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Abstract: Inaccurate Owner Estimate Cost (OEC) calculations often lead to procurement failures in 
the purchasing process, which is affecting the success of government capital expenditure projects in 
Indonesia. The OEC serves as a critical benchmark for evaluating bid fairness, and errors in its 
calculation can cause financial mismanagement as well as regulatory issues. Therefore, this study 
aimed to improve OEC accuracy by developing a Machine Learning (ML) model based on Linear 
Regression (LR) algorithm capable of predicting price fluctuations in the procurement of 
government-owned building projects. Data from a state-owned building construction project and the 
data from Analysis of Work Unit Prices for 2017-2020 were analyzed as well as used to predict 2021 
price amendment for various construction work items in the year. The developed ML model showed 
strong accuracy, with Root Mean Squared Error (RMSE) values ranging from 0.012 to 0.037 as well as 
Mean Absolute Error (MAE) values between 0.011 and 0.029 across job descriptions, signifying a 
strong fit. The results showed the superiority of the developed model over similar studies in terms of 
precision and interpretability, offering a solution to improve procurement decision-making. 

Keywords: Capital expenditure procurement; Machine learning; Owner estimate cost 

1. Introduction 

Capital expenditure is an important category in public sector institutions, which handles 
acquiring fixed assets, such as land, buildings, buildings, and equipment (Sutopo and Siddi, 2018). 
Due to this reason, capital expenditure procurement is an important measure of performance and 
a major driver of economic growth, especially in infrastructure as well as development projects. 
Both central and local governments aim to maximize revenue to fund these expenditures, which 
are essential for building basic infrastructure, improving public services, as well as supporting 
national development (Mukmin et al., 2020).   

The implementation of capital expenditure in Indonesia has often faced setbacks due to a high 
rate of procurement failures. These failures are caused by several factors, including non-compliance 
with regulations, lack of experience among estimators, pricing survey errors, weak banking 
support, and inaccurate Owner Estimate Cost (OEC) calculations (Bosio et al., 2023; Mokeeva and 
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Yurko, 2023; Strang, 2021). OEC refers to the estimated total cost of a project or service, covering all 
components from the initial design to final delivery (Koo et al., 2010). In government procurement, 
the OEC also includes Value-Added Tax (VAT) after the technical specifications in the Terms of 
Reference (TOR) are finalized. Inaccurate OEC can pose serious risks during procurement, 
potentially leading to financial losses and legal issues. OEC should be prepared using a transparent, 
accountable method based on current and reliable data to minimize these risks. Conducting a 
thorough market analysis before selecting suppliers is also essential to prevent procurement failures 
(Safa et al., 2014). 

During the tendering phase, OEC acts as a benchmark for determining fair prices based on 
market conditions. When the OEC is set too low, it may discourage competitive bidding, which can 
cause project delays or even failures. Consequently, when the OEC is too high, it can lead to 
government overspending, potentially activating public criticism and concerns over financial 
mismanagement (Astana et al., 2023). 

Inaccurate OEC increase the risk of disputes between contractors and clients. Large gaps between 
the OEC and the final bid can cause financial strain for contractors, which may lead to project delays 
as well as lower quality outcomes (Oo et al., 2022; Mohamed et al., 2011). In construction projects, 
contract changes often happen due to factors such as changes in project scope, schedule, or costs 
(Khoso et al., 2019). These changes are commonly referred to as Addendums, Contract Change 
Orders (CCOs), and Variation Orders (VOs). Addendums are extra documents added to the original 
contract, with agreement of both parties, to include any missing details or unclear requirements. 
Additionally, CCOs include changes in the amount of work or project timeline, without altering the 
main terms of the contract. VOs refer to changes in scope, technical specifications, costs, or 
applicable regulations (Mohammad et al., 2017). 

Since procurement consists of a large share of national capital expenditures, inaccurate OEC can 
directly impact the timely and cost-effective completion of infrastructure projects, affecting total 
government performance (Komakech, 2016). A significant gap between the OEC and the winning 
bid poses a major risk during the pre-tendering phase, potentially causing project cancellations, 
reduced scope, or delays in the schedule (Almohsen et al., 2023). Factors such as economic 
instability, errors in pricing surveys, and limited experience among estimators can further widen 
these gaps (Liu and Zhu, 2023). 

Machine Learning (ML), a branch of Artificial Intelligence (AI), can improve the accuracy of OEC 
and help reduce the risks associated with procurement failures. By analyzing large datasets, ML 
algorithms can identify patterns and generate more accurate predictions to support better decision-
making (Ma’ruf et al., 2024; Sari et al., 2023; Berawi et al., 2019). In addition, ML provides a more 
flexible and data-driven procedure compared to traditional cost estimation methods, which often 
depend on simple statistical processes and may not consider market volatility or complex cost 
structures (Hashemi et al., 2020; Budiono et al., 2014; Creedy et al., 2010). 

The use of ML to predict OEC in the pre-tender phase of construction projects has been explored 
in several studies. For instance, Li et al. (2022) improved OEC accuracy by applying a feedforward 
neural network (FFNN) in Friedman’s model to more precisely predict the lowest submitted bid. 
Similarly, Almohsen et al. (2023) developed a hybrid model combining Artificial Neural Networks 
(ANN), Deep Neural Networks (DNN), and Time Series (TS) methods to estimate the ratio between 
the lowest bid as well as the OEC across different contract types and sizes. Additionally, Alsugair 
et al. (2023) used an ANN model to predict Final Contract Costs (FCC) based on initial OEC values, 
using Linear Regression (LR) for data processing, a square root function for data transformation, 
and the logarithmic method of Zavadskas and Turskis for data standardization.  

These studies show the potential of ML to improve OEC accuracy and point to important 
challenges. Neural network (NN)-based models often lack transparency, making it difficult for 
stakeholders to understand the factors driving cost estimates (Ribeiro et al., 2016). This lack of 
interpretability limits the practical use of the models, especially in public-sector procurement, 
where transparency is essential. To address the issue, this study uses a ML model based on LR. 
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Different from NNs, LR provides clear insights into the relationships between historical price 
adjustments as independent variables and the OEC as the dependent variable. 

2. Method 

This study aimed to improve the accuracy of OEC predictions in capital expenditure 
procurement through the development of an ML model. A systematic method was adopted to 
achieve this objective, combining theoretical understanding with practical implementation. The 
theoretical foundation of the study was grounded in data-driven decision-making theory that 
showed the use of historical data and statistical modeling to improve predictive accuracy 
(Montgomery et al., 2012). The Cross Industry Standard Process for Data Mining (CRISP-DM) 
framework was adopted to operationalize this approach. The framework comprised six iterative 
phases, namely business understanding, data understanding, data preparation, modeling, 
evaluation, and deployment (Mandolini et al., 2024; Schröer et al., 2021). 

In the business understanding phase, the study identified the need to improve the OEC accuracy 
in capital expenditure projects. During the data understanding phase, procurement contract data 
was derived from a state-owned building construction project, referred to as the SM project. This 
data was obtained from a Jakarta-based construction company and included historical records of 
amended items, price addendums, work volumes, and Work Unit Prices.  

The historical price data used spanned from 2017 to 2020, which was selected for its completeness 
and position with the initial contracts and price adjustments of SM project, further ensuring the 
consistent patterns for cost estimation. Economic disruptions from 2020 onwards, such as the 
COVID-19 pandemic, were excluded to maintain dataset consistency. Moreover, Exploratory Data 
Analysis (EDA) was conducted to verify the absence of missing values and to examine relationships 
between variables. 

During the data preparation phase, the data was processed and transformed into a structured 
format for ML modeling. Work Unit Prices were categorized into independent (YEAR) and 
dependent (WORK ITEM PRICE) variables. For OEC calculation, the study used information on 
amended items in the SM project, including work volumes and Work Unit Prices. These were 
analyzed using coefficients from the Unit Price Analysis and Basic Unit Prices for labor, materials, 
as well as equipment sourced from historical data published in the Journal of Unit Prices for 
Building Materials. The analysis was critical to understanding the standards, specifications, and 
material costs associated with tasks that experienced price adjustments, providing a detailed basis 
for model development. 

A unit price analysis model, developed according to Indonesian Ministry of Public Works and 
Housing Regulation No. 28, 2016, was incorporated into a database of calculated unit prices for 
construction works experiencing price addendums. This database formed the basis for identifying 
attributes to be used in the ML model development. 

Several assumptions were made to ensure the reliability of the model. The assumptions included 
(1) the representation of pricing trends reflected cost adjustment factors in construction projects, (2) 
the dataset contained no missing values verified through EDA, as well as (3) pricing trends were 
linear and followed consistent patterns over the years analyzed.  

The modeling phase included developing an LR-based ML, which was implemented in Python-
3 in the Jupyter Notebook environment. The LR algorithm was selected for its ability to predict 
continuous variables based on historical data and the simplicity of interpreting relationships 
between independent as well as dependent variables. Following the process, the model was trained 
using an 80:20 split of the dataset as the model learned from existing patterns while testing its 
accuracy on unseen data (Sari et al., 2022). Predictions for the year 2021 were conducted using the 
trained model, analyzing pricing trends across various work items.  

The accuracy of the model was assessed in the evaluation phase using two metrics, namely Root 
Mean Square Error (RMSE) and Mean Absolute Error (MAE). These metrics were valuable because 
the models showed errors in the units of the constituent of interest, which aided in the analysis of 
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results (Hodson, 2022). RMSE was a widely recognized metric for evaluating regression models. It 
represented square root of the mean of the squared differences between predicted and observed 
values across all data points (Chicco et al., 2021; Oke et al., 2020). Mathematically, the explanation 
was represented with the following formula, 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − �̅�𝑖)

2𝑛
𝑖=1

𝑛
 

(1) 

where:   
𝑦𝑖 = observed value 
�̅�𝑖 = predicted value 
𝑖 = index of the data in the database 
𝑛 = total number of data points 

MAE was determined by computing the absolute errors between each predicted and the actual 
value, then finding the mean by evaluating the entire dataset. This was performed by subtracting 
the mean value from each data point, summing the results, then dividing by the total number of 
datasets. The formula for MAE was represented as follows: 

𝑀𝐴𝐸 =
1

𝑛
∑𝑥𝑖 − 𝑥 (2) 

where:   
𝑥𝑖 = the actual value 
𝑥 = the predicted value 
𝑛 = the total number of values 

During the analysis, RMSE and MAE values of 0 showed a perfect fit (Moriasi et al., 2007). The 
values less than half the standard deviation of the measured data were deemed modest, and both 
metrics were suitable for model evaluation. RMSE showed larger errors because of the squaring of 
residuals, while MAE offered a direct mean error metric.  

Despite this study not including full-scale implementation of the deployment phase, a structured 
and transparent methodology for developing and validating the ML model was obtained by 
adopting CRISP-DM framework. Figure 1 showed the study workflow relating to the process 
during the study. 

 

Figure 1 Study Workflow within CRISP-DM framework 
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3. Results and Discussion 

3.1. Identifying the Variables for the ML Model Development  
Data from the procurement contract of the SM project that was originally established in 2020 

contained works whose prices were adjusted with an addendum in 2021. The contract data included 
both the original values of OEC and the price revisions that were later affected in one place. Table 
1 showed in detail the adjustments included, especially in architectural works. A total of six work 
items, which had passed through price changes from the initial contract in 2020 to the 2021 
addendum were selected for further analysis. Moreover, the analysis was required to develop the 
ML model that predicted future pricing trends. The adjustments were necessary because the 
original OEC did not take on post-award signing price increase. 

The items included in the sub-items of the six work items shown in Table 1 consisted of a number 
that required detailed scrutiny. Each sub-item concerning specific contracts with third-party 
contractors for construction procurement and included confidential information about pricing as 
well as contractual terms. Having data on the work volumes and unit prices was crucial to 
accurately calculate the OEC for each sub-item. After identifying the work items that experienced 
price adjustments through addendums, 16 Work Unit Price items were extracted for further 
analysis using the coefficients from the Analysis of Work Unit Prices from 2017 to 2020. These 
datasets were run 10 times for each Work Unit Price item, leading to a total of 64 data points. The 
data was processed 640 times in the ML model to ensure robustness, providing sufficient volume 
and variability for effective training of the model.  

 
Table 1 Initial OEC and Price Addendums in SM Project 

No Work Description  
2020’s OEC 

(USD) 
Additional Work  

(USD) 
2021’s Amended 
Contract (USD) 

A  Architectural Work    

I Preparation Work 7,697  7,697 

II Demolition Work    

 A. Main Building 21,704  21,704 

 B. Supporting Building 2,007  2,007 

 C. Exterior Spaces 4,238  4,238 

III Brick Wall Masonry Works    

 A. Main Building Ground Floor 15,020 1,474 16,218 

 B. Main Building Upper Floor 4,115  4,115 

 C. Front Supporting Facilities Building  1,391  1,391 

 D. Rear Supporting Facilities Building 1,548 84 1,640 

 E. Exterior Spaces 4,335   4,335  

IV Gypsum Partition Wall Pairing + Hollow Iron Frame    

 A. Main Building Ground Floor 4,998 264 5,261 

 B. Main Building Upper Floor 2,390    2,390 

V Floor & Wall Finishing Work    

 A. Main Building Ground Floor 28,772  2,152  29,310 

 B. Main Building Upper Floor 5,104   5,104 

 C. Front Supporting Facilities Building 5   4,863 

 D. Front Exterior Space 11,140  327  11,343 

 E. Rear & Side Space 14,730  511  15,172 

 
The trend formed a background understanding of price changes throughout time and helped 

predict near-future cost trends more effectively, as shown in Table 2. Table 2 showed the Analysis 
of Work Unit Prices for 2017-2020 was used to classify work items. This classification selected the 
YEAR variable as the input variable (x). At the same time, the price of each work item was set as 
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the dependent response variable (y), labeled from WORK1 to WORK16. An LR-based ML model 
was used to predict future price trends for these work items.  

3.2. Developing ML Model  
The ML model was developed using Python-3 in the web-based Jupyter Notebook application, 

the first step of which was importing several libraries. Pandas were used for data manipulation and 
structuring, Matplotlib was applied for visualization as well as mathematical functions. 
Additionally, Scikit-learn was used to implement the ML model, specifically the LR model applied 
in this study. 

The data was loaded in two major columns that served as the variables in the ML development 
process. The first column, labeled "YEAR," was designated as the independent variable (x), while 
the second column, "WORK," was the dependent variable (y). After the data was loaded, the system 
showed the data count, types, and memory allocation to ensure accuracy and consistency before 
continuing to the next step. 

After the previous processes, the missing values were then checked during the analysis. There 
were no missing values when the result was zero (0), signifying the analysis could continue without 
data imputation. The process was then followed by EDA, which started with a bivariate analysis of 
the relationship between the YEAR and WORK variables using a scatter plot. This plot helped 
visualize the relationship between these two factors before proceeding with the modeling process. 
The correlation was also calculated, which came out to a coefficient of 0.7, signifying a strong 
positive relationship between YEAR and WORK. The result showed that as the YEAR variable 
changed, the WORK variable significantly affected it. 

The core ML modeling process began after all the previous steps were conducted. The process 
included establishing the X and Y variables, splitting the data into training and testing sets using 
an 80:20 ratio, as well as applying the LR algorithm to train the model. During this phase, the model 
learned from the input data and identified the correct slope and coefficients to make accurate 
predictions. Finally, the model was run through several iterations to modify and optimize the 
prediction results. This process ensured that the predictions of the model were reliable and could 
improve the accuracy of OEC estimation in building construction projects. 
 
Table 2 16 price-adjusted work items and the Analysis of Work Unit Price (2017-2020) 

No. Work Type Code 
2017 

(USD) 
2018 

(USD) 
2019 

(USD) 
2020 

(USD) 

1 
Standard Brick Wall Masonry (1/2 
Brick) 

WORK1 
9.88 11.59 11.55 17.84 

2 Standard Plastering + Finishing WORK2 6.15 6.61 7.08 7.88 

3 Door & Windowsills WORK3 6.15 6.40 6.58 7.04 

4 Brick Masonry for Foundation Wall WORK4 10.16 11.98 12.08 18.42 

5 Waterproof Plastering + Finishing WORK5 6.31 6.83 7.37 8.21 

6 Gypsum Partition Wall Masonry  WORK6 4.64 5.09 5.22 5.62 

7 Hollow Steel Partition Frame WORK7 19.10 19.98 23.76 21.81 

8 Paving Floor WORK8 19.16 19.65 19.74 21.55 

9 Installation & Procurement of Walls WORK9 12.27 12.06 12.37 13.30 

10 Backfill / Red Soil (Planting Medium) WORK10 5.60 5.83 5.94 6.72 

11 Granite Floor WORK11 36.47 37.41 39.96 41.66 

12 Installation & Supply of Curbstones WORK12 12.60 12.37 12.74 13.65 

13 Granite Tile Polish Floor WORK13 43.78 42.08 44.22 49.23 

14 Rough Motif Ceramic floor WORK14 22.32 24.41 25.70 37.33 

15 Granite Tile Wall WORK15 19.99 21.04 21.30 26.68 

16 Floor Plint WORK16 6.03 5.63 5.48 5.72 
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3.3. Evaluating the Accuracy of the ML Model Predictions  
The developed ML model generated the optimal prediction results through a repetitive process 

using variance, where it used slightly different training and testing data sets each time the algorithm 
ran in a process. Variance referred to the sensitivity of an algorithm to the specific data used during 
training. The feature showed different results when there were small changes in the data and how 
the model was trained (Raste et al., 2022). 

Several ML algorithms that were not deterministic were stochastic, implying that the behavior 
of the algorithm was influenced by randomness while it was being trained (Barmpalias et al., 2017). 
Consequently, being stochastic did not necessarily signify that the model was completely random. 
Stochastic ML algorithms still learned from the given historical data, but small decisions made 
during the learning process varied randomly from one iteration to another. As a result, each time a 
stochastic ML algorithm was run on the same data, the model produced varied slightly, leading to 
different predictions for the test data. The performance of such stochastic models was reviewed as 
a distribution with an expected mean error or accuracy and a standard deviation that reflected the 
level of randomness in the prediction results. 

The final prediction outcomes provided price estimates for each work item, allowing accurate 
analysis of future trends. After passing through the processes of data training, data testing, and 
averaging the distribution of the predictions, the ML model predictions were shown in Table 3. 

The percentage increase in OEC prices was analyzed by multiplying the price database and the 
predicted price results by the building volume of the SM project. The percentage increase in prices 
between 2020 and 2021 was then calculated. In addition, the percentage price increase was 
determined for both the predicted data and the actual SM project data for each sub-work item to 
evaluate as well as compare the accuracy of the ML predictions, as shown in Table 4. 

 
Table 3 Machine Learning Prediction Results with Price Estimates from 2017–2021 

No Work Description 
2017 

(USD) 
2018 

(USD) 
2019 

(USD) 
2020 

(USD) 
2021 

(USD) 

1 Standard Brick Wall Masonry (1/2 Brick) 9.88 11.59 11.55 17.84 19.29 

2 Standard Plastering + Finishing 6.15 6.61 7.08 7.88 8.39 

3 Door & Windowsills 6.15 6.40 6.58 7.04 7.28 

4 Brick Masonry for Foundation Wall 10.16 11.98 12.08 18.42 19.99 

5 Waterproof Plastering + Finishing 6.31 6.83 7.37 8.21 8.78 

6 Gypsum Partition Wall Masonry  4.64 5.09 5.22 5.62 5.88 

7 Hollow Steel Partition Frame 19.10 19.98 23.76 21.81 23.91 

8 Paving Floor 19.16 19.65 19.74 21.55 22.02 

9 Installation & Procurement of Walls 12.27 12.06 12.37 13.30 13.46 

10 Backfill / Red Soil (Planting Medium) 5.60 5.83 5.94 6.72 6.97 

11 Granite Floor 36.47 37.41 39.96 41.66 43.40 

12 Installation & Supply of Curbstones 12.60 12.37 12.74 13.65 13.82 

13 Granite Tile Polish Floor 43.78 42.08 44.22 49.23 50.00 

14 Rough Motif Ceramic floor 22.32 24.41 25.70 37.33 39.02 

15 Granite Tile Wall 19.99 21.04 21.30 26.68 27.33 

16 Floor Plint 6.03 5.63 5.48 5.72 5.52 

  
During the analysis, accurate cost estimation was critical for project success (Mokoena et al., 

2023). The predicted price increase from 2020 to 2021 was compared with the actual price increase 
data from the SM project to evaluate the accuracy improvement of OEC calculations for capital 
expenditure procurement implementation using the ML model. The result of RMSE and MAE 
evaluations showed that the ML predictions achieved a high level of accuracy and a good fit with 
the actual data, as shown in Table 5.  
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Table 4 Comparison of OEC Price Increases Between Actual and Predicted ML Prices 

No Work Description 
Initial Contract 

(USD) 
Price Addendum 

(USD) 
Price 

Increase (%) 

III.A Brick Wall Masonry Work (Main Building) 15,020 16,218 7.98%  
III.D Brick Wall Masonry Work (Rear Supporting 

Building) 
1,548 1,640 5.89%  

IV.A Gypsum Partition Wall Pairing (Main Building) 4,998 5,261 5.28%  
V.A Floor & Wall Finishing (Main Building) 28,772 29,310 1.87%  
V.D Floor & Wall Finishing (Front Exterior Space) 11,140 11,343 1.82%  
V.E Floor & Wall Finishing (Rear & Side Space) 14,730 15,172 3.00%  

  
The findings of this study showed that the developed ML model for OEC prediction achieved 

strong performance, with RMSE values between 0.012 and 0.037 as well as MAE values ranging 
from 0.015 to 0.029 across several construction job descriptions. Consequently, Zhang et al. (2023) 
used a combination of extreme gradient boosting (XGBoost) and Bayesian optimization (BO), 
achieving 0.8690 RMSE as well as 0.4875 MAE. These higher error metrics were possibly due to each 
focus on conceptual cost estimation for diverse infrastructure projects, which included 
heterogeneous datasets with greater variability. The LR model developed in this study showed 
higher precision by focusing on specific procurement datasets with consistent characteristics. 
Similarly, Sanni-Anibire et al. (2021) used k-Nearest Neighbors (KNN) to model cost estimations 
for tall buildings, reporting an RMSE of 6.09. The larger error metrics in the study were attributed 
to the broader scope of tall building projects and the variability in cost structures. Consequently, 
the LR model used in this analysis benefited from a more specific dataset. 

The methodological selections affected the variations as this study used LR for simplicity and 
interpretability, while other studies relied on more complicated algorithms. Despite these models 
capturing non-linear relationships more effectively, the outcomes often included reduced 
interpretability and increased computational requirements. 

 
Table 5 RMSE and MAE Results compared ML prediction accuracy with actual project data 

No. Job Description RMSE MAE 

III.A Brick Wall Masonry Work (Main Building) 0.020 0.015 
III.D Brick Wall Masonry Work (Rear Supporting Building) 0.018 0.016 
IV.A Gypsum Partition Wall Pairing (Main Building) 0.031 0.025 
V.A Floor & Wall Finishing (Main Building) 0.037 0.029 
V.D Floor & Wall Finishing (Front Exterior Space) 0.014 0.012 
V.E Floor & Wall Finishing (Rear & Side Space) 0.012 0.011 

4. Conclusions 

In conclusion, inaccurate OEC in the capital expenditure procurement process caused project 
delays and financial mismanagement. This study investigated the usage of ML to improve the 
accuracy of OEC estimates by developing an ML model with the LR algorithm. Despite the dataset 
used in this study being derived from a specific project, the incorporation of detailed price 
addendums and historical adjustments ensured that the model captured major cost-driving trends 
applicable to similar procurement scenarios. The findings showed that the model significantly 
improved OEC estimation accuracy, as evidenced by low RMSE values, signifying a strong fit 
between predicted and actual prices. However, this study had some limitations, particularly the 
reliance on data from 2017 to 2020 that restricted the relevance of the model to current market trends 
and conditions. Further studies could include more recent data and explore advanced ML methods, 
such as deep learning models, to improve the precision of OEC predictions in capital expenditure 
procurement. 
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