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Abstract: Road accidents are a significant issue, leading to human, material, and economic losses. 
Many regions and countries have implemented various measures to improve traffic safety. However, 
these efforts have not eliminated all traffic-related fatalities and severe injuries. Even within a single 
country, the pattern of road accidents may vary due to spatial and socio–economic differences. 
Therefore, this research aimed to explore the relationship between regional socio–economic 
conditions and the dynamics of road accidents, emphasizing the importance of considering regional 
heterogeneity. The article further investigated the spatiotemporal dynamics of road accidents across 
83 Russian regions during the period from 2015 to 2021. The modelling was conducted using Moran’s 
I spatial autocorrelation index and spatial econometrics models. The dependent variable was also 
defined as the number of road crashes with injuries per 100,000 people. Analysis of the spatial 
autocorrelation index showed a positive and significant spatial autocorrelation (at 5% level) in the 
number of road crashes with injuries per 100,000 people. Furthermore, the Global Moran’s I ranged 
from 0.152 to 0.278, indicating the presence of regional clustering in road crash rates. According to 
the Spatial Autoregressive with Fixed Effects (SAC-FE) model, the volume of gross regional product 
(GRP) per capita, the length of paved public roads per 1,000 people, and the level of innovative 
activity of organizations showed significance at 1% level both negative direct and indirect (spillover) 
effects on road accident density. Specifically, a 1% increase in these factors led to a direct decrease of 
0.13, 0.04, and 0.024, respectively in road accident density, while the corresponding spillover effects 
were −0.21, −0.07, and −0.04. The results implied that better socio-economic conditions in the studied 
regions and the neighboring areas contributed to a reduction in road accidents including injuries. 
This was attributed to a higher level of responsibility and self-awareness among citizens in more 
developed regions. 
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1. Introduction 

Road safety is part of the key responsibilities of governments across the world (Mustakim et al., 
2023; Siregar et al., 2022). Most countries set clear objectives to reduce the number of road accidents. 
For instance, the Agenda 2030 for Sustainable Development aims to reduce deaths and injuries from 
road traffic accidents by 50% (WHO, 2018). Road traffic accidents have a significant impact on the 
socio-economic well-being of society.  These accidents lead to the loss of human lives, physical and 
psychological injuries, as well as enormous economic costs (Albalate and Fageda, 2021; Sánchez-
González et al., 2021). 

Research in the modeling and analysis of the socio-economic consequences of road accidents 
holds both cognitive and practical importance. It helps not only to understand the scale of the 
problem but also to develop effective strategies and measures to prevent accidents, reduce risks, 
and minimize the negative impact on society and the economy (Castillo-Manzano et al., 2024; 
Haghani et al., 2022; Myhrmann et al., 2021; Su et al., 2021; Benito et al., 2021; Elvik et al., 2019; Liu 
et al., 2019). 

Previous publications analyzing road crashes in specific Russian regions showed that a general 
analysis of crash origin factors was not effective for accurately predicting accidents (Muratova et 
al., 2024; Rodionova et al., 2024; Skhvediani et al., 2023; Rodionova et al., 2021). Therefore, it is 
important to incorporate more specific variables to improve the predictive power of the models. 
For example, transport planning often begins with identifying high-risk zones or black spots 
(Castillo-Manzano et al., 2024; Shi et al., 2024; Yu et al., 2014; Montella, 2010). This suggests that the 
spatial concentration of road crashes is a crucial factor in analysing the transportation system. 
Several authors also investigate the spatiotemporal patterns of road crash concentrations. For 
example, Soltani and Askari examined the localisation and hotspot distribution of road crashes in 
Iran and identified clusters using Moran’s I and the Getis-Ord Gi* index (Soltani and Askari, 2017). 
Many other scholars use Moran’s I to detect spatial autocorrelation and then analyse the 
distribution of road crashes using spatial regression models (Sipos et al., 2021; Ziakopoulos and 
Yannis, 2020; Ver Hoef et al., 2018; Rhee et al., 2016). 

The current research aims to investigate the territorial distribution of severe and fatal road 
accidents across 83 Russian regions during the period from 2015 to 2021. It further examines 
whether variations in the economic and social development across these regions influence the 
frequency of severe or fatal road crashes. The central hypothesis is that the level of regional socio-
economic development affects the number of injury-related accidents, considering both spatial and 
temporal effects. Therefore, this research estimates the direct and indirect effects of regional 
development on road accident numbers and analyses the presence of spatial spillover effects.  

The research is structured where the next section outlines the algorithm and describes the 
analytical methods used. It also explains the data collection process and presents a dataset along 
with a preliminary analysis. The third section presents and discusses the results, comparing with 
previous articles. Finally, the analysis concludes with reflections on the implications for improving 
future road crash analysis and offers recommendations for further research. 

2. Data and methods 

According to the literature, the most effective algorithms for spatial analysis were the 
combination of Moran’s I and spatial regression modelling. Many research have presented this 
method by estimating Moran’s I and applying spatial regression models to detect spatial spillover 
effects and clusters (Skhvediani and Sosnovskikh, 2020; Lee et al., 2018; Cai et al., 2016; 
Narayanamoorthy et al., 2013). Therefore, the research adopted the algorithm as presented in Figure 
1.  

Stage 1 of this research included data curation. During this stage, the analysis collected the 
appropriate dataset, filled in missing data, conducted a correlation analysis on the initial data, and 
transformed the data for further analysis. 
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 Figure 1 Spatial Analysis Algorithm 

 
In particular, the dataset for the analysis was collected from three databases namely Karta DTP, 

ROSSTAT, and EMISS (Karta DTP, 2024; ROSSTAT, 2024; EMISS, 2024). Karta DTP was used for 
the collection of data on the number of road crashes in Russian regions. The Russian Federal State 
Statistics Service (ROSSTAT) and Unified Interdepartmental Statistical Information System (EMISS) 
provided data on regional socio–economic development. The analysis further gathered data for 83 
out of 89 Russian regions from 2015 to 2021 due to limited data availability for certain indicators. 
To account for differences in population size, the number of road crashes with injuries was scaled 
per 100,000 people. The list of dependent, independent, and control variables is presented in Table 
1. 

 
Table 1 Description of variables 

Variables  Description Source 

 Dependent variable – y   

Crashes 
The number of road crashes with injuries per 100,000 

people 
(Karta DTP, 2024) 

 Independent variables – x  

Emp The level of employment of the population, %. (ROSSTAT, 2024) 
GRP Gross regional product per capita (ROSSTAT, 2024) 

road_person The length of paved public roads per 1,000 people (EMISS, 2024) 
pascar_person Number of passenger vehicles per capita (EMISS, 2024) 

AP _person 
Availability of operational buses carrying out 

transportation on regular transportation routes per 1000 
people of the population 

(EMISS, 2024) 

Innov 
The level of innovative activity of organizations, by 

subjects of the Russian Federation, % 
(ROSSTAT, 2024) 

 Control variables – x  

Zabol_person 
The number of registered diseases in patients with 

a diagnosis established for the first time in their lives per 
1000 people of the population 

(ROSSTAT, 2024)  

ED_person 
Graduation of bachelors, specialists, masters per 1000 

thousand people of the population 
(EMISS, 2024)  
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Correlation analysis of initial data was conducted using Pearson’s correlation coefficient and 
visualized using Seaborn heatmap in Python. Stage 2 focused on the spatial autocorrelation analysis 
of the dependent variable. The analysis was conducted using Global Moran’s I as shown in 
Equation 1. 

 

𝐼 =  
∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − 𝑥)(𝑥𝑗 − 𝑥)𝑗𝑖

1
𝑛

∑ (𝑥𝑖 − 𝑥)2
𝑖 ∑ ∑ 𝑤𝑖𝑗𝑗𝑖

 (1) 

 
where 𝑤𝑖𝑗 is the element of the contiguity-based weight matrix W, 

𝑥𝑖 is the studied indicator of region i, 
𝑥𝑗 is the studied indicator of region j, 

n is the total number of regions. 
The identification of spatial heterogeneity across the entire data set was carried out using the 

Global Moran’s I (Anselin, 2003), which provided a statistic to reflect spatial autocorrelation for the 
whole sample. Evaluation of the statistical significance of spatial autocorrelation related to the 
following hypotheses. 

• H0: spatial autocorrelation is zero (random); 

• H1: spatial autocorrelation is not zero (spatial patterns are present). 

Additionally, the research visualized the results using Moran’s scatterplot and cartogram of 
Russian regions. Moran’s scatterplot indicated the relationship between the number of road crashes 
in each region and the average value of the same attribute at neighboring locations. The y-axis of 
this scatter plot reflected average values of the examined variable in neighboring regions, while the 
x-axis represented the same variable in the region under analysis. These values were usually 
standardized and the scatterplot was divided into four quadrants, namely:  

• High-high quadrant (upper-right) contained observations, whose values and spatial lag values 
were higher than the mean.  

• High-low quadrant (lower right) contained observations, whose values were higher than the 
mean, but the spatial lag values were lower than the mean. 

• Low-low quadrant (lower left) contained observations, whose values and spatial lag values 
were lower than the mean. 

• Low-high quadrant (upper left) contained observations, whose values were lower than the 
mean, but the spatial lag values were higher than the mean. 
When most of the observations were in the high–high and low–low quadrants, positive spatial 

autocorrelation was indicated, suggesting that neighboring regions were similar. Conversely, when 
most were in low–high or high–low, negative spatial autocorrelation was present, indicating 
dissimilarity among neighboring regions.   

Additionally, we visualize results using cartogram of explored Russian regions. It contains data 
on the type of Moran’s I quadrant to which certain region belongs. Therefore, we visually 
demonstrate patterns of regional distribution depending on explored variable.   

Additionally, the research presented a cartogram that showed the type of Moran’s I quadrant to 
which each region belonged. This visualization helped to identify and demonstrate spatial patterns 
of road crash distribution across the regions. When spatial autocorrelation was found to be non-
zero, then spatial patterns were deemed present in the data (Elhorst, 2014). Therefore, the next stage 
of the research included spatial econometric modelling. These models incorporated spatial lags of 
variables—i.e., weighted averages from neighboring units—using spatial matrices. Typically, it was 
assumed that the influence of neighbors reduced with distance (Herrera-Gomez, 2022; Khattak et 
al., 2021; Belotti et al., 2017). The spatial models applied in this research were presented in Table 2. 
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Table 2 Specification of Spatial Econometric Models 

Model Formula 

Spatial Autoregressive Model 𝑌𝑡 =  𝛿𝑊𝑌𝑡 +  𝛼𝑖𝑁 + 𝑋𝑡𝛽 +  𝜀𝑡 

Spatial Error Model 
𝑌𝑡 = 𝛼𝑖𝑁 + 𝑋𝑡 + 𝑢𝑡 

𝑢𝑡 =  𝜆𝑊𝑢𝑡 +  𝜀 
Spatial Durbin Model 𝑌𝑡 =  𝛿𝑊𝑌𝑡 +  𝛼𝑖𝑁 + 𝑋𝑡𝛽 + 𝑊𝑋𝑡𝜃 + 𝜀𝑡 

Spatial Autoregressive Combined model 
𝑌𝑡 =  𝛿𝑊𝑌𝑡 +  𝛼𝑖𝑁 +  𝑋𝑡𝛽 + 𝑢𝑡 

𝑢𝑡 =  𝜆𝑊𝑢𝑡 +  𝜀 

  
Table 2 provided formulas of spatial models as used for the research, where 𝑌𝑡 represented a one-

dimensional matrix of a dependent variable (y was provided in Table 1); 
𝛼𝑖𝑁 indicated a constant term; 
𝜀 represented a disturbance term;  
𝑢𝑡 served as a disturbance term with a spatial lag;  
𝑊𝑌𝑡 was a spatial lag of the dependent variable;  
𝑊𝑋𝑡 was a spatial lag of the independent variable;  
𝑊𝑢𝑡 was a spatial lag of the disturbance term; and  
𝛿, 𝛼, 𝛽, 𝜃 represented coefficients of the models.  
 Moreover, the models were analyzed with both random and fixed effects. Besides, three 
independent variables including GRP, AP_person, and Innov were incorporated into the natural 
logarithm. To select the best model for the current research, Akaike and Bayesian information 
criteria were adopted. The model with the lowest criteria values was considered the best fit. 
 The research used the selected model to examine the presence of spatial spillover effects, to 
determine whether neighboring regions had any influence on a given region. These effects were 
assessed by calculating direct and indirect effects using the partial derivatives method, as described 
by Elhorst (Elhorst, 2014).  

3. Results and Discussion 

3.1.  Estimation of Correlation and Spatial Autocorrelation of the Dependent Variable 
 The dataset was initially analysed using Pearson’s correlation as shown in Figure 2.   

 
Figure 2 Correlation heatmap of the regional indicators 



1172 
International Journal of Technology 16(4) 1167-1178 (2025)  

 

 

 

The correlation coefficient between the number of road crashes with injuries per 100,000 people 
and the independent variables fell within the interval (-0.2, 0.3), indicating weak or no high linear 
relationships. This supported the application of natural logarithms to certain variables in meeting 
the linearity assumption. Additionally, this suggested the potential presence of indirect (spatial 
spillover) effects.  

Spatial autocorrelation was estimated to determine whether a clustering pattern of road crashes 
existed. For this, the global Moran’s I was computed across six years, and the results were presented 
in Table 3. Moran’s I results showed positive and statistically significant spatial autocorrelation at 
the 5% level in each year examined. This indicated that neighboring regions in the Russian 
Federation generally recorded similar numbers of road crashes with injuries per 100,000 people—
evidence of spatial clustering. However, over the period under review, the Global Moran’s I statistic 
declined, suggesting a shift in the spatial distribution pattern of road crashes across regions.  

 
Table 3 Moran’s I for the Number of Road Crashes with Injuries per 100,000 People by observed 
years 

Year 
 

Statistics  
2015 2016 2017 2018 2019 2020 2021 

Moran’s I 0.278 0.260 0.278 0.231 0.231 0.185 0.152 

P-value 0.000 0.000 0.000 0.002 0.008 0.010 0.033 

Moran’s I varies from -1 to 1 and reflect strength of spatial autocorrelation 
P-value reflects significance of Moran’s I statistics 

  
Figures 3 and 4 presented Moran scatterplots that showed a positive relationship between the 

average number of road crashes with injuries per 100,000 people in both neighboring and target 
regions in 2015 and 2021. This was due to the presence of positive spatial autocorrelation—regions 
with similar road crash values were generally located close to one another. 

 
Figure 3 Moran’s I of Road Crashes by Regions in 2015 
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Figure 4 Moran’s I of Road Crashes by Regions in 2021 

 
Over time, more regions shifted from the High–High and Low–Low quadrants to the High–Low 

and Low–High quadrants. This indicated a weakening of the spatial autocorrelation pattern across 
the Russian regions examined. In 2015, the distribution of the dependent variable was more tightly 
clustered, implying that high values were surrounded by high values, and low values by low 
values. Similar results were reported by Sipos et al. (2021), Casado-Sanz et al. (2020), Ryder et al. 
(2019), Soltani and Askari (2017), and Cantillo et al. (2016). Additionally, as regions became more 
dispersed across quadrants, regional heterogeneity regarding the studied parameter increased. This 
correlated with the findings of Gomes et al. (2017) and Barua et al. (2016). Figure 5 displayed a 
cartogram that indicated the geographical distribution of regions and the respective Moran 
scatterplot quadrants in 2021. 

 

Figure 5 Moran’s I of road crashes by Russian regions in 2021 
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 Coral and black quadrants corresponded to the Low–Low and High–High quadrants. These 
regions were clustered by high and low values of road crashes with injuries per 100,000 people, 
respectively. 

3.2. Regression Analysis of Road Crashes with Injuries 
 Spatial regression models were used to analyze the impact of economic factors on the number of 
road crashes with injuries per 100,000 people. Furthermore, Moran’s I previously indicated the 
presence of spatial concentration patterns as observed in the results presented in Table 4. 
 
Table 4 Results of the Regression Modelling 

Models 
 

Variables  
and statistics 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

re sar_re sem_re sdm_re fe sar_fe sem_fe sdm_fe sac_fe 

Const 376.54*** 
(0.000) 

261.32*** 
(0.000) 

309.71*** 
(0.000) 

238.64*** 
(0.006) 

671.86*** 
(0.000) 

    

Emp 
 

1.06*** 
(0.000) 

0.44** 
(0.050) 

0.99*** 
(0.001) 

-0.126 
(0.709) 

-0.18 
(0.463) 

-0.19 
(0.359) 

-0.08 
(0.737) 

-0.39 
(0.231) 

-0.14 
(0.328) 

l_GRP -24.38*** 
(0.000) 

-15.96*** 
(0.000) -18.27*** 

(0.001) 

1.68 
(0.767) 

-34.90*** 
(0.000) 

-23.76*** 
(0.000) 

-32.31*** 
(0.000) 

-0.46 
(0.944) 

-
11.06*** 
(0.001) 

road_person 0.72 
(0.289) 

0.63 
(0.391) 0.99 

(0.245) 

1.33* 
(0.087) 

-6.66*** 
(0.000) 

-4.81*** 
(0.003) 

-5.24*** 
(0.002) 

-3.18* 
(0.059) 

-
3.87*** 
(0.002) 

pascar_person -22.59 
(0.398) 

-34.62 
(0.160) 

-52.29** 
(0.066) 

1.44 
(0.960) 

-45.94 
(0.106) 

-52.27** 
(0.037) 

-65.05** 
(0.019) 

-39.22 
(0.197) 

-17.38 
(0.323) 

l_AP_person 5.07*** 
(0.006) 

3.09* 
(0.060) 

2.52 
(0.145) 

2.09 
(0.200) 

3.25* 
(0.067) 

2.54 
(0.104) 

2.22 
(0.172) 

1.89 
(0.220) 

3.16** 
(0.011) 

l_Innov 0.36 
(0.802) 

-1.09 
(0.397) 

-1.15 
(0.418) 

-2.12 
(0.122) 

-2.74** 
(0.046) 

-2.64** 
(0.028) 

-2.571** 
(0.045) 

-2.83** 
(0.026) 

-2.08** 
(0.019) 

zabol_person -0.01 
(0.178) 

-0.03 
(0.685) 

-0.002 
(0.852) 

0.004 
(0.639) 

-0.01 
(0.164) 

-0.006 
(0.390) 

-0.007 
(0.384) 

-0.003 
(0.675) 

-0.009 
(0.171) 

ED_person 0.30 
(0.624) 

-0.03 
(0.951) 

0.29 
(0.636) 

-0.87 
(0.148) 

0.05 
(0.934) 

-0.08 
(0.889) 

0.15 
(0.805) 

-0.72 
(0.237) 

-0.51 
(0.210) 

rho 
 

0. 417*** 
(0.000) 

 
0.336*** 
(0.000) 

 
0.296*** 
(0.000) 

 
0.693*** 
(0.028) 

0.671*** 
(0.000) 

lambda 
  

0.385*** 
(0.015) 

   
0.217*** 
(0.000) 

 
-0.667*** 
(0.072) 

lgt_theta 
 

-1.860*** 
(0.000) 

 
-1.837*** 
(0.000) 

     

sigma2_e 
 

113.506*** 
(0.000) 

121.279*** 
(0.000) 

107.578*** 
(0.000) 

 
94.977*** 

(0.000) 
99.367*** 
(0.000) 

90.037*** 
(0.000) 

83.982**
* 

(0.000) 

ln_phi 
  

2.158*** 
(0.185) 

      

Obs 581 581 581 581 581 581 581 581 581 

R-squared 0.478 0.519 0.468 0.552 0.531 0.549 0.529 0.557 0.575 

Number of Id 83 83 83 83 83 83 83 83 83 

AIC  4921 4782 4823 4754 4361 4328 4349 4370 4293 

BIC  4857 4839 4880 4846 4404 4376 4397 4427 4345 

The asterisks depict the intervals of the p-value (*** p < 0.01, ** p < 0.05, * p < 0.1) 
P - values are presented in round brackets 

  
The best-performing models were the fixed-effects models, particularly the Spatial 

Autoregressive Combined model (SAC-FE), which had the lowest information criteria values. This 
indicated that the model incorporating the spatial lag of the dependent variable, spatial error lag, 
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and fixed effects had the highest explanatory power. Direct and indirect effects of the selected 
variables on crash numbers are shown in Table 5. 

Variables such as Gross Regional Product (GRP), number of roads per person, number of buses 
per person, and innovative activity showed statistical significance, with p-values below 0.01. 
Indirect effects exceeded direct ones, confirming the presence of spatial spillover effects. This 
indicated that neighboring regions contributed more to the crash rates in the studied regions. 
Specifically, regions bordered by larger or more developed regions recorded fewer crashes. Most 
significant variables exhibited inverse relationships—higher GRP, more roads per person, and 
greater innovation levels were associated with lower crash rates. Conversely, an increase in the 
number of buses per person corresponded with an increase in road crashes with injuries, 
demonstrating a positive coefficient of determination. Similar findings were documented by Sipos 
et al. (2021) and Rhee et al. (2016).   

 
Table 5 Effects of Independent Variables on Road Crashes Obtained from the SAC Model with Fixed 
Effects 

           Effects  
Variables  

Direct Indirect Total 

Emp -0.153 -0.250 -0.404 

l_GRP -13.071*** -20.981*** -34.052*** 

road_person -4.348*** -7.036*** -11.385*** 

pascar_person -20.127 -32.714 -52.842 

l_AP_person 3.693*** 6.028*** 9.721**** 

l_Innov -2.407*** -3.913*** -6.321*** 

zabol_person -0.011 -0.016 -0.027 

ED_person -0.579 -0.958 -1.538 

The asterisks depict the intervals of the p-value (*** p < 0.01, ** p < 0.05, * p < 0.1) 

  
These variables as GRP, the number of roads per person, the number of buses per person, and 

innovative activity were significant, as the p-values were less than 0.01. Moreover, indirect effects 
were higher than direct effects, indicating the presence of spatial spillover effects. In absolute terms, 
this suggested that neighboring regions contributed more to the number of accidents in the regions 
examined. In particular, when a specific region was surrounded by larger or more developed 
regions, the number of accidents there tended to be lower. Most of the significant variables 
demonstrated an inverse relationship (GRP, number of roads per person, and innovative activity), 
indicating that higher regional economic indicators were associated with fewer road crashes 
involving injuries. Conversely, the number of buses per person exhibited a direct relationship, 
showing that a higher number of buses per person correlated with a lower number of road crashes, 
as reflected by the positive coefficient of determination. Similar findings were presented by authors 
such as Sipos, Rhee, Kim, Lee, and Ulfarsson (Sipos et al., 2021; Rhee et al., 2016).  

The results obtained could serve as a basis for adjusting investment policies aimed at developing 
road transport infrastructure in neighboring regions. For instance, the development of the road 
transport network in the Leningrad region, along with its economic advancement, was important 
for St. Petersburg. With improvements in the economic indicators of the Leningrad region and 
increased investment in road infrastructure, the number of accidents with injuries in St. Petersburg 
was expected to decline due to the spatial spillover effect. Therefore, when formulating investment 
policies for developing the road transport network in St. Petersburg, it was essential to consider 
collaborative efforts with the neighboring Leningrad region. 
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4. Conclusions 

In conclusion, road traffic accidents including injuries that occurred on the Russian Federation 
roads from 2015 to 2021 were analyzed in relation to the economic indicators of neighboring 
regions. Firstly, the presence of a spatial relationship between the road crashes across Russian 
regions was confirmed. Secondly, the research showed the optimal performance of spatial models 
compared to traditional OLS models. Thirdly, GRP, the number of roads per person, the number 
of buses per person, and innovative activity were identified as significant factors contributing to 
the occurrence of road accidents. Fourthly, the contribution of neighboring regions to the number 
of accidents in the examined region which indicated the presence of spatial spillover effects was 
also confirmed. The main limitation of the research was that the obtained model did not account 
for behavioral factors related to participants in the road transport network. This aspect could be 
explored in future research. 
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