m, or the error of the ATE measure has decreased from 
29.76 m to 1.055 m. And the error also drops sharply on the subset 7th (Sub #7) and the subset 8th (Sub 
#8). Assessment results and visual illustrations are available. 

Keywords: Deep Learning; Multi-Layer Fusion framework; RGB-D images; TQU-SLAM benchmark dataset; 
Visual Odometry estimation 

1. Introduction 

VOE is one of the two key challenges to address in computer vision-based Visual SLAM. VOE 
involves estimating the position of a camera and tracking its trajectory within an environment by 
analyzing a sequence of images (Bai et al., 2023). VOE performs matching of consecutive frames 
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and calculates the relative poses between them to provide a real-time estimate of the camera’s 
position. VOE is important in building navigation and path-finding systems for robots (Alwan et 
al., 2024), (Villaverde and Maneetham, 2024), autonomous vehicles (Ha et al., 2024), (Romahadi et 
al., 2024), and visually impaired people in the environment (MRDVS, 2024), (Herrera-Granda et al., 
2024). In particular, VOE is part of the Visual SLAM system, which understands the scene and helps 
the robot avoid obstacles on its way (Alwan et al., 2024). Previously, with the traditional method, 
VOE needed several steps such as feature extraction, feature matching, outlier rejection, and optical 
flow estimation (Jia et al., 2022). Over the past decade, Deep Learning (DL) has achieved many 
convincing results (Nugroho et al., 2023; Tey et al., 2023) in solving computer vision, AI (Pham et 
al., 2025), (Maruf et al., 2024) problems such as object detection (Barakat et al., 2023; Mansour et al., 
2022), (Naghipour et al,. 2024), recognition, classification, image segmentation, etc. In DL models, 
loss functions are used to supervise and optimize the model training process. Loss functions are 
responsible for calculating the difference between the current predictive model and the ground 
truth (GT) data to focus learning on good features and good data. This makes the model converge 
faster. 

DL currently plays a pivotal role in addressing the majority of modules within the Visual 
Odometry and Estimation (VOE) system, with its models often integrated across the entire pipeline 
from initiation to completion. In the study of Favorskaya (2023), there are three DL-based methods 
for building Visual SLAM and VOE from the Red Green Blue (the digital images represented in the 
Red Green Blue (RGB) color model) - Depth (RGB-D) images. 

Just in recent years, there have been many studies on DL-based VOE that have achieved many 
results with high accuracy such as (Herrera-Granda et al., 2024), (Shah et al., 2024), (Antsfeld and 
Chidlovskii, 2024), (Kanai et al., 2024), (Jin et al., 2024), (Agrawal et al., 2024), (Nir et al., 2024), (Chen 
et al., 2024), (Zhang et al., 2024), (Shen et al. 2023), (Zhao et al. 2023), (Tan et al. 2023), (Wang et al. 
2022), (Francani and Maximo, 2022), (Pandey et al. 2021), etc. However, each study focuses on 
solving the VOE problem in a specific context, such as (Tan et al. 2023) performing VOE for 
autonomous vehicles in rainy conditions, (Wagih et al. 2022) performing VOE for smart vehicles, 
etc. There are methods implemented based on supervised, unsupervised, or self-supervised DL. 
Details of some studies and results of the VOE system and modules are presented below. 

(Shah et al. (2024) introduced the CodedVO for VOE, where CodedVO processes an RGB image 
as input, subsequently encoding it and estimating depth via U-net (Weng and Zhu, 2021), followed 
by VOE implementation using ORB-SLAM (Mur-Artal et al., 2015). Depth data is obtained using 
RGB depth estimation methods, however, this work is difficult when there is no scale to estimate 
the actual depth leading to large errors. To overcome this, they think of the change of aperture 
between the eye and the pupil, similarly, they use encoded apertures to collect depth information. 
These encoded apertures work by extracting depth information from the blur in the image. The 
image encoding is based on the blur and the lightness of the image, and depends on the wavelength 
due to the optical response of the camera lens to the surrounding environment with a specific 
amplitude based on the Fourier optical theory. 

Francani and Maximo (2022) proposed a VOE model with the RGB image as the input, then 
depth estimation using the DPT network, and VOE using the VOE network and camera pose 
output. The problem of depth estimation from RGB images for the VOE process is still difficult in 
terms of scale and obtaining scale information. Francani and Maximo (2022) addressed the 
challenge of deriving depth information and scale from depth maps generated using deep learning 
(DL) techniques. (Ranftl et al., 2021) introduced a dense prediction model (DPT) for depth 
estimation from 2D images and showed improved performance compared to the state-of-the-art 
CNN-based technologies. The PnP motion estimation network is based on the following four steps. 
(1) Each image consists of feature points in 2D space with corresponding real-world position points 
in 3D space. (2) From the input image and 2D points, the network extracts features and uses them 
to predict the corresponding 3D position. (3) A network layer or module will perform optimization 
to reduce the error between the predicted and actual positions of 3D points. (4) Determining the 
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position and orientation of the camera (or of the object) in 3D space based on the correlation between 
known 3D points and their positions in the 2D space. 

(Wagih et al., 2022) proposed a feed-forward neural network for performing VOE called a Drift-
Reducing Neural Network (DRNN). DRNN performs translational estimation using the output of 
monocular VOE and the information of feature joints. DRNN takes into account the drift error in 
estimating the path orientation. A neural network is developed to reduce the drift during 
translation, thereby improving the overall accuracy of orientation estimation. The errors of feature 
joints lead to errors in estimating the motion acceleration of VOE, which can be detected using the 
motion of features in K and K-1 frames. The output is the refined orientation increment and camera 
orientation. 

Zhang et al. (2024) proposed the DynPL-SVO to estimate VO in the case of a scene with many 
moving objects in the environment, the input is only an RGB image. This method combines both 
point features and line features in both perpendicular and parallel directions to the direction of the 
line features to construct a static feature set and remove the features of the dynamic object based on 
the average of the sum of squared Euclidean distances between the matched features and the 
estimated features in all the relevant objects. This process occurs directly following the feature 
matching step. If the calculated value surpasses a predefined threshold, the corresponding data is 
categorized into dynamic grids. The features within these dynamic grids are then recognized as 
dynamic points, which aids in precisely identifying essential features in the image while effectively 
eliminating extraneous ones. 

Shen et al. (2023) proposed a supervised learning method named DytanVO for VOE with RGB 
image input. It is also based on the idea of the DynPL-SVO (Zhang et al., 2024) method which is to 
remove moving objects in the scene by using motion segmentation to determine the relative motion 
between consecutive frames to remove camera motion effects from 2D motion and use the 
remaining optical flow to account for motion regions. The motion segmentation network is built 
based on U-net and returns the output as input to the motion estimation network, and outputs the 
camera motion. 

Zhao et al. (2023) developed an edge-based technique named EdgeVO, which demonstrates 
notable accuracy and efficiency. By selecting a small set of edges with certain selection strategies, 
this method can significantly reduce the computational complexity while maintaining the same or 
higher accuracy. They remove noisy edges or edges that are redundant or provide little information 
value, which helps reduce the computational complexity and increase the computational efficiency. 

Hwang et al. (2022) proposed the Frame-to-Frame (F2F) method to estimate the camera pose 
with only 2 adjacent frames and replace the optimization methods with error reduction methods. 
Since the camera motion changes while driving, F2F proposed a new and simple scheme called the 
skip-order method. By skipping one frame from the image sequences during training, inspired by 
geometric-based approaches to approximate camera pose prediction, and then fine-tuning them. 

Chen et al. (2024) Introduced the LEAP-VO for long-term point tracking with multi-view, which 
can recover the trajectories of specific points over a given image sequence, aiming to estimate the 
confidence of predicted features and track the trajectories of moving objects in dynamic scenes, 
handling low-texture regions. LEAP-VO overcomes the limitation of estimating VOE from 
consecutive frame pairs, which only rely on pairwise relative motion, thus ignoring the temporal 
information in the image sequence. Therefore, they often have difficulty capturing moving objects. 

In the study by Francani and Maximo (2023), a novel loss function termed "motion consistency 
loss" is employed. This method focuses on leveraging information from consecutive overlapping 
video segments to ensure that the repeated motions in these frames are accurately predicted by the 
model. The motion consistency loss function ensures that the repeated motions in overlapping 
video segments are learned and maintained consistently by the model. When video segments have 
overlapping frames, the motions in these frames must be similar. The loss function is calculated as 
the sum of squared errors between the predicted motions for the overlapping segments. 
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Multimotion Visual Odometry (MVOE), as proposed by Judd and Gammell (2021), is a system 
designed to concurrently estimate the motion of sensors and multiple objects within a dynamic 
environment, operating independently of appearance recognition or prior predictive data 
regarding the number and type of objects. Instead of analyzing sensor motion based on static parts 
of the scene, as traditional VOE methods, MVO extends this by using multi-object segmentation 
and motion tracking techniques. The system uses physics axioms to infer motion through occluded 
regions and re-identifies motion when objects reappear, creating a general and efficient solution for 
complex environments with multiple independently moving objects. 

Nir et al. (2024) ’s research focused on assessing the uncertainty of DL models in the VOE 
systems. A method is proposed to recover the covariance estimate from a pre-trained DL model. By 
using implicit layers in the neural network, the method allows us to calculate the uncertainty in 
trajectory prediction of monocular VO systems. 

Agrawal et al. (2024) has developed Certified Visual Odometry (C-VOE) and Certified Mapping 
(C-ESDF) to improve the accuracy and safety of robot applications in safety-critical environments. 
C-VOE uses RGB-D cameras to estimate robot motion and provide errors, which helps avoid the 
accumulation of errors over time when estimating position. C-ESDF constructs a Signed Distance 
Field (SDF) from RGB-D images to model the surrounding environment and ensures that the 
distance to obstacles is always underestimated to ensure robot safety, even when there is a deviation 
in motion estimation. 

Jin et al. (2024) proposed a combination of ORB (Oriented FAST and Rotated BRIEF) features 
into a DL model, called ORB-SfMLearner, to improve camera motion estimation based on 
monochrome videos through integration. This method combines supervised learning and online 
adaptation to improve the accuracy of ego-motion estimation and generalization ability under 
different environmental conditions. 

Kanai et al. (2024) proposed the SG-Init (Self-Supervised Geometry Guided Initialization) to 
improve monocular VO in environments with large motion and dynamic objects by overcoming 
the limitations of previous DL SLAM systems using a self-supervised geometry initializer. 
Specifically, SGInit incorporates zero-shot learning to guide the self-supervision process, thereby 
improving the accuracy and stability of dense bundle adjustment without re-tuning the main 
model. As a result, SG-Init improves localization in situations such as large camera motion or the 
presence of dynamic objects while maintaining the generality of the model. 

CroCo-DVO, introduced by Antsfeld and Chidlovskii (2024), is a self-supervised learning 
method for solving the VOE from videos without GT. The model is trained by cross-view 
completion (Cross-View Completion, CroCo) to learn the 3D geometry of the scene. The model uses 
a transformer to recover occluded parts of the image from a different view of the same scene. The 
model is then fine-tuned by self-supervised learning on unlabelled videos, using geometric 
consistency between consecutive frames to predict depth maps and camera motion. This method 
reduces the label dependency in computer vision problems and improves performance for depth 
prediction and VOE tasks. 

To build applications for VOE, path prediction, and path-finding for robots, autonomous 
vehicles, and blind people close to the real environment and fitting the requirements for automatic 
estimation, DL networks with the ability to self-learn and self-supervise are more suitable. Thereby 
reducing the constraints, supervised learning, and semi-supervised learning for model estimation. 
The loss functions are used to supervise, semi-supervise, and optimize the fine-tuning process of 
the VOE model. In 2022, Jiang et al. (2022) proposed the MLF-VO-F for VOE to fine-tune the VOE 
model with RGB image input. MLF-VO-F used DepthNet to estimate the depth image and exploited 
some loss functions, such as geometry consistency loss (Lgc), smoothness loss (Lsmoo), and 
photometric loss function (Lpm), to supervise the training process and improve the depth image 
estimation result corresponding to the input RGB image. And use regularization loss (Lregu) to 
synthesize loss functions to control the scaling factors process for channel exchange between color 
image and estimated depth image when combining the features of these two types of data for VOE. 
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Among the various methods, MLF-VO-F demonstrates superior accuracy and computational 
efficiency compared to self-supervised learning approaches (Zou et al., 2020; Bian et al., 2019; 
Godard et al., 2019; Li et al., 2019; Ambrus et al., 2019) when evaluated on the KITTI dataset. 
Nevertheless, the average error across sequences 11 to 21 of the KITTI dataset remains notably high, 
indicating a need for further refinement. 

In recent research, studies by Terven et al. (2023) and Francani and Maximo (2023) have 
employed the Mean Squared Error loss function (LMSE) to optimize the training process of VOE 
models. In the study of (Hwang et al., 2022), the aggregate loss function (LF2F) was proposed to be 
synthesized from the forward loss (Lfl) function, bi-directional loss function (Lbd), and correction 
loss function (Lco).  

In this paper, we inherit the advantages of the MLF-VO-F for VOE and propose to use the 
additional loss function (LF2F) of F2F Hwang et al. (2022) to obtain the loss function Limproved of 
improved MLF-VO-F to reduce the error of training and VOE, especially on frames in the opposite 
direction to the positive movement direction of the KITIT dataset. That is, the error function of the 
improved MLF-VO-F is synthesized from the component functions of geometry consistency loss 
(Lgc), smoothness loss (Lsmoo), photometric loss function (Lpm), regularization loss (Lregu), and 
aggregate loss function (LF2F) for a self-supervised and optimized VOE model from the input RGB 
image. The improved MLF-VO-F is tested, evaluated, and compared with the MLF-VO-F (Jiang et 
al., 2022), F2F framework (Hwang et al., 2022), DeepVO (Wang et al., 2017), and MotionHint (Wang 
et al., 2022) on most of the test chains of the KITIT dataset. At the same time, the improved MLF-
VO-F is assessed and compared to the TQU-SLAM-B-D that we propose in 2024 (Nguyen et al., 
2024). 

The main contributions of our paper include: (1) We proposed an improved loss function 
(Limproved) based on the component loss functions, the forward loss function (Lfl) and bi-directional 
loss function (Lbd), the correction loss function (Lco), and aggregate loss function (LF2F ) to self-
supervise and optimize the training process of the VOE model based on the MLF-VO-F, called the 
improved MLF-VO-F. (2) We have compared the improved MLF-VO-F with methods of the MLF-
VO-F (Jiang et al., 2022), F2F framework (Hwang et al., 2022), DeepVO (Wang et al., 2017), and 
MotionHint (Wang et al., 2022) on most of the evaluation configurations of the KITIT dataset. (3) 
We also tested the improved MLF-VO-F on the TQU-SLAM-B-D with 8 subset evaluation 
configurations and compared the results with the MLF-VO-F. 

The structure of our paper is presented as follows. First, we introduce the VOE problem using a 
DL-based approach and some motivations for this research, and related research on DL-based VOE 
are presented in Section 1. Section 2 is some loss functions background and our improvements 
based on the MLF-VO-F. Experiments, results, and discussions on the KITIT and TQU-SLAM-B-D 
datasets are presented in Section 3. Finally, conclusions and future research are presented in Section 
4. 

2. Proposed Method 

In this paper, we propose an improved MLF-VO-F shown in Figure 1. We inherit the entire 
architecture of MLF-VO-F for feature extraction, encoder, and decoder. This process performs depth 
estimation of the input RGB image based on DepthNet and combines multiple layers for feature 
extraction based on ResNet-18. The loss function of improved MLF-VO-F is a combination of the 
loss function of MLF-VO-F (Jiang et al., 2022) and the loss function of F2F (Hwang et al., 2022). The 
details of the component loss functions and the proposed model are presented below. 

 
Figure 1 General model of improved MLF-VO-F 
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2.1. Loss functions background 
VOE from image data is a regression problem in computer vision that outputs the future position 

of the camera in the environment based on the positions learned by the model trained in previous 
frames. DL networks use loss functions to supervise the learning process to calculate the prediction 
error and the GT. The loss function is a function that allows determining the difference between the 
predicted results and the GT data. It is a method of measuring the quality of the prediction model 
on the observed dataset. If the model predicts many mistakes, the value of the loss function is large, 
and vice versa; if it predicts almost correctly, the value of the loss function will be lower. The Mean 
Squared Error (LMSE) function, as utilized by Terven et al. (2023) and Francani and Maximo (2023), 
serves as a widely adopted method for computing the square of the error, as expressed in formula 
(1). MSE measures the average magnitude of the squared error between the GT of camera motion 

Pi and the predicted camera motion Pî. This means that it will pay attention to larger errors since 
the squared error will add a large error value to the total value of MSE. 

𝐿𝑀𝑆𝐸 = ‖𝑃𝑖 − �̂�𝑖‖
2
       (1) 

In this paper, we combine the loss function of F2F and the loss function of MLF-VO-F, which are 
the two methods with the best VOE results currently for VOE implementation. The details of each 
component loss function are presented below. 

The first loss function used in the improved model draws from the work of Hwang et al. (2022), 
who introduced the F2F network designed to estimate camera pose using the KITTI dataset. The 
F2F framework operates through two distinct stages. F2F consists of two stages: the initial 
estimation based on the combination of several encoder networks, VGG, ResNet, and DenseNet, 
and the forward loss (Lfl) function and error relaxation network. In this first stage, geometric features 
are used to approximate camera pose prediction and are fine-tuned. F2F also used the errors of three 
Euler angles θ and translation vectors P to calculate the loss function for fine-tuning the model as a 
formula (2). 

 𝐿𝑓𝑙 = 𝜆𝜃 ∑‖𝜃 − 𝜃‖
2

+ ∑‖𝑃 − �̂�‖
2
     (2) 

where  𝜃 and 𝜃 are the Euler angles in the 3D space of the label and estimated label, respectively. 

 𝑃, �̂� are the translation vectors in the 3D space between two spaces and λ is the balance scale 
between two spaces.  

The second stage is the errors of rotation and translation are reduced by using rotation and 
translation networks during the training of geometric features by using the skip method in the frame 
sequence. When training on the KITIT dataset, only training in the positive direction is performed, 
so the reverse direction has a large error. Therefore, F2F proposed a bi-directional loss function (Lbd) 
in the second stage according to the formula (3). 

𝐿𝑏𝑑 = ∑‖𝐺 − 𝐺𝑖,𝑖+1�̂�𝑖+1,𝑖‖
2
     (3) 

where G is the identity matrix, 𝐺𝑖,𝑖+1 is the result when using F2F with input image 𝐺𝑖, 𝐺𝑖+1 and 

𝐺𝑖+1,𝑖 is the result when using F2F with the input image 𝐺𝑖+1, 𝐺𝑖.   
In addition, F2F also proposed a method to reduce noise when estimating camera pose, which 

involves utilizing the neighboring pixels of the current prediction for the calculation process. F2F 
proposed a corrective loss function, assuming 𝐺𝑖,𝑖+1 has an error ϕe, then the camera pose estimation 
at the neigh-boring position can be used to reduce the error as in 𝐺𝑖−1,𝑖 , and 𝐺𝑖+1,𝐺𝑖+2, the correction 
loss function is calculated as formula (4). 

𝐿𝑐𝑜 = ∑‖𝐺𝑖−1,𝑖+1 − 𝐺𝑖−1,𝑖�̂�𝑖,𝑖+1‖
2
         (4) 

Thus, the aggregate loss function in F2F is calculated as a formula (5). 
𝐿𝐹2𝐹 =  𝐿𝑏𝑑 + 𝐿𝑐𝑜           (5) 

The results show that the F2F is better than previous methods on the frame sequences as 8th 
sequence (Seq. #8), 9th sequence (Seq #9), and 10th sequence (Seq #10) of the KITTI dataset. 
Therefore, we will use the LF2F loss function of the F2F to combine with the loss function in the MLF-
V-F to supervise the training process of the VOE model. 
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The second loss function used in the improved model, to ensure the consistency between 
consecutive frames in the frame sequence in terms of depth when using the depth prediction 
network between two consecutive frames Da and Db estimated from two consecutive frames Ia and 
Ib, the geometry consistency loss function is proposed Bian et al. (2021) and Bian et al. (2019) to find 
the depth inconsistency between two consecutive frames, with the input being the depth map of 
two frames Da and Db and the related camera pose between two frames Pab. The output is the 
inconsistency between two pixel-wise depth maps (Ddiff ), from which the value of the Lgc loss 
function is calculated as a formula (6). This optimizes the training process of DepthNet depth 
estimation. 

𝐿𝑔𝑐 =
1

|𝑉|
∑ 𝐷𝑑𝑖𝑓𝑓(𝑃)𝑃∈𝑉     (6) 

  where V is the space containing the disparity between two depth maps.  
Since Lgc does not provide information about the regions in the image where the intensity 

variation is very small or negligible. In these regions, pixels have similar or identical values, 
resulting in a smooth, monotonous, or low-detail surface. The proposed task is to combine the 
previous smoothness with the estimated depth map adjustment. To find the edge regions in the 
image, (Bian et al., 2021; 2019) used the smoothness loss function (Lsmoo) on the RGB image to 
increase the difference between color pixels and increase the scene heterogeneity, Lsmoo is calculated 
according to formula (7). 

𝐿𝑠𝑚𝑜𝑜 = ∑ (𝑒−∇𝐼𝑎(𝑃) ∗ ∇𝐷𝑎(𝑃))
2

𝑃     (7) 
where ▽ is the first derivative concerning the image’s spatial directions, and the image’s edge 
guides the smoothness.  

To reduce the warping of frames during depth estimation of a frame sequence, specifically the 
warping of consecutive color image frames in a frame sequence. The photometric loss function (Lpm) 
is computed during unsupervised learning of the network. Lpm uses the L1 loss function because the 
L1 loss has the property of reducing the impact of outliers. The L1 loss function calculates the total 
absolute difference between the predicted values and the actual values, making it less sensitive to 
outliers than the L2 loss function, because L2 (squared difference) will exaggerate the error when 
there are a large number of outliers. Lpm is computed using the following formula (8). 

𝐿𝑝𝑚 =
1

|𝑉|
∑ (𝜆𝑖‖𝐼𝑎(𝑃) − 𝐼𝑎

′ (𝑃)‖1 +𝑃∈𝑉 𝜆𝑠

1−𝑆𝑆𝐼𝑀
𝑎𝑎′(𝑃)

2
)    (8) 

where the SSIM function is used to calculate the element-by-element compatibility between 
𝐼𝑎and 𝐼𝑎

′ , 𝜆𝑖, 𝜆𝑠 are set to fixed values as noted in the studies by Ranjan et al. (2019), Yin and Shi 
(2018), Godard et al. (2017), and Wang et al. (2004). 

To reduce and control the number of parameters m of the model training process, with the input 
being the weight parameters initialized before the training process. Calculating the regularization 
loss (Lregu)) channel exchange according to the formula (9) is presented. 

𝐿𝑟𝑒𝑔𝑢 =  ∑ (‖𝑚‖1 − 0.01‖𝑚 − �̅�‖1)𝑚𝜖𝑠𝑒𝑙𝑓.𝑠𝑙𝑖𝑚.𝑝𝑎𝑟𝑎𝑚𝑠     (9) 

where ‖𝑚‖1 is the L1 regularization for parameter m, i.e. the sum of the absolute values of the 
elements in 𝑚. �̅� is the average value of parameter 𝑚.  �̅� is the regularization polorize, that is, the 
sum of the absolute values of the differences between the elements in 𝑚 and the mean value �̅�. The 
factor 0.01 adjusts the correlation of the polorize regularization with the L1 regularization.  

This loss function is used to self-supervised the learning process of the regression model of 
camera position points in the environment 

(VOE), which is essentially the process of comparing the position of the original position and 
the regressed position, shown in the camera position regression step/final step. 

The CE process when training MLF-VO-F is performed has the exchange and synthesis of the 
loss function Ltotal, thereby helping to overcome the problems of missing data, noisy data, and 
inconsistent data. From there, the entire learning data is promoted and makes the learning set 
predict more accurately VOE. During training, optimize the loss function (Ltotal) as in formula (10). 

 𝐿𝑡𝑜𝑡𝑎𝑙 =  𝐿𝑝𝑚 + 𝑒−2𝐿𝑔𝑐 + 𝑒−3𝐿𝑠𝑚𝑜𝑜 + 𝑒−5𝐿𝑟𝑒𝑔𝑢   (10) 
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In particular, MLF-VO-F includes two main tasks with two stages. The first stage is to use the 
baseline framework to estimate ego-motion using two independent CNN models for depth 
prediction and pose estimation. At this stage, MLF-VO-F uses the fully convolutional U-Net to 
obtain architectural depths at four scales. The second stage is relative pose estimation based on 
MLF-VO-F with the combination of a multilayer fusion strategy according to several features 
appearing in intermediate layers of the encoder. To encode features from color and depth images, 
MLF-VO-F includes two structural streams. The Channel Exchange (CE) strategy is used to swap 
the positions of components and their importance for combining features at multiple levels. 

In both streams, ResNet-18 He et al. (2015) is used as the encoder. To build an end-to-end 
automatic learning DL network, MLF-VO-F has built a self-learning mechanism with a loss function 
(Ltotal) combined with depth prediction and relative pose estimation. 

2.2. VOE based on Improved MLF-VO-F 
In this paper, we are only interested in fine-tuning the VOE model and fine-tuning using 

backbones like Resnet-18 (He et al., 2015). We use ResNet- 18 as the backbone to encode the 
extracted features from color images because these two backbones have enough layers to create 
accuracy and fast computation time. We conduct experiments and compare with some backbones 
to encode features as follows: VGG-16 (Simonyan and Zisserman, 2015) has faster computation time 
but lower accuracy than ResNet-18 and ResNet-34 (Fagbohungbe and Qian, 2021). In contrast, 
ResNet-50, ResNet-101, and ResNet-152 (He et al., 2016) demonstrate marginally improved 
accuracy over ResNet-18 and ResNet-34, though they come with a notable increase in computation 
time. Additionally, ResNet-18 achieves higher accuracy than Dense121 (Yang et al., 2021). 

In this paper, we propose an improved loss function (Limproved) to optimize the self-supervised 
training model based on the MLF-VO-F, called the improved MLF-VO-F. Limproved is calculated as 
the formula (11). The improved loss function Limproved is a combination of the Ltotal loss function of 
the original MLF-VO-F and the LF2F loss function of the F2F method. The coefficient e-6 is chosen 
based on some of our experiments, and the value e-6 gives the best results. 

𝐿𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 =  𝐿𝑡𝑜𝑡𝑎𝑙 + 𝑒−6𝐿𝐹2𝐹     (11) 

3. Results and Discussion 

3.1. Data Collection 
KITTI Dataset: The KITTI dataset (Menze and Geiger, 2015; Geiger et al., 2013; 2012) is the most 

popular database for evaluating Visual SLAM and VOE models and algorithms. This database 
includes two versions: the KITTI 2012 dataset (Geiger et al., 2013) and the KITTI 2015 dataset (Menze 
and Geiger, 2015). The KITTI dataset is a computer vision dataset for autonomous driving research. 
It includes more than 4000 high-resolution images, LIDAR point clouds, and sensor data from a car 
equipped with various sensors. The dataset provides annotations for object detection, tracking, and 
segmentation, as well as depth maps and calibration parameters. The KITTI dataset is widely used 
to train and evaluate DL models for automated driving and robotics. The KITTI dataset is collected 
from two high-resolution camera systems, a Velodyne HDL-64E laser scanner (grayscale and color), 
and a state-of-the-art OXTS RT 3003 localization system (a combination of devices such as GPS, 
GLONASS, security IMU, and RTK correction signals). These devices are mounted on a car and 
collect data over a distance of 39.2 km. The resolution of the image is 1240 × 376 pixels. The GT data 
for evaluating Visual SLAM models and VOE includes 3D pose annotation data of the scene. The 
GT data to evaluate object detection models and 3D orientation estimation, including accurate 3D 
bounding boxes for object classes. 3D object’s point cloud data is marked by manually labelled. In 
the improved dataset of the KITTI dataset, Menze and Geiger (2015) developed additional data to 
evaluate the optical flow algorithm. The authors used the 3D CAD model in the Google 3D 
Warehouse database to build 3D scenes with static elements and insert moving objects. In this 
paper, we only use the frame sequences: 0th sequence (Seq. #0), 1st sequence (Seq. #1), 2nd sequence 
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(Seq. #2), 3rd sequence (Seq. #3), 4th sequence (Seq. #4), 5th sequence (Seq. #5), 6th sequence (Seq. #6), 
7th sequence (Seq. #7), 8th sequence (Seq. #8), 9th sequence (Seq. #9), 10th sequence (Seq. #10). 

TQU-SLAM-B-D: From the collected data, the data collection was performed 4 times (1ST, 2ND, 
3RD, 4TH), each time, the direction of movement according to the blue arrow was in the forward 
direction (FO-D), and the direction of movement according to the red arrow was in the opposite 
direction (OP-D). We cross-divide the TQU-SLAM-B-D (Nguyen et al., 2024) into 8 subsets, is done 
as follows: We split the training and testing data in a cross-split form such as 1ST-DI, 2ND-DI, 3RD-
DI for training, and 4TH-DI for testing, called the subset 1st (Sub #1); 1ST-OP-D, 2ND-OP-D,3RD-
OPD for training, and 4TH-OP-D for testing, called the subset 2nd (Sub #2); 1ST-FO-D, 2ND-FO-D, 
4TH-FO-D for training, and 3RD-FO-D for testing, called the subset 3rd (Sub #3); 1ST-OP-D, 2ND-
OP-D,4TH-OP-D for training, and 3RD-OP-D for testing, called the subset 4th (Sub #4); 1ST-FO-D, 
3RD-FO-D, 4TH-FO-D for training, and 2ND-FO-D for testing, called the subset 5th (Sub #5); 1ST-
OP-D, 3RD-OP-D, 4TH-OP-D for training, and 2ND-OP-D for testing, called the subset 6th (Sub #6); 
2ND-FO-D, 3RD-FOD, 4TH-FO-D for training, and 1ST-FO-D for testing, called the subset 7th (Sub 
#7); 2ND-OP-D, 3RD-OP-D, 4TH-OP-D for training, and 1ST-OP-D for testing, called the subset 8th 
(Sub #8). The data are shown in Table 1. Grounded in statistical theory and machine learning 
principles, the VOE model is trained on all data subsets and subsequently tested. Approximately 
75% of the data is allocated for training, while the remaining 25% is reserved for testing. This ratio 
is reasonable statistically and for machine learning problems. Since the MLF-VO-F accepts the input 
image data with a size of 640×192 pixels, we resize the RGB-D images of the TQU-SLAM-B-D to a 
size of 640 × 192 pixels. 

In this paper, we use the MLF-VO-F to fine-tune the VOE model on the TQU-SLAM-B-D. MLF-
VO-F source code is developed in Python v3.x language and programmed on Ubuntu 18.04, Pytorch 
1.7.1, and CUDA 10.1. We used the code in the link (1) on computers with the following 
configuration: CPU i5 12400f, 16 GB DDR4, GPU RTX 3060 12GB. We perform fine-tuning of the 
VOE model with 20 epochs, parameters are default in the MLF-VO-F. 

 
Table 1 Cross-split the TQU-SLAM-B-D into 8 subsets to train and test the model 

Dividing Cross-Datasets Training data Testing data 

Sub #1 1ST-FO-D, 2ND-FO-D,3RD-FO-D 4TH-FO-D 
Sub #2 1ST-OP-D, 2ND-OP-D,3RD-OP-D 4TH-OP-D 
Sub #3 1ST-FO-D, 2ND-FO-D,4TH-FO-D 3RD-FO-D 
Sub #4 1ST-OP-D, 2ND-OP-D,4TH-OP-D 3RD-OP-D 
Sub #5 1ST-FO-D, 3RD-FO-D,4TH-FO-D 2ND-FO-D 
Sub #6 1ST-OP-D, 3RD-OP-D,4TH-OP-D 2ND-OP-D 
Sub #7 2ND-FO-D, 3RD-FO-D,4TH-FO-D 1ST-FO-D 
Sub #8 2ND-OP-D, 3RD-OP-D,4TH-OP-D 1ST-OP-D 

 
3.2. Evaluation Metrics 
To evaluate the results of VOE, we calculate trajectory error (Errd), the distance error between 

the GT AT̂i, and the estimated motion ATi trajectory. Errd is calculated according to formula (12). 

𝐸𝑟𝑟𝑑 =
1

𝑁
√‖𝐴𝑇𝑖 − 𝐴�̂�𝑖‖

2
      (12) 

where N is the frame number of the frame sequence used to estimate the camera’s motion 
trajectory. 

The absolute trajectory error (ATE) (Sturm et al., 2012) is the distance error between the GT AT̂i 
and the estimated motion ATi trajectory, aligned with an optimal SE(3) pose T. ATE is calculated 
according to formula (13). 

1https://github.com/Beniko95J/MLF-VO 

𝐴𝑇𝐸 =  𝑚𝑖𝑛𝑇𝜖𝑆𝐸(3)
1

𝑁
√∑ ‖𝑇𝐴𝑇𝑖 − 𝐴�̂�𝑖‖

2
𝑖𝜖𝐼𝑔𝑡

                (13) 

https://github.com/Beniko95J/MLF-VO
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3.3. Results and Discussions 
VOE results on the KITTI dataset are shown in Table 2. The results in Table 2 are divided into 

three evaluation groups, which are detailed below. 

The first is the comparison between MLF-VO-F, MotionHint, and improved MLF-VO-F (our) (the 
first three rows in Table 2) with the training data being the frame sequences (Seq #0, Seq #1, Seq #2, 
Seq #3, Seq #4, Seq #5, Seq #6, Seq #7, and Seq #8) for fine-tuning the model and the Seq #9, Seq #10 
for testing the model. The metrics are evaluated on the metrics trel, rrel and ATE, respectively. Among 
them, the result of the improved MLF-VO-F is the best with trel=3.5%, rrel=1.1(deg/100m), 
ATE=6.24m when evaluating on the Seq #10, and when evaluating on the Seq #9 is also better on 
the trel, rrel measures. 

 
Table 2 VOE results on the KITTI dataset with different configurations of training data 

Measurement/ 
Methods 

Subset for training 
Subset for 

testing 
trel (%) 

rrel 
(deg/100m) 

ATE (m) 

MLF-VO-F (Jiang 
et al., 2022) 

Seq #0, Seq #1, Seq 
#2, Seq #3, Seq #4, 
Seq #5, Seq #6, Seq 

#7, Seq #8 

Seq #9 
Seq #10 

3.9 
4.88 

1.41 
1.38 

9.86 
7.36 

MotionHint 
(Wang et al., 2022) 

Seq #0, Seq #1, Seq 
#2, Seq #3, Seq #4, 
Seq #5, Seq #6, Seq 

#7, Seq #8 

Seq#9 
Seq#10 

11.562 
10.088 

2.601 
3.949 

54.456 
15.517 

Improved MLF-
VO-F (Our) 

Seq #0, Seq #1, Seq 
#2, Seq #3, Seq #4, 
Seq #5, Seq #6, Seq 

#7, Seq #8 

Seq #9 
Seq #10 

2.6 
3.5 

0.7 
1.11 

10.88 
6.24 

Frame to Frame 
(F2F) (Hwang et 

al., 2022) 

Seq #0, Seq #1, Seq 
#2, Seq #3, Seq #4, 
Seq #5, Seq #6, Seq 

#7 

Seq #8 
Seq #9 

Seq #10 

5.88 
7.77 
8.82 

2.25 
3.51 
2.62 

- 
- 
- 

Improved MLF-
VO-F (Our) 

Seq #0, Seq #1, Seq 
#2, Seq #3, Seq #4, 
Seq #5, Seq #6, Seq 

#7 

Seq #8 
Seq #9 

Seq #10 

8.149 
10.009 
9.384 

4.562 
6.678 
3.232 

- 
- 
- 

DeepVO (Wang et 
al., 2017) 

Seq#0,Seq#1, Seq #2, 
Seq #3, Seq #8, Seq 

#9 

Seq #4 
Seq #5 
Seq #7 
Seq #6 

Seq #10 

7.19 
2.62 
5.42 
1.85 
1.17 

6.97 
3.61 
5.82 
1.91 
1.3 

- 
- 
- 
- 
- 

Improved MLF-
VO-F (Our) 

Seq#0,Seq#1, Seq #2, 
Seq #3, Seq #8, Seq 

#9 

Seq #4 
Seq #5 
Seq #7 
Seq #6 

Seq #10 

2.209 
2.669 
3.589 
1.009 
4.619 

0.969 
1.18 

1.647 
0.667 
1.898 

- 
- 
- 
- 
- 

 
The second is the comparison between the F2F and improved MLF-VO-F with the frame 

sequences for model training being the Seq #0, Seq #1, Seq #2, Seq #3, Seq #4, Seq #5, Seq #6, and 
Seq #7 and tested on the Seq #8, Seq #9, and Seq #10. The results in this group of improved MLF-
VO-F are not better than the F2F. This result shows that the LF2F loss function of the F2F method has 
a better ability to supervise the training of the VOE model than the Ltotal loss function of the MLF-
VO-F method. The extracted features and decoder from ResNet-18 of the F2F method are more 
effective when using the fully convolutional U-Net of the MLF-VO-F method. In the improved 
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MLF-VO-F model, the LF2F loss function of the F2F method has been incorporated, but the coefficient 
e-6 is very small, so the selection of the model training focus according to the LF2F loss function is 
small, which has little impact on the VOE results of MLF-VO-F. Although in the 1st table of MLF-
VO-F (Jiang et al., 2022), the results of trel=3.9%, rrel=1.4 (deg/100m) of the Seq #9 and trel=4.88%, 
rrel=1.38 (deg/100m) of the Seq #10 are better than the results of F2F in the 1st table (the results of 
trel=7.7%, rrel=3.51(deg/100m) of the Seq #9 and trel=8.82%, rrel=2.62(deg/100m) of the Seq #10). This 
result occurs because the MLF-VO-F method is trained on Seq #8, while F2F is not trained on Seq 
#8. This also shows that when the MLF-VO-F method is trained on Seq #8, the VOE result will be 
much better. In this study, we compare the improved method and F2F, which are only trained on 
Seq #0 to Seq #7, so the result of the improved method is not better than F2F when tested on Seq #8, 
Seq #9, and Seq #10. 

The third group is the results compared with DeepVO based on the frame sequences for fine-
tuning the model as the Seq #0, Seq #1, Seq #2, Seq #3, Seq #8, and Seq #9, and evaluated on the 
frame sequences as the Seq #4, Seq #5, Seq #6, Seq #7, and Seq #10. The results show that the 
improved MLF-VO-F is better than DeepVO (Wang et al., 2017) in most of the frame sequences 
evaluated on the trel, rrel measures. 

Figure 2 shows the comparison results of the estimated VOE of the MLFVO-F, improved MLF-
VO-F, and GT of visual odometry. The results show that our method has better accuracy than MLF-
VO-F. The green line is close to the GT of the visual odometry line of the KITTI dataset. 

 
Figure 2 The comparison results of the estimated visual odometry of the MLF-VO-F (blue), the 
improved MLF-VO-F (green), and the GT of visual odometry (orange) on the KITTI dataset 

 
Table 3 shows the VOE results on the TQU-SLAM-B-D with 8 subsets for evaluating the 

estimation model based on our improved model (improved MLF-VO-F) and comparing it with the 
MLF-VO-F. The results are evaluated on the metrics (Errd, RMSE, and ATE), and the results show 
that our proposed method has much better accuracy than the MLF-VO-F in all metrics and 8 
evaluation subsets. As in Sub #5, the error of the MLF-VO-F with Errd measure is 19.97m but has 
decreased to 0.68m on our proposed method, or the error on RMSE measure has decreased from 
20.62m to 0.81m, or the error on ATE measure has decreased from 29.76m to 1.055m. And the error 
also drops sharply on Sub #7 and Sub #8. This shows that the loss function LF2F greatly affects the 
training process of VOE. 
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Table 3 VOE results on the TQU-SLAM-B-D with 8 subsets of evaluation data when evaluating the 
MLF-VO-F and our proposed method (improved MLF-VO-F) 

Dataset/ 
Methods 

Measu. 
Evaluation subsets of TQU-SLAM-B-D 

Sub#1 Sub#2 Sub#3 Sub#4 Sub#5 Sub#6 Sub#7 Sub#8 

MLF-VO-F 
Our 

Errd (m) 
19.95 
7.87 

38.53 
14.51 

39.33 
4.79 

28.8 
6.95 

18.97 
0.68 

33.07 
10.81 

23.77 
0.59 

39.7 
1.35 

MLF-VO-F 
Our 

RMSE 
(m) 

21.67 
9.54 

49.77 
19.32 

42.9 
6.21 

37.28 
9.75 

20.62 
0.81 

32.82 
11.27 

26.26 
0.64 

42.16 
1.22 

MLF-VO-F 
Our 

ATE 
(m) 

28.95 
11.271 

41.64 
15.461 

38.39 
4.575 

37.84 
9.125 

29.76 
1.055 

34.56 
11.241 

37.11 
0.907 

30.05 
0.94 

 
Figure 3 shows the VOE results based on the improved MLF-VO-F compared with the GT on the 

evaluation subsets (Sub #1, Sub #2, Sub #3, and Sub #4). The results on the subsets (Sub #1, Sub #2, 
Sub #3, and Sub #4) of the improved MLF-VO-F have errors from 7m to 19m with the Errd, RMSE, 
and ATE measurements. This error result is very high and comes from the following reasons. The 
TQU-SLAM-B-D is collected with color images, depth images, and GT data built based on 
calculations, measurements, and markings in the real world. While the input of the improved MLF-
VO-F is only the RGB images, the depth image data is not used in the improved MLF-VO-F method. 
The large error of VOE is the cumulative error from the process of estimating the depth of the scene 
on the RGB images.  

 
Figure 3 VOE results on the TQU-SLAM-B-D using the improved MLF-VO-F with evaluation 
subsets (Sub #1, Sub #2, Sub #3, and Sub #4). With GT, the VOE is in blue points, and the VOE is 
estimated using the improved MLF-VO-F in red points (pose) 
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The RGB images of the TQU-SLAM-B-D have low resolution and low-light images, so the process 
of estimating depth and VOE has a large error. The results show that when using the improved 
MLF-VO-F for the VOE, there is a very large error in the subsets (Sub #1, Sub #2, Sub #3, and Sub 
#4), which is based on the distance between the blue points (GT) and the red points (estimated - 
pose) being very far apart, especially at the end of the FO-D. 

Figure 4 shows the results of the VOE based on the improved MLF-VO-F compared with the GT 
of visual odometry on the evaluation subsets (Sub #5, Sub #6, Sub #7, and Sub #8). The results also 
show a large error gap between the GT of visual odometry (blue) and the estimated visual odometry 
(red - pose) based on the MLF-VO-F. As the results are shown in Table 3, the result of the proposed 
method of Sub #6 has the largest error (Errd=10.81 m, RMSE=10.27 m, ATE=11.241 m), which is also 
shown in Figure 4. This result shows that the error of VOE is still very high. 

Figure 5 shows the VOE results based on our proposed method (the improved MLF-VO-F) with 
the GT of the camera motion trajectory. Based on Figure 8, it can be seen that Sub #5 has the smallest 
error, and the estimated visual odometry is close to the GT of the visual odometry. Sub #2 and Sub 
#4 have the highest VOE error results; the estimated camera motion trajectory is much further away 
from the GT trajectory. At the same time, the results also visually show that the estimation error of 
the outbound direction is smaller than the estimation error of the return direction, which is also 
accurately reflected by the statistical results in Table 3. However, the VOE error has been improved 
compared to the VOE in Table 3, this error is still large. To enhance the accuracy of the VOE model 
on the TQU-SLAM-B-D dataset we developed, further research is required. These findings reaffirm 
that future improvements should prioritize the use of depth images for training the estimation 
model. 

 
Figure 4 VOE results on the TQU-SLAM-B-D dataset using the improved MLF-VO-F with 
evaluation subsets (Sub #5, Sub #6, Sub #7, and Sub #8). With GT of visual odometry in blue points 
and the estimated visual odometry using the improved MLF-VOF in red points (pose) 
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Figure 5 The results of the improved MLF-VO-F (orange) and the GT of visual odometry (blue) on 
the TQU-SLAM-B-D. Sub #1 is the estimated VOE result of the 4TH-FO-D subset. Sub #2 is the 
estimated VOE result of the 4TH-OP-D subset. Sub #3 is the estimated VOE result of the 3RD-FO-
D subset. Sub #4 is the estimated VOE result of the 3RD-OP-D subset. Sub #5 is the estimated VOE 
result of the 2ND-FO-D subset. Sub #6 is the estimated VOE result of the 2ND-OP-D subset 

 
In this paper, we also calculate the computation speed of our proposed method on the KITTI 

dataset and the TQU-SLAM-B-D; the computation speeds are 19.17 fps, and 14.36 fps, respectively. 
The source code of improved MLF-VO-F and detailed results in terms of Errd, ATE, trel ,rrel measures 
are shown in the link: https://drive.google.com/drive/folders/146S32EDervoMNqgZoeyx 
PaQJkWMn7_0V.  

4. Conclusions 

Solving the problem of VOE based on computer vision is a very important problem in robotics, 
autonomous vehicles, and building systems to support visually impaired people to explore the 
environment and find their way. Some of our previous studies have published and experimentally 
evaluated the VOE problem on the TQU-SLAM-B-D. The experimental results still have very high 
errors. In this paper, we implement an improved MLFVO-F for VOE. Our improvement is based on 
adding a loss function LF2F to the MLF-VO-F method to get the loss function Limproved to self-
supervised learning to estimate the camera’s position in both positive and negative directions when 
VOE on the KITTI dataset. The improved MLF-VO-F has been evaluated on the KITTI dataset. It is 
compared to be better than MLF-VO-F, MotionHint, and DeepVO (trel of MLF-VO-F is 3.9% with 
Seq #9 and is 4.88% with Seq #10 while trel of improved MLF-VO-F is 2.6% with Seq #9 and is 3.5% 
with Seq #10). In particular, our improvement is evaluated and compared with the MLF-VO-F on 
the TQU-SLAM-B-D, the results have been significantly improved, details, as follows in Sub #5, the 
error of MLF-VO-F with Errd measure, is 19.97 m but has decreased to 0.68 m on our proposed 

https://drive.google.com/drive/folders/146S32EDervoMNqgZoeyx%20PaQJkWMn7_0V
https://drive.google.com/drive/folders/146S32EDervoMNqgZoeyx%20PaQJkWMn7_0V
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method, or the error on RMSE measure has decreased from 20.62 m to 0.81 m, or the error on ATE 
measure has decreased from 29.76m to 1.055m. And the error also drops sharply on Sub #7 and Sub 
#8. Although the error has been reduced, we will continue to improve to reduce the VOE error rate 
in the future. At the same time, apply it to many VOE databases to get VOE models in more contexts 
and environments. 
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