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Abstract: Heart failure is still a global health problem that demands new pharmacological treatments. The 
Apelin Receptor (APR), a class A (rhodopsin-like) G-Protein Coupled Receptor (GPCR), is one of the cell 
membrane receptors that potentially become a specific target of heart failure therapy when activated. However, 
no clinically approved drugs target APR. Phytochemical compounds from Indonesian herbs have become 
readily available for discovering novel apelin agonists. This study investigates bioactive phytochemicals from 
ten Indonesian medicinal herbs using computer-aided drug design (CADD) to predict ligand-receptor 
interactions via molecular docking and bioactivity prediction through machine learning. The selected herbs 
include Andrographis paniculata, Centella asiatica, Zingiber officinale, Curcuma longa, Curcuma domestica, 
Morinda citrifolia, Guazuma ulmifolia, Orthosiphon stamineus, Moringa oleifera, and Garcinia mangostana. 
Their pharmacokinetic and physicochemical profiles were also assessed using web-based predictions. Active 
metabolites were sourced from the Knapsack Database. Molecular docking using Molegro Virtual Docker 
assessed binding energy, with more negative MolDockScores indicating stronger interactions. Gambogic acid 
(-155.1 kJ/mol) from Garcinia mangostana and Procyanidin B2 (-154.5 kJ/mol) from Guazuma ulmifolia 
exhibited stronger binding than the APR agonist, Azelaprag (-149.9 kJ/mol). This study showed that Gambogic 
acid, Procyanidin B1, and Procyanidin B2 may predict excellent half maximal effectivity (EC50) against apelin 
receptors, despite their unideal lipophilicity-ligand efficiency (LELP). Gambogic acid demonstrated favorable 
pharmacokinetic properties: good bioavailability, minimal blood-brain barrier penetration, no cytochrome P450 
(CYP) enzyme interactions, and low toxicity. The study concluded that all five selected compounds exhibited 
strong interactions and bioactivity as APR agonists, supporting the need for further validation through in-vitro 
studies. 

Keywords: Apelin receptor; Apelin receptor agonist; Heart failure; Indonesia medicinal herbs; In-silico 
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1. Introduction 

Heart failure remains a significant global health challenge, affecting 1-2% of the global 
population (Savarese et al., 2023). Southeast Asia, particularly Indonesia, accounts for 900 cases per 
100.000 population (Feng et al., 2024). Although established heart failure drugs have significantly 
improved patient outcomes (McDonagh et al., 2021), their side effects and contraindications limit 
their universal applicability (Ahmad et al., 2023; Koçak et al., 2023; Davin et al., 2019). This 
underscores the urgent need for novel targets and safer, more effective alternative therapies.  

One promising target in the search for new heart failure treatments is the Apelin Receptor (APR), 
a class A G-Protein Coupled Receptor (GPCR) (Yue et al., 2022; Rossin et al., 2023). Previous 
research has shown that activating APR can lead to substantial improvements in cardiac function, 
as demonstrated in both human and animal models of heart failure (Winkle et al., 2023; Chapman 
et al., 2023). The beneficial effects of the Apelin receptor are likely due to mechanisms such as 
enhancing nitric oxide (NO)-dependent signaling, counteracting Angiotensin-II (Ang-II) and Ang-
II 1 Receptor (AT1R) activation, repressing transforming-growth factor-β (TGF-β), and activating 
extracellular signal-regulated kinase 1/2 (ERK1/2), which enhances myocardial contractility (Song 
et al., 2022). Despite its potential, no clinically approved drugs currently target this receptor. 

Phytochemical compounds derived from herbs, known for their drug-like properties, offer a 
promising avenue for discovering anti-heart failure drugs (Nasiruddin, 2022; Shah et al., 2019), 
especially through APR. With its rich biodiversity and vast array of plant species, Indonesia 
presents a unique opportunity to explore natural metabolites for pharmaceutical development. The 
country's abundant flora could yield potential candidates for heart failure treatment by leveraging 
the therapeutic potential of native medicinal herbs. In-silico studies, such as molecular docking 
(Hakim et al., 2023; Husnawati et al., 2023; Sahlan et al., 2020) combined with machine learning or 
artificial intelligence(Ahmed  et al., 2024; Heryanto et al., 2023), are cost- and time-effective methods 
that can efficiently identify promising compounds before they undergo in-vitro testing (Roney and 
Mohd Aluwi, 2024). Previous studies have also approached how the apelin receptor agonist finds 
its potential cardiovascular beneficial effect (Portilla-Martinez et al., 2022; Tran et al., 2021). 
However, among available published reports, no such publications explicitly have reported in-
silico screening of bioactive compounds from Indonesian medicinal herbal to test their potential as 
APR agonists. While the use of in-silico techniques for high-throughput screening is well 
established, previous studies have also clearly defined the use of lipophilicity metrics to normalize 
bioactivity when identifying potential apelin receptor agonists. Therefore, this study aims to 
harness the bioactive compounds found in Indonesian plants to identify new, effective APR 
agonists for combating heart failure using in-silico methods.  

2. Methods 

2.1.  Compound Acquisition and Drug-likeness Properties 
For this preliminary in-silico study, we selected ten herbs commonly found in Indonesia that are 

known for their cardioprotective properties. These herbs were chosen based on their empirical use 
as traditional medicine among Indonesians. These herbs include Andrographis paniculata (Eziefule 
et al., 2024; Tian et al., 2023; Wang et al., 2022), Centella asiatica (Fadhillah et al., 2024; Ding et al., 
2022; Bunaim et al., 2021), Zingiber officinale (Hosseini et al., 2024; Zhu et al., 2021), Curcuma longa 
(Akhter and Nahar 2022; Pourbagher-Shahri et al., 2021), Curcuma domestica (Pourbagher-Shahri 
et al., 2021), Morinda citrifolia (Oluwafemi et al., 2023), Guazuma ulmifolia (Ramadhansyah et al., 
2023; Dos Santos et al., 2018), Orthosiphon stamineus (Mohmad Saberi and Chua 2023), Moringa 
oleifera (Alia et al., 2022; Louisa et al., 2022), and Garcinia mangostana (Soetikno et al., 2020; Elmund 
and Hartrianti 2020). We choose all of these herbs based on empirical use as traditional medicine 
among Indonesian.  The bioactive compounds from these herbs were identified using the 
KNApSAcK database (http://www.knapsackfamily.com/knapsack_core/top.php  

http://www.knapsackfamily.com/knapsack_core/top.php
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As for screening and preliminary purposes, we selected 4-8 compounds for each herb in this 
database based on (1) drug-likeness profile through SwissADME, (2) previous research evidence 
that the compound has promising bioactivity, and (3) the presence in the KNApSAcK as known 
constituents in selected herbs. As long as the compound is present in KNApSAcK with one of the 
other two criteria, we included the compound in this study. E Furthermore, the Chemical Abstracts 
Service Identifier (CAS-ID) for each included compound was retrieved, and the compounds were 
inputted into PubChem (https://pubchem.ncbi.nlm.nih.gov/) to obtain their canonical Simplified 
Molecular Input Line Entry System (SMILES) for molecular docking. It is a notation that allows a 
user to represent a chemical structure in a way that can be used by various software programs to 
perform molecular modeling, database searches, and other computational chemistry tasks. The 
study protocol is summarized in Figure 1. 

 
 Figure 1 Overview of Study Protocols 

 
Subsequently, the drug-likeness of these compounds was predicted through SwissADME 

SwissDrug Design (http://www.swissadme.ch/) (Hernandez et al., 2024), based on Lipinski’s Rule 
of Five. Drug-likeness refers to the qualitative aspect of a specific compound that has the potential 
to become a drug based on its structural, physiochemical, and pharmacokinetic properties. 
Lipinski’s Rule of Five evaluates a compound's drug-likeness based on four criteria—molecular 
weight less than 500 Daltons, no more than 5 hydrogen bond donors, no more than 10 hydrogen 
bond acceptors, and a LogP less than 5—to predict its suitability for oral bioavailability and stability 
(Hakim et al., 2023). Drug-likeness refers to the evaluation of a compound's properties to determine 
its suitability for development as a drug. 

2.2. Molecular Docking Analysis of Selected Compound 
Molecular docking is a technique used to evaluate the ability of compounds to interact with the 

active site of specific proteins by studying the ligand-receptor atom-atom interaction 
(Zothantluanga and Chetia, 2022). In this study, Molegro Virtual Docker (MVD) (free trial version) 
was utilized for this purpose (Dwira et al., 2024). The apelin receptor (Protein Data Bank/PDB: 
7SUS) was retrieved from the Research Collaboratory for Structural Bioinformatics (RSCB) PDB 
(https://www.rscb.org), along with its native ligand. Validation of the docking process was 

https://pubchem.ncbi.nlm.nih.gov/
http://www.swissadme.ch/
https://www.rscb.org/
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performed by setting the active site center at coordinates X: -41.09, Y: 5.46, and Z: 50,51 with a radius 
of 10 Å, based on redocking the native ligand and achieving a Root Mean Square Deviation (RSMD) 
<2.0 after energy minimization. The specificity of the active site was further confirmed through the 
Computed Atlas of Surface Topography of Proteins (CASTp) website 
(http://sts.bioe.uic.edu/castp/index.html?3trg) to determine its specific position, as previously 
described (Husnawati et al., 2023; Sahlan et al., 2020). Binding interactions were assessed using 
MolDockScore and ReRank Score and analyzed for hydrogen bonding and electrostatic interactions 
between each compound and the apelin receptor’s active site. Two-dimensional (2D) and three-
dimensional (3D) visualizations were generated for the top five compounds which exhibited the 
most negative binding energies. The docking results were compared with those of azelaprag, a 
known apelin receptor agonist, to establish a benchmark (Winkle et al., 2023). The computer used 
for performing molecular docking has Window 11 operating system with an Intel® Core™ i7-8665U 
CPU@1.90 GHz -2.11 processor with RAM 16 GB (Dwira, et al, 2024). 

2.3. Bioactivity Prediction Analysis 
After selecting the top five molecules for interaction with the Apelin Receptor (APR), we 

conducted a further assessment of their bioactivity utilizing machine learning techniques through 
molecular fingerprint analysis (MFP).  defined as MFP utilizing a molecular descriptor known as 
SkelSpheres, analyzed via the array binner provided by DataWarrior® software, and identified 
patterns using support vector regression (SVR) (Heryanto  et al., 2023). For this study, we focused 
on predicting the bioactivity of the compound. Bioactivity is defined as the ability of a certain 
substance to produce a biological effect on living tissue, cells, or organisms, which might be 
inhibitory activity or enhancement activity. In this research, we tried to predict the half-maximal 
effective concentration (EC50), which represents the concentration required to achieve 50% of the 
maximum biological activity, as provided by the ChEMBL database. This database provides a 
comprehensive and publicly accessible database that contains information on bioactive molecules 
with drug-like properties. The EC50 values for the isolated compound were categorized using 
established criteria (Indrayanto et al., 2021). To account for the variability in EC50 data, as it might 
be varied and complex from one in-vitro data to another, we also predicted lipophilicity-ligand 
efficiency (LELP, Equation 1), which normalizes the high variance of predicted compounds. LELP 
measures bioactivity by correcting ligand efficiency for lipophilicity and other physicochemical 
properties of the compound, including cLogP, LE (Equation 2 and 3), HA, and pEC50, with an 
optimal range of ideal drugs between 0 and 7.5 units (Leeson et al., 2021; Kenny, 2019). Below is the 
formula for determining LELP, which is computed automatically by DataWarrior: 

𝐿𝐸𝐿𝑃 =
𝑐𝐿𝑜𝑔𝑃

𝐿𝐸
 (1) 

𝐿𝐸 =
1.37

𝐻𝐴
∗ 𝑝𝐸𝐶50 (2) 

𝐿𝐸 = (−2.303(
𝑅𝑇

𝐻𝐴
)) ∗ 𝐿𝑜𝑔𝐾𝑑 (3) 

where 
cLogP  : Partition Coefficient which reflect ratio between the concentration of a substance in 
two different polarity solvents 
LE  : Ligand Efficiency, binding energy per atom of a ligand to the receptor 
HA  : Heavy Atom or non-H atom on molecules 
pEC50 : Log EC50 
R  : Ideal Gas Constant 1.987 × 10–3 kcal/K/mol  
T  : Temperature (K, Kelvin) 
 

Data available in DataWarrior® was divided into training and testing datasets using clustering 
methods, with a similarity threshold of 0.9 for the SkelSpheres Descriptor. Compounds within the 

http://sts.bioe.uic.edu/castp/index.html?3trg
mailto:CPU@1.90
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training dataset were used to build the model, while those in the testing dataset were used for 
validation. EC50 values were transformed into Log EC50, and LELP values were derived from the 
EC50 inputs within the software. This validation approach followed methodologies outlined in 
previous studies (Heryanto et al., 2023). Model performance was evaluated using R-squared (R2), 
root mean square error (RMSE), and Spearman’s rank correlation coefficient (Gramatica, 2020; 
Heryanto R et al., 2023). Predictions for bioactivity were also made for the standard drug, azelaprag, 
which has been tested in the human study (Winkle et al., 2023). 

2.4.  Physiochemical Radar, Pharmacokinetic, and Toxicity Prediction Analysis 
The five molecules with the best molecular docking results, characterized by more negative 

binding energies, were selected for further analysis of their physiochemical properties, 
pharmacokinetics, and toxicity. Physiochemical radar predicts certain features that represent the 
physical and chemical characteristics of certain compounds, whereas pharmacokinetic profile is a 
parameters that study how the compound or drug moves through the body over time. Using their 
canonical SMILES representations,  the pharmacokinetic properties, including absorption, 
distribution, metabolism, excretion, and toxicity, are predicted using SwissADME Swiss Drug 
Design (Hernandez et al., 2024) (http://www.swissadme.ch/) and Protox 3.0 
(https://tox.charite.de/protox3/?site=compound_input) (Banerjee et al., 2024). Additionally, these 
predictions were performed for azelaprag, which served as a standard drug for comparison. 
(Winkle et al., 2023). 

3. Results and Discussion 

3.1.  Selected Tested Compound and Drug-Likeness 
Figure 2 summarizes the characteristics of the selected compounds, including their drug-likeness 

properties, using Lipinski’s Rule of Five. In this study, a total of 69 compounds were evaluated for 
their potential binding activity to apelin receptors. Among these, Procyanidin B1 and Procyanidin 
B2 were found to have three violations of Lipinski’s criteria, indicating that they may not be ideal 
candidates for oral drug development. Since previous studies mentioned their cardioprotective 
effect, we chose them in the analysis. As an additional insight, some studies have shown that some 
molecules with high molecular weight or suboptimal physiochemical properties can still exhibit 
good bioavailability, potentially enhanced by chemical modifications or the use of absorption 
enhancers (Asano et al., 2024). 

 
Figure 2 Selected Bioactive Compounds and Drug Likeness Properties (A) Andrographis 
paniculata, (B) Centella asiatica, (C) Curcuma domestica, (D) Zingiber officinale, (E) Curcuma 
longa, (F) Morinda citrifolia, (G) Guazuma ulmifolia, (H) Orthosiphon stamineus, (I) Moringa 

http://www.swissadme.ch/
https://tox.charite.de/protox3/?site=compound_input


337 
International Journal of Technology 16(1) 332-347 (2025)  

 

 

 

oleifera, and (J) Garcinia mangostana (Cont.). where MW: Molecular Weight; HA: Hydrogen 
Acceptor; HD: Hydrogen Donor; MLogP : Moriguchi Logarithm of the octanol/water partition 
coefficient 

 
Figure 2 Selected Bioactive Compounds and Drug Likeness Properties (A) Andrographis 
paniculata, (B) Centella asiatica, (C) Curcuma domestica, (D) Zingiber officinale, (E) Curcuma 
longa, (F) Morinda citrifolia, (G) Guazuma ulmifolia, (H) Orthosiphon stamineus, (I) Moringa 
oleifera, and (J) Garcinia mangostana (Cont.). where MW: Molecular Weight; HA: Hydrogen 
Acceptor; HD: Hydrogen Donor; MLogP : Moriguchi Logarithm of the octanol/water partition 
coefficient (Cont.) 

3.2.  Molecular Docking Studies 
In this study, binding energy was assessed using MolDock Scores to evaluate the binding 

potential of each tested compound (Dwira et al., 2024). To ensure validity, the redocking of the 
native ligand demonstrated similar binding poses, with a Root Mean Square Deviation (RMSD) of 
0.58 Å. Figure 3 displays the native ligand both before and after redocking. The native ligand 
exhibited a MolDock Score of -186.5 Kj/Mol and a Rerank Score of -145.2 Kj/Mol. Hydrogen 
bonding was primarily observed with residues Tyr264 and Lys268. 
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Figure 3 Validation Docking Methods Using Redocking of Native Ligand from PDB 7SUS. This 
figure illustrates the validation of the docking methodology through the redocking of the native 
ligand from PDB entry 7SUS. It shows a comparison of binding poses before and after redocking to 
confirm the accuracy and reliability of the docking protocol 

 
All 69 compounds demonstrated negative binding energies, indicating that they interact 

spontaneously with the active site. Detailed results of the entire molecular docking study are 
provided in the Supplementary Material. Notably, Gambogic acid (-155,1 Kj/Mol) and Procyanidin 
B2 (-154,5 Kj/Mol) exhibited lower MolDock Scores compared to Azelaprag (-149.9 Kj/Mol) (see 
Table 1). Following these, the next three compounds were Asiaticoside (-147,5 Kj/Mol), Procyanidin 
B1 (-145,8 Kj/Mol), and Dihydrocurcumin (-137,2 Kj/Mol). Gambogic acid, Procyanidin B2, and 
Asiaticoside formed hydrogen bonds at Arg168, similar to Azelaprag, while Procyanidin B2 and 
Dihydrocurcumin interacted with Lys268. In contrast, Procyanidin B1 formed hydrogen bonds with 
Met183 and Glu198, differing from those of Azelaprag (Figure 4).  

Hydrogen bonding is a crucial interaction mechanism in biological systems, particularly in 
ligand-receptor interactions. Although compounds with lower negative binding energies may still 
be effective, a greater number of hydrogen bonds can help mitigate the development of drug 
resistance phenomenon (Zothantluanga and Chetia, 2022). Among the top five compounds, two 
compounds, Asiaticoside forms five hydrogen bonds with Arg168, Gln180, Met183, Glu198, and 
Tyr299, while Procyanidin B1 forms four hydrogen bonds with Ser105, Arg168, Cyr181, and Lys268. 

 

Table 1 Molecular Docking Results of Top Five Compounds 

Compound 
MolDockSc

ore 
(kJ/mol) 

Rerank Score 
(kJ/mol) 

Hydrogen 
Bond 

(kJ/mol) 

Amino Acid 
Related to 

Hydrogen Bond 

Amino Acid Related to 
ElectroStatic Bond 

Gambogic 
acid 

-155.1 -65.7 -2.9 Tyr88, Arg168 
Trp85, Tyr88, Ile109, 

Phe110, Arg168, Cys181, 
Phe291 

Procyanidin 
B2 

-154.5 -115.03 -5.1 
Ser105, Arg168, 
Cys181, Lys268 

Tyr88, Ile109, Ser106, 
Arg168, Phe291 

Azelaprag -149.9 -100.3 -7.6 
Ser106, Arg168, 

Lys268 
Trp85, Ile109, Arg168, 

Met183 

Asiaticoside -147.5 -38.8 -15.7 
Gln180, Met183, 
Arg168, Tyr299, 

Glu198 

Phe78, Trp85, Arg168, 
Tyr182, Tyr185, Tyr264, 
Lys268, Met288, Thr295 

Procyanidin 
B1 

-145.8 -77.5 -9.7 Met183, Glu198 Lys268, Phe291 

Dihydrocur
cumin 

-137.2 -111.4 -10.4 
Lys268, Leu287, 

Ser298 
Tyr264, Lys268, Met288, 

Phe291, Tyr299 
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Figure 4 2D and 3D Visualization of Selected Compound Against Apelin Receptor PDB 7SUS. (a) 
Gambogic Acid, (b) Procyanidin B2, (c) Asiaticoside, (d), Procyanidin B1, (e) Dihydrocurcumin, and 
(f) Azelaprag. The figure provides both two-dimensional and three-dimensional representations of 
these compounds in complex with the Apelin Receptor to illustrate their binding interactions 
 
3.3.  Bioactivity Prediction Analysis Results 

EC50 is a critical parameter used in preclinical assays to evaluate the concentration of a compound 
required to achieve 50% of its maximal effect on a specific signaling pathway (Indrayanto et al., 
2021). LELP integrates bioactivity with physicochemical properties, such as LogP, to enhance the 
identification of promising drug candidates. Compounds with favorable LELP values are expected 
to exhibit beneficial absorption, distribution, metabolism, excretion, and toxicity (ADMET) 
characteristics (Leeson et al., 2021; Kenny 2019). For statistical analysis, R2 (with a value greater than 
0.5) (Catalani et al., 2021), root mean square error (RMSE, should be low), and Spearman’s rank 
correlation coefficient (r) were computed using GraphPad® Software (Gramatica 2020). In this 
research, a total of 898 EC50 data were extracted from the ChEMBl database. The compounds were 
clustered based on their similarity, resulting in 90 compounds designated as test data and 808 
compounds as training data (See Supplementary Materials). Validation of the EC50 data on the 
training set revealed an R2 below 0.5, indicating an inadequate model fit. Nonetheless, the model 
demonstrated practical accuracy with a low RMSE and a strong linearity (r=0.62). Conversely, the 
LELP model exhibited excellent fit and very strong linearity, despite a high RMSE) (see Figure 5). 
It is important to note that the model should exhibit strong linearity, as indicated by an R² value 
above 0.5, along with high correlation coefficients, which reflect the strength of the relationship 
between the X and Y variables.  
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Figure 5 Validation of Machine Learning Models. This figure displays the performance metrics for 
model validation, including RMSE (Root Mean Square Error), R² (Coefficient of Determination), 
and r (Spearman Correlation Coefficient). These metrics evaluate the accuracy and reliability of 
machine learning models 

 
Based on our bioactivity results, the Gambogic acid, Procyanidin B1, Procyanidin B2, and 

dihydrocurcumin exhibited potent activity (pEC50 <1 µM) as APR inducers, comparable to 
Azelaprag (see Table 2). In contrast, Asiaticoside shows good activity (pEC50 2.5 µM), falling into 
the 1-20 µM range. For hit identification, all compounds displayed unfavorable LELP values (>7.5), 
unlike Azelaprag, which has an LELP of 7.29. Gambogic acid, Procyanidin B1, Procyanidin B2, and 
Asiaticoside have a high molecular weight (>500 Kda), contributing to their less favorable scores. 
Dihydrocurcumin, despite meeting Lipinski’s Rule of Five, shows comparable LELP values to 
Procyanidin B1 and B2. This discrepancy may be attributed to Dihydrocurcumin’s EC50 being ten 
times higher than that of Procyanidin B1 and B2, impacting its LELP score (Indrayanto et al., 2021; 
Leeson et al., 2021; Kenny, 2019).  An unfavorable LELP value is generally associated with reduced 
binding affinity of ligands to their target proteins. (Leeson et al., 2021; Kenny 2019) However, it is 
worth noting that there is an increasing trend of U.S. Food and Drug Administration (FDA)--
approved orally bioavailable drugs with intermediate to large molecule sizes, often utilizing the 
“extended” Rule of Five (Viarengo-Baker et al., 2021) or alternative methodologies such as 
the Active Biopharmaceutical Molecule Profiling System (AB-MPS), as suggested by DeGoey et al., 
(Degoey et al., 2018).  

 
Table 2 Bioactivity Prediction of Top Five Compounds 

 
3.4.  Oral Bioavailability Radar, Pharmacokinetic, and Toxicities Prediction Analysis 

SwissADME provided an Oral Bioavailability Radar that evaluates six key physiochemical 
parameters for assessing drug candidates’ oral bioavailability. The radar features include (1) 
Lipophilicity: Ideal range is -0.7 < XLogP < +5.0; (2) Size: Optimal molecular weight range is 150 < 
Molecular Weight < 500 Da; (3) Polarity: Ideal range for Topological Polar Surface Area (TPSA) is 
20 Å² < TPSA < 130 Å²; (4) Insolubility: Desired range is -6 < Log S(ESOL) < 0; (5) Insaturation: 
Fraction of sp³ hybridized carbon atoms should be between 0.25 and 1; and (6) Flexibility: Optimal 

Name of Compound 
Predicted EC50 
(µM) 

Predicted 
LELP 

Category (EC50 and LELP) 

Gambogic Acid 0.06 35.0 Excellent Activity, Unideal 
Procyanidin B1 0.01 8.8 Excellent Activity, Unideal 
Procyanidin B2 0.01 8.8 Excellent Activity, Unideal 
Dihydrocurcumin 0.11 8.6 Excellent Activity, Unideal 
Asiaticoside 2.57 -3.1 Good Activity, Unideal 
Azelaprag 0.002 7.3 Excellent Activity, ideal 
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number of rotatable bonds is between 0 and 9. The Oral Bioavailability Radar for each compound 
is illustrated in Figure 6. The analysis revealed that only Dihydrocurcumin exhibited favorable 
physiochemical properties, suggesting good oral bioavailability. This is consistent with research 
suggesting that formulation modifications can enhance bioavailability. Furthermore, chemical 
modifications and the use of absorption enhancers are well-established strategies for improving the 
absorption of drug candidates (Asano et al., 2024; Wibowo et al., 2021). 

 

Figure 6 Oral Bioavailability Radar for Selected Compounds. This figure displays the Oral 
Bioavailability Radar for the following compounds: (a) Gambogic Acid, (b) Procyanidin B1, (c) 
Asiaticoside, (d) Procyanidin B2, (e) Dihydrocurcumin, and (f) Azelaprag 
 

Pharmacokinetics is the study of how the body interacts with substances over time, 
encompassing four key parameters: (1) Administration/Absorption: This describes how a drug is 
transported from the site of administration to systemic circulation; (2) Distribution: This parameter 
details how the drug disperses throughout the body; (3) Metabolism: This involves the biochemical 
transformation of the drug into various metabolites within the body; and (4) Excretion: This is the 
process by which the drug and its metabolites are eliminated from the body (Anker et al., 2018). 
Collectively known as ADME, these parameters are influenced by the substance’s physiochemical 
and lipophilicity (Leeson et al., 2021; Kenny 2019). Variability in a patient’s physiology can 
influence these processes, highlighting the importance of predicting and adjusting pharmacokinetic 
profiles to accommodate individual patient conditions. The pharmacokinetic profiles of the selected 
compounds are summarized in Table 3. 
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Table 3 Pharmacokinetics Profile of Selected Compound 

Compound 

Administra
tion 

Distrib
ution 

Metabolism Excretion 

GI 
Absorption 

BBB 

CYP Substance 
Pgp-

Substrate 

CYP1A2 CYP2C19 CYP2C9 
CYP2D

6 
CYP3A4  

Asiaticoside Low No Inactive Inactive Inactive Inactive Inactive Yes 
Dihydrocurcumin High No Inactive Active Active Inactive Active No 

Procyanidin B1 Low No inactive inactive inactive inactive inactive No 
Procyanidin B2 Low No inactive inactive inactive inactive inactive No 
Gambogic acid Low No inactive inactive inactive inactive inactive Yes 

Azelaprag Low No inactive inactive inactive inactive inactive Yes 

 
In terms of administration, most of the compounds show low gastrointestinal absorption. 

Dihydrocurcumin is the exception, as indicated by the bioavailability radar. Additionally, the 
penetration of these compounds across the blood-brain barrier (BBB) penetration of each compound 
is minimal, suggesting that they are less likely to cause central nervous system (CNS)-related side 
effects. Regarding metabolism, only Dihydrocurcumin is predicted to be a substrate for cytochrome 
P450 (CYP) isozymes CYP2C19, CYP2C9, and CYP3A4. This is important for assessing potential 
drug interactions because CYP enzymes are crucial in drug metabolism and can be either induced 
or inhibited, affecting drug efficacy and safety. Clinical implications related to CYP are mostly 
concerned with the potential specific accumulation of certain drugs that are prescribed 
simultaneously. For distribution, Asiaticoside, Gambogic acid, and Azelaprag are predicted to be 
substrates for P-glycoprotein (P-gp). This transporter, which is found in various tissues, acts as a 
“housekeeping” protein, influencing the distribution and excretion of drugs. Compounds that are 
substrates for P-gp are generally excreted more effectively through the liver and kidneys (Anker et 
al., 2018). When it comes to safety, the profile of each compound is critical for drug development to 
minimize patient risk and identify compounds with a larger toxicity window. Gambogic acid is 
associated with high acute toxicity, having a predicted lethal dose for 50% of the population (LD50) 

500 mg/kgBW, compared to Azelaprag’s 1000 mg/kgBW. Asiaticoside has the highest predicted 
LD50 at 4000 mg/kg BW. Despite its higher acute toxicity,  

Gambogic acid is predicted to be inactive in terms of hepatotoxicity, cardiotoxicity, 
nephrotoxicity, mutagenicity, and carcinogenicity. This contrasts with other compounds that may 
have at least one potential toxicity, as detailed in Table 4. Determining and validating the effective 
dosage of these compounds in preclinical studies is essential before proceeding to clinical trials. 
Even with higher toxicity predictions, strategies such as chemical modifications or advanced drug 
delivery systems, such as liposomal formulations, may be utilized to mitigate toxicity and enhance 
safety (Liu et al., 2022). 

 
Table 4 Toxicities Prediction of Top Five Compounds 

Compound 

Toxicity 

Hepatotoxic Cardiotoxic Nephrotoxicity Mutagenicity Carcinogenicity 
LD50 

(mg/kgb
w) 

Asiaticoside Inactive Active Active Inactive Inactive 4000 
Dihydrocurcumin Inactive Active Active Inactive Inactive 2000 
Procyanidin B1 Inactive Inactive Active Inactive Inactive 2500 
Procyanidin B2 Inactive Inactive Active Inactive Inactive 2500 
Gambogic acid Inactive Inactive Inactive Inactive Inactive 500 

Azelaprag Active Inactive inactive Inactive Active 1000 
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3.5.  Future Directions and Study Limitations 
This study focuses on the computational aspects of drug discovery, particularly in screening 

bioactive compounds found in Indonesian medicinal herbs. Even though this is not the first in-silico 
study finding apelin receptor agonists, to our knowledge, this is the first study that discusses the 
potency of Indonesia Medicinal Herbs bioactive compounds through in-silico combining docking 
and molecular fingerprint methods. Despite these facts, several strengths and limitations should be 
acknowledged, which are summarized in table 5. 

The study pointed out several strengths. First, it leverages advanced in-silico methods to identify 
potential APR agonists from a diverse set of bioactive compounds found in Indonesian medicinal 
herbs. Second, the pharmacokinetic and safety profiles of the identified compounds were assessed 
using web-based tools, providing valuable insights into their therapeutic potential. Third, the use 
of multiple computational tools approach, including molecular docking to predict its binding 
activity and bioactivity prediction, enhances the robustness of these research findings.  

However, this study has some limitations. Despite this study's internal validation methods for 
docking only using RMSD of redocking methods, we did not perform another validation metric 
such as Molecular Mechanics with Generalized Born and surface area solvation (MM/GBSA) that 
might be helpful for further validation results. We did this because our research group has proven 
that MVD has good external validation results (Tedjo et al., 2024), which has been compared with 
other docking tools and has been routinely used in our previous research (Dwira et al., 2024). 
Furthermore, our bioactivity prediction using molecular fingerprints does not aim to identify the 
activity cliff of selected isolated compounds from the plants (Dablander et al., 2023). Activity cliff is 
an important parameter in QSAR for determining the bioactivity of certain compounds based on 
molecular similarity that only differs in certain chemical chains. This study predicts the compound 
bioactivity based on SkelSpheres similarity, as published previously in our research (Heryanto et 
al., 2023). Lastly, while promising, these computational predictions rely on theoretical models and 
may not fully capture the complexities of in-vivo systems, for example, the role of biased ligands in 
apelin receptor agonists through hydrogen bonds in Tyr221 and Tyr309 (Portilla-Martinez et al., 
2022).  

 

Table 5 Strengths and Limitations of Recent Study. 

Strength(s) Limitation(s) 

In-silico studies utilize combined 
molecular docking and molecular fingerprint 
(using machine learning) methods 

Validated only using RMSD and redocking 
methods  

High-throughput Identification of 
potential apelin receptor agonist of Indonesia 
medicinal plant bioactive compound 

Not predicting the activity cliff of a certain 
compound 

Implementing prediction of the 
pharmacokinetic profile of each compound 

Not predicting biased agonist of apelin 
receptor 

 Not validated using In-vitro or in-vivo 
systems 

 
Aside from varied computational methods, future research should focus on validating study 

findings through experimental in-vitro studies—such as using primary cardiomyocytes treated 
with specific compound to induce hypertrophy, exploring potential drug interactions, and 
conducting in-vivo study—for instance, transaortic constriction rats, for heart failure modelling to 
address these limitations. This study identified gambogic acid, procyanidin B1, procyanidin B2, 
dihydrocurcumin, and asiaticoside as having favorable in-silico results. Based on these findings, 
further confirmation through in-vitro and in-vivo studies is essential to validate their binding 
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activity and pharmacokinetic profiles. These steps should be undertaken during preclinical studies 
before progressing to human trials.   

4. Conclusions 

  This preliminary computational study identifies gambogic acid, procyanidin B2, 
dihydrocurcumin, procyanidin B1, and asiaticoside as promising drug candidates for development 

as apelin receptor agonists for heart failure therapy.  Among these, Gambogic acid emerges as the 

most promising due to its favorable pharmacokinetics and safety profiles. As previously stated, 
preclinical confirmation is needed to validate the study results and further find optimized 

compounds to be tested in human studies. This might be planned by performing in-vitro studies, 

using primary cardiomyocytes or human-induced pluripotent stem-cells based technology, and in-
vivo studies, aiming to investigate how pharmacokinetic and pharmacodynamic of lead compound 

works in different heart failure animal models since heart failure has puzzling complexity of 

phenotype and molecular features. 
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