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Abstract: Epilepsy is a neurological condition prevalent worldwide, affecting millions of people. 
Standard procedures for detecting epilepsy frequently produce suboptimal results due to variability 
across EEG channel. Therefore, this research aimed to use a well-organized FixupPACTBi-LSTM-
based method to detect epilepsy with optimal channel selection as an effective way of identifying and 
eliminating disturbances from unwanted channel. The proposed method prioritized stability in 
channel selection by using networks with the lowest standard deviation as the fitness criteria. 
Additionally, the Linear Memory Controlled Water Wave Optimization (LMC-WWO) process 
enhances this selection through interactive optimization at the propagation, refraction, and breaking 
stages. By integrating memory-based searches, Gaussin functions, and solitary wave adaptions, the 
model effectively improved accuracy. After the optimal channel was identified, the selected signals 
went through segmentation and prep-processing before being converted into images and scalogram 
using Coco-GASF and CWT methods. These images were then resized and normalized through min-
max normalization, producing grayscale representations for extracting signal rhythms. Features from 
the normalized scalograms and signal rhythms were extracted using Cas-GoogleNet, and the most 
relevant features were selected with Fisher’s score method. Following this, classification was 
conducted using FixupPACTBi-LSTM classifier to ensure high precision in epilepsy detection. 
Finally, comparative analysis showed that this method performed better than existing model with a 
substantially shorter channel selection time of 8769 ms, followed by accuracy, sensitivity, and 
specificity rates of 97%, 98%, and 97%, respectively. 

Keywords: Cascaded googlenet; Continuous wavelet transform; Covariance correlation coefficient; 
Electroencephalogram; Epilepsy; Water wave optimization 

1. Introduction 

Epilepsy is a neurological condition affecting people of all ages, and is characterized by a 
persistent tendency to experience recurring seizure (Whulanza et al., 2024; Rasheed et al., 2020). The 
condition is caused by a sudden and excessive electrical discharge in brain neurons, which disrupt 
the body’s ability to function properly (Jiwani et al., 2022). This abnormal activity creates a highly 
excitable neural network, primarily affecting the cerebrum (Radman et al., 2021). Given these 
challenges, developing an effective model for early and reliable epileptic seizure detection is 
necessary for accurately identifying and categorizing the condition (Anuragi et al., 2021).  

https://www.google.com/search?q=vit+university+velloer+telephone+number&oq=vit+university+velloer+telephone+number&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIICAEQABgWGB4yCAgCEAAYFhgeMg0IAxAAGIYDGIAEGIoFMg0IBBAAGIYDGIAEGIoFMg0IBRAAGIYDGIAEGIoFMgoIBhAAGIAEGKIEMgcIBxAAGO8FMgoICBAAGIAEGKIEMgoICRAAGIAEGKIE0gEJMTI0NTNqMGo3qAIIsAIB8QX1RYB89S9lXQ&sourceid=chrome&ie=UTF-8
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Manually detecting epileptic seizure is an extremely time-consuming and laborious task process 
(Gupta et al., 2020). To address this challenge, various diagnostic methods including Magneto-
Encephalography (MEG), Magnetic Resonance Imaging (MRI) scan, Positron Emission Tomography 
(PET), and Electroencephalography (EEG), have been developed to facilitate automatic epilepsy 
detection. However, these methods can be complex, time-consuming, and prone to errors 
(Nkengfack et al., 2020). Among the methods, EEG is widely recommended by neurologists for 
monitoring seizure frequency, as it records neuronal electrical activity and ensures accurate 
classification of seizure patterns (Aayesha et al., 2021; Jana et al., 2019). 

Research has explored various domains and methods for automatic epileptic seizure detection, 
including time, frequency, time-frequency analysis, and empirical mode decomposition (EMD) 
(Saminu et al., 2021). However, non-linear methods, EMD, frequency spectrum analysis, and time-
frequency methods have showed limitations in accurately identifying epilepsy. Given these 
challenges, an effective system should be designed to meet real-time application requirements by 
minimizing processing time (Brari and Belghith, 2021). Epileptic seizure are characterized by 
changes in EEG signal oscillation, shifting from stable to unstable state over time (Sagga et al., 2020).  
Over the past few decades, significant advancement has been made in detecting EEG abnormalities 
(Romahadi et al., 2024). Machine learning (ML) has played a crucial role in improving automatic 
seizure identification and predict other events (Sari et al., 2023; Roy et al., 2020). In addition, deep 
neural network model have enhanced accuracy by automatically selecting relevant features 
(Nugroho et al., 2023; Maulana and Sari, 2022). A combination of CNN and LSTM has been used to 
extract relevant features from time-frequency representation (Abdullah et al., 2023). Building on 
this, multi-Layer perceptron (MLP) network has also been applied for epileptic seizure 
identification using one-dimensional EEG signals (Alshebeili et al., 2020). Pattern-matching model 
achieved F1 score of 94.86% and an accuracy of 92.66% (Das et al., 2020). In this context, seizure 
detection framework incorporating EEG channel selection and features extraction was proposed for 
epilepsy treatment. However, this method faced challenges in accurately predicting normal cases 
(Ein Shoka et al., 2021). To improve performance, Nonlinear Mode Decomposition (NMD) was 
combined with a sliding window method to categorize EEG data into short, two-second epochs. 
Despite its potential, this method was unreliable for diagnosing other conditions, as the model was 
limited to detecting a single type of illness.  

Stein kernel-based SR method was developed to distinguish epileptic seizure (Peng et al., 2021) 
achieving an accuracy of 98.21%. In line with this, predictive model using K-Nearest Neighbor 
(KNN) and Support Vector Machine (SVM) methods showed that SVM slightly outperformed KNN 
in seizure detection (Savadkoohi et al., 2020). This method included a two-phase comprehensive 
method for early seizure recognition and evaluation (Chen et al., 2020). A new framework was 
introduced to automatically predict and classify epilepsy from EEG signals, achieving classification 
accuracies of 76.70%, 82.50%, and 81.40% after normalizing EEG dataset using Medium Absolute 
Deviation (MAD) method (Polat and Nour et, 2020). Additionally, a wide-scale mixed distribution-
based stochastic EEG model was developed to capture fluctuations in non-Gaussianity caused by 
stochastic EEG variations (Yang et al., 2021). However, the model failed to remove artifacts present 
in the signal during epileptic convulsions. 

Neural networks and adaptive neuro-fuzzy inference systems (ANFIS) have been used to 
automatically detect and diagnose epilepsy from EEG signal, achieving an impressive 98.05% 
categorization accuracy (Deivasigamani et al., 2021). EEG signals were characterized as focal or non-
focal based on extracted features. In line with the discussion, preprocessing and classification of 
EEG data that using a combination of Deep Learning (DL) and ML algorithms, such as Random 
Forest, TabNet, XGBoost, as well as 1D CNN led to improved accuracy, recall, and F1-score (Kode 
et al., 2024). Two advanced DL model, Network 1D Raw, and 2D Conv, were proposed for the 
classification of seizure types (Rivera et al., 2024).  In similar expression, a Transformer-based DL 
model achieved classification results with 85% accuracy, 87% specificity, and 82% sensitivity, 
respectively (Lih et al., 2023). However, the multi-channel structure of EEG signal, increased 
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processing costs and decreased operating efficiency, posing a challenge for epilepsy detection. The 
complexity of precise feature selection and computations required made the process more difficult 
for the mode to differentiate between seizure, non-seizure, and pre-seizure phases. 

This research proposed an improved detection framework using FixupPACTBi-LSTM for seizure 
classification. The analysis followed two-step procedure, including adaptive channel selection 
strategy, called Linear Memory Controlled Water Wave Optimization (LMC-WWO) used to 
eliminate unwanted EEG channel while ensuring optimal data quality. After the initial step, the 
research then used Fixed-update Parameterized Clipping Activation Function (PACF)-induced Bi-
directional Long Short-Term Memory (FixupPACTBi-LSTM) model for epilepsy detection. During 
this process, RGB image and scalograms of EEG signal were generated to improve seizure EEG 
signal as well as the representation of normal. EEG data were converted into RGB image using Coco-
GASF method, while scalograms were produced using CWT (Continuous Wavelet Transform). Cas-
GoogleNet model was then used to extract features from these representations for efficient learning. 
Finally, FixupPACTBi-LSTM model was designed to accurately recognize different types of 
epilepsy seizure, including clonic, atonic, and tonic types. The classification criteria for seizure types 
were based on Scalogram Characteristics and Frequency Band Analysis. This comprehensive 
strategy incorporated advanced methods to increase the accuracy and reliability of epilepsy 
diagnosis. Subsequently, this research is categorized into different section, with Section 2 presenting 
the proposed method. Meanwhile, Sections 3 and 4 detail3ed the experimental analysis and review 
of the findings, respectively. 

 
Table 1 Comprehensive research on the identification of epilepsy using DL method and EEG inputs 

Author 
(citation) 

Methods Dataset Challenges Achievement 

(Varlı and 
Yilmaz, 2023) 

2D CNN +LSTM 
CHB MIT, 

Bonn dataset 
Multiple type 

classification is not done 
Accuracy = 95.46% 
Accuracy = 96.23% 

(Ahmad et al., 
2023) 

Integrated 1D 
CNN with Bi 

LSTM 

UCI epileptic 
data set 

The classifier required 
adequate training. 

Accuracy = 84.10% 

(Chanu et al., 
2023) 

Multilayer 
perceptron 

Bonn 
University 

dataset 

The feature selection 
model should be 

optimized and increase 
accuracy. 

Accuracy = 96.2% 
precision = 98% 

(Sagga et al., 
2022) 

CNN model, 
Xception model 

CHB MIT 
dataset 

The model had to be 
improved to identify 

seizure with high 
precision. 

Accuracy = 96.47% 
Precision = 99.79% 

(Qiu et al., 
2023) 

ResNet-LSTM 
network 

(DARLNet) 

Bonn 
University 

dataset 

Multichannel EEG 
recordings were needed 

for detection. 

Accuracy = 90.17% 
Precision = 90% 

(Jiwani et al., 
2022) 

Conv-LSTM 
Bonn 

University 
dataset 

It was possible to 
interpret the facts 

incorrectly, leading to an 
inability to make a 

decision. 

Accuracy = 96% 
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2. Proposed Automated Epileptic Seizure Detection and Classification System Using 

FIXUPPACTBI-LSTM Method 

During the research, an efficient architecture named LMC-WWO and FixupPACTBi-LSTM-based 
automatic epilepsy seizure detection were implemented using optimal EEG channel as shown in 
Figure 1. 

 

Figure 1 Proposed FIXUPPACTBI-LSTM framework for detection and classification of epilepsy 
 

2.1. Dataset Description  
CHB-MIT dataset used in this analysis (Guttag, 2010), is publicly available and consists of EEG 

recordings from 22 teenagers who experienced uncontrolled seizures, totaling 182 complete 
recording. Among these recordings, 80% were used for training, while the remaining 20% were 
reserved for testing. The dataset includes EEG signals captured from 23 or 24 scalp electrodes, 
positioned according to International 10-20 system.  

2.2. Initialization 

EEG waves from multiple channels ( )az  were mathematically represented by equation (1),  

𝑧𝑎𝑏 = {𝑧1, 𝑧2, 𝑧3, . . . . . . . . . 𝑧𝑛𝑚}, 𝑎 = 1,2,3, . . . . . . . . . . . . 𝑛, 𝑏 = 1,2,3. . . . . . . . . 𝑚        (1) 

Where a  was the n number of EEG signals, and b  represented the m  number of channel. For 
example, when n=2 then there were two EEG signal (a=1,2), and when m=3 then each EEG signal 
was recorded from three channels (b=1,2,3). Therefore 𝑧𝑎𝑏 = {𝑧11, 𝑧12, 𝑧13, 𝑧21, 𝑧22, 𝑧23}. 

2.3. Optimal Channel Selection 
EEG data collected from multiple channels ( )az  were processed using an optimal channel 

selection. LMC-WWO method was used to select the best channel while reducing interference from 
unwanted signals. Water Wave Optimization (WWO) (Kaur and Kumar, 2022) was a novel 
evolutionary method used to resolve global optimization issues. To improve performance during 
the propagation and refraction phases of WWO, Memory-based search mechanism and linear 
control parameter were introduced to mitigate previously mentioned constraint. In this process, 

EEG data from multiple channels ( )az  were considered as water waves, and channel with the lowest 

standard deviation was considered fit during the process. Following this discussion, the fitness 
function ( ) minf  was defined by equation (2), 

𝑓(𝛼)√
∑ (𝑧𝑎−𝑧̄)2𝑛

𝑎=1

𝑛−1
                            (2) 
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Where z represented the mean of all channel of EEG signal. In propagation phase, a new wave 

( ) was created using a memory-based search mechanism 𝛽(𝑐, 𝑑), which was shown in equation (3), 

                                                   𝛽(𝑐, 𝑑) = 1 − (
ℎ𝑐𝑑

𝑛
)                                         (3) 

Where c  and d represented the water waves, and ℎ𝑐𝑑was the number of common edges. When 
the fitness of [𝑓(𝛽)] was more than the capability of 𝑓(𝛼), then the old wave(𝛼) was replaced with 
the new wave(𝛽) and reset the height to ƛ𝑚𝑎𝑥, else, the wave height was drop by one. As the wave 
height approached zero, the refraction operator was applied. In line with this process, the linear 
control parameter in refraction phase was given by equation (4),  

                         𝜀(𝑤) = 2 − 2 (
𝑤

𝑤𝑚𝑎𝑥
)

𝑟
                                       (4) 

Where 𝜀(𝑤) was the linear control parameter, w  represented the current iteration, 𝑤𝑚𝑎𝑥 was the 
total number of iterations, and r  signified the constant.  

 
During the analysis, the breaking operator broke the wave(𝛼) when it reached a better location 

than the best solution available (𝑠𝑏𝑒𝑠𝑡). The solitary wave(𝛽′) was shown in equation (5),  
                                                             𝛽′ = 𝛼 + 𝐺(0,1) × 𝛿 × 𝑙𝑑                                           (5) 

Where  represented the breaking coefficient, and dl  was the length for the thd  dimension of 

search space. The optimal channel was signified as(𝜙𝑖), and the pseudo-code was given as follows.  
 
Algorithm 1 Pseudocode for LMC-WWO 

Input: EEG signals ( )
a

z  

Output: Selected optimal channel (𝜙𝑖) 

Begin 

 Initialize maximum iteration ( )max , new wave ( ) , and Gaussian function ( )G
 

 Compute fitness, [𝑓(𝛼)]
 

 
Set iteration 1=  

 While ( )max do 

 For each wave do 

 Compute a new wave using memory-based search mechanism, ( ) 







−=

n
dc cd

1,  

 If ( ) ( )( ) ff  { 

  Reset height to max
 

 } Else { 
  Decrease the height by one 
 } End if 

 
Evaluate wavelength of each wave, 

( )( )
( )



 +−

+−−

= minmax

min

ff

ff

  

 Compute linear control parameter in the refraction phase ( )w


 

 Calculate a new wave using(𝑮) 

 Evaluate the new wavelength, ( )
( )


f

f
=  

 Compute solitary wave,𝜷′ = 𝜶 + 𝑮(𝟎, 𝟏) × 𝜹 × 𝒍𝒅 and 𝜙𝑖 = {𝜙𝑖 , 𝜙𝑖 > 𝑇} 
 End for 
 End while 

Set 1+=  
 Return selected optimal channel(𝜙𝑖) 
End 
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2.4. Signal Partitioning 
The signals in the optimal channel(𝜙𝑖) were given for the process of signal partitioning using 

windowing method. During the process, the partitioned signals were given in equation (6),  
 𝜆 = {𝜙1, 𝜙2, 𝜙3, . . . . . . . 𝜙𝑎𝑏}     (6) 

Where  represented the a number of partitioned signals from theb number of channel. 

2.5. Pre-Processing 
 The section showed the partitioned signals(𝜆) experienced pre-processing to increase quality of 

the signal. It was necessary to remove the artifacts and noises using bandpass filter during the 
process. Therefore, the signal was pre-processed and was represented by equation (7), 

   𝜈 = {𝜆1, 𝜆2, 𝜆3, . . . . . . . . . . 𝜆𝑗}               (7) 

where  was the j number of pre-processed signal. 

2.6. Signal Transformations 
 The phase showed the pre-processed signals(𝜈) were transformed into image and scalogram 

form. This step included conversion of raw EEG signal into scalogram form using CWT method 
which combined frequencies of low and high. The wavelet transforms [𝜛𝜈(𝑒, 𝑓)] of a continuous 
signal ( )  concerning the wavelet function was provided by equation (8), 

𝜛𝜈(𝑒, 𝑓) = ∫ 𝜈(ℎ)
∞

−∞
𝜌𝑒,𝑓

∗ (ℎ)𝑑ℎ    (8) 

Where 𝜈(ℎ) was the time-domain signal, 𝜌𝑒,𝑓(ℎ) represented the mother wavelet scaled by factor 

e , as well as expanded by a factor f , and   was the complex conjugate. Following the analysis, the 

wavelet as in equation (9), 

   𝜌𝑒,𝑓(ℎ) =
1

√𝑒
𝜌 (

ℎ−𝑓

𝑒
)        (9) 

Substituting (8) in (9), the CWT was given by equation (10), 

    𝜛𝜈(𝑒, 𝑓) =
1

√𝑒
∫ 𝜈(ℎ)

∞

−∞
𝜌∗ (

ℎ−𝑓

𝑒
) 𝑑ℎ                     (10) 

The generated scalogram was resized into 224×224 which was high to preserve important 
features. The resized scalogram was represented as 𝜗, which passed through min-max 
normalization. In the context of this research, min-max normalization was a popular method for 
normalizing data, mitigating the redundant data that led to achieving effective handling. The 
expression for min-max normalization(𝜍) was represented by equation (11), 

                          𝜍 =
𝜗−𝜗𝑚𝑖𝑛

𝜗𝑚𝑎𝑥−𝜗𝑚𝑖𝑛
                  (11) 

Where 𝜗𝑚𝑖𝑛 was the minimum and 𝜗𝑚𝑎𝑥represented the maximum feature value of the signal. 
In the Image form section, pre-processed signal (𝜈) was transformed into RGB image using Coco-
GASF method. During the analysis, the scaled time-series signal was transformed from Cartesian 
co-ordinate to polar co-ordinate in conventional GASF (Thanaraj et al., 2020). To overcome this 
changes, Covariance Correlation (CoCo) coefficient was calculated. The pre-processed signal (𝜈) 
was rescaled to have the interval  1,1− , which was given in equation (12),  

 

𝜈0 =
𝑡𝑚−𝑚𝑖𝑛(𝜈)

𝑚𝑎𝑥(𝜈)−𝑚𝑖𝑛(𝜈)
     (12) 

Where 𝜈0 was the rescaled pre-processed signal, 𝑡𝑚 represented the m number of scaled signals, 
𝑚𝑖𝑛(𝜈) was the lowest, and 𝑚𝑎𝑥(𝜈) the highest value of the signal. The angle(𝜔) was computed 
using CoCo coefficient, which was given by equation (13)(14),  

𝜔 = 𝑎𝑟𝑐𝜓(𝜈0)     (13) 
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𝜓 =
𝐶𝑐𝑜𝑣(𝛭,𝛮)

𝜐𝛭𝜐𝛮
      (14) 

Where 𝜓 was CoCo Coefficient, 𝜐𝛭signified the standard deviation of point , 𝜐𝛮represented 
the standard deviation of point , and 𝐶𝑐𝑜𝑣(𝛭, 𝛮)was the covariance. Moreover, the temporal 
correlations of the adjacent points ( ),  were computed by determining the summation of the angle 

to obtain Gram matrix called GASF, which was given by equation (15), 

𝜁 = [𝜓(𝜔𝛭 , 𝜔𝛮)]     (15) 

Where  represented the image formats during the calculation in the research. In grayscale 

conversion sub-phase, the obtained image formats(𝜁) were converted into gray-scaled image. At 
this point, the image was converted into 8-bit grayscale where each pixel value was represented by 
8 bits. During the process, R,G, and b values were extracted for each pixel then an intensity standard 
formula was used to compute grayscale intensity. The gray-scaled image was shown by equation 
(16),  

𝛷𝑦 = {𝜁1, 𝜁2, 𝜁3, . . . . . . . . . . 𝜁𝑦}    (16) 

Where 𝛷𝑦represented the 𝑦 number of gray-scaled images during the analysis. From gray-scaled 

image (𝛷𝑦), five rhythms were extracted corresponding to the frequency bands. The main EEG 

rhythms, including Delta(𝑥1), Theta(𝑥2), Alpha(𝑥3), Beta(𝑥4), and Gamma(𝑥5) were extracted from 
the gray-scaled image, which was mathematically represented by equation (17), 
 

𝑅𝑟ℎ𝑦𝑡ℎ𝑚𝑠 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}    (17) 

Where 𝑅𝑟ℎ𝑦𝑡ℎ𝑚𝑠 was the extracted rhythms in this research. 

2.7. Feature Extraction 
During the analysis, characteristics were obtained from the extracted rhythms (𝑅𝑟ℎ𝑦𝑡ℎ𝑚𝑠) and the 

normalized scalogram(𝜍). Therefore, the process was mathematically represented by equation (18), 

𝐹𝑉 = {𝑅𝑟ℎ𝑦𝑡ℎ𝑚𝑠, 𝜍}      (18) 

Where VF  was the input of feature obtaining phase in this research. At this point, the features 

were collected using Cas-GoogleNet model.  The input (𝐹𝑉)was given to CL, composing of several 
learnable filters known as kernels with bias value. Relating to the process, the output (𝐹𝑡) was given 
in equation (19), 

𝐹𝑡=[(𝐹𝑉+2𝑝−𝐾)]

𝑆𝑆
                             (19) 

Where P  represented the convolution padding size, K was the convolution kernel size, and 𝑆𝑆 
represented the convolution stride size, respectively. During this analysis, the pooling layer 
performed down sampling to reduce the size of the convoluted output. PL used the max-pooling to 
scale the dimension of 𝐵𝑐𝑎𝑠 in equation (20)    

𝜒𝑝𝑜𝑜𝑙 = 𝜏𝑚𝑎𝑥(𝐵𝑐𝑎𝑠 ∗ 𝜃)
                

(20) 

Where 𝜏𝑚𝑎𝑥 was the max function, 𝐵𝑐𝑎𝑠 represented the input feature map and 𝜒𝑝𝑜𝑜𝑙  signified 

the PL output. In context of this research, final CL and PL output was converted into a one-
dimensional numerical array represented as 𝜒𝑎𝑟𝑟. Fully connected layer (FCL) gave the probabilities 
of each input being in a specific feature by connecting the input to another output with a learnable 

weight. Moreover, the output of FCL(𝜒𝑓𝑢𝑙𝑙) was calculated in equation (21), 

𝜒𝑓𝑢𝑙𝑙 = 𝐾𝑐 ⋅ 𝜒𝑎𝑟𝑟 + 𝜚
     

  (21) 

Where 𝐾𝑐 was learnable weight matrix and 𝜚 represented the bias value. The output of the feature 
extraction was mathematically represented as ℛ. 
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2.8. Feature Selection 
The extracted features(ℛ) were selected for the process of feature selection. In this section, 

optimal features were selected using Fisher’s score [𝐹𝑑] method, computed in equation (22), 

𝐹𝑑 = 𝐹𝑑(ℛ) = 𝑡𝑟{(𝑝̄𝑏)(𝑝̄𝑡 + 𝜏𝛪)−1}        (22) 

Where 
bp  was the between-class scatter matrix, d signified the number of selected features, and 

𝑝̄𝑡  represented the total scatter matrix. 𝛪was the identity matrix, tr represented the variance 
between scatter matrix, and 𝜏 was the positive regularization parameter. 

2.9. Classification 
 The optimally selected features  dF  were selected for the classification process. During this stage, 

FixupPACTBi-LSTM was used for detection of epilepsy seizure. Conventional Bi-LSTM (Imrana et 
al., 2021) sequentially processed temporal information at a certain duration and generated a single 
output. 

Bi-LSTM was a slower model and required more time for training. Consequently, fixed-update 
initialization (Fixup) for weight initialization and PACT were used to overcome the mentioned 
limitations. Figure 2 showed the construction of FixupPACTBi-LSTM during the process. Initially, 
the received output[𝐹𝑑] was sent to the input layer (𝜋), expressed by equation (23), 

 

Figure 2 Architecture of FixupPACTBi-LSTM model 
 

(𝜋𝑚𝜖[ℎ𝑞][𝑛]) 𝐹𝑑 = 𝑂 (
1

√𝐾
)  𝑊ℎ𝑒𝑟𝑒 𝑛 𝜖 𝑎𝑟𝑔𝑚𝑖𝑛𝐹𝑑                    (23) 

where K signified the residual branch,   represented the Fixup initialization parameter, and 

m and n were the layers. Subsequently, model calculated the forward layer (ℎ⃗⃗𝑞) and backward 

layer hidden sequence(ℎ⃗⃖𝑞) from the opposite direction, which were given by equation (24) (25), 

ℎ⃗⃗𝑞 = 𝐷 (𝑈ℎ⃗⃗⃗𝛾𝛾𝑛 + 𝑈ℎ⃗⃗⃗ℎ ℎ⃗⃗𝑛−1 + 𝑜ℎ⃗⃗⃗)     (24) 

ℎ⃗⃖𝑞 = 𝐷 (𝑈ℎ⃗⃗⃖𝛾𝛾𝑛 + 𝑈ℎ⃗⃗⃖ℎ⃗⃗⃖ ℎ⃗⃖𝑛−1 + 𝑜ℎ⃗⃗⃖)     (25) 

where 𝑈ℎ⃗⃗⃗𝛾and𝑈ℎ⃗⃗⃖𝛾 were the forward and backward input-hidden weight matrices, ℎ⃗⃗𝑛−1and ℎ⃗⃖𝑛−1 

were the previous forward as well as backward hidden sequence. 𝑜ℎ⃗⃗⃗ and 𝑜ℎ⃗⃗⃖ represented the bias 

vectors in both directions. Therefore, the encoded vector (𝑔𝑤) was formed by the combination of 
final forward and backward layer output with PACT activation function, given by equation (26)(27), 

𝑔𝑤 = 𝑊𝑓[𝑈𝑟ℎ⃗⃗⃗ ℎ⃗⃗𝑞 + 𝑈𝑟ℎ⃗⃗⃖ ℎ⃗⃖𝑞 + 𝑜𝑟]                        (26) 
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𝑊𝑓 = 𝐶(|ℎ𝑞| − |ℎ𝑞 − 𝛺| + 𝛺)     (27) 

where 𝑊𝑓 was the PACT activation function, C signified a constant,  represented the 

parameterized clipping level, and 𝑜𝑟 was the total bias vectors. 
qh  was the total of forward and 

backward layer hidden sequence, and 𝑈𝑟ℎ⃗⃗⃗ and 𝑈𝑟ℎ⃗⃗⃖ were the forward as well as backward weight 

matrices. Following this process, the output of the classifier was mathematically represented as  . 
Therefore, the classifier detected the signal as clonic, tonic, atonic, and normal. 

3. Results and Discussion 

By comparing the outputs, the result showed the efficiency of the proposed model against current 
model. The sample proposed outputs in line with these findings were shown in Figure 3. The result 
of EEG signal partition, preprocessed indication, and signal transformation such as image format, 
as well as scalograms used to graphically represent cerebral activity were shown in Figure 3. 

 
(a) 

    
(b) 

  
(c) (d) 

Figure 3 Sample result of the proposed methodology (a) partitioned signals, (b) Pre-processed 
signals, (c) Image form, (d) Scalogram form 
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3.1. Performance Analysis 
In the context of this analysis, the performance of the proposed methodology was assessed by 

comparing the method to other pertinent model to determine consistency of model. During 
performance evaluation, the efficiency of the proposed FixupPACTBi-LSTM classifier was 
examined using the current method, including Recurrent Neural Network (RNN), Bi-LSTM, Gated 
Recurrent Unit (GRU) & Long Short-Term Memory (LSTM). The proposed method was compared 
based on quality metrics during the process.  

Figure 4 showed that proposed classifiers outperformed existing classifier in this research. 
FixupPACTBi-LSTM with PACT function, achieved higher accuracy (97.99%), precision (98.0039), 
and recall (98.003%). Consequently, existing RNN recorded lower performance of 88.933% recall, 
88.93% precision, and 89% accuracy, respectively. Comparison with Table 1 further showed that 
proposed classifier outperformed existing model in terms of accuracy and also effectively 
categorized various seizure types while maintaining computational efficiency.  

 

(a) 

 

(b) 

Figure 4 Analysis of the proposed system's performance FixupPACTBi-LSTM method based on (a) 
Accuracy, (b) Precision 

 
Table 2 showed that Higher TPR and TNR described superiority of the recommended model. 

For instance, when compared to the current methods, TPR of the proposed model was higher at 
98.003%. Similarly, proposed FixupPACTBi-LSTM achieved the highest TNR of 97.991%. 

 
Table 2 Performance comparison of the proposed model based on TPR & TNR 

Metrics 
Algorithms 

Proposed FixupPACTBi-LSTM Bi-LSTM GRU LSTM RNN 

TPR (%) 98 95.57 94.34 92.74 88.93 

TNR (%) 97.99 95.61 94.03 92.43 89.06 

 
Figure 5 showed the performance analysis of proposed FixupPACTBi-LSTM with the current 

methods based on (a) sensitivity and (b) specificity. In line with these results, existing Bi-LSTM, 
GRU, LSTM, and RNN methods offered a sensitivity of 95.57, 94.34, 92.74, as well as 88.93%. 
However, a very high sensitivity of 98% was achieved by the proposed strategy, as the specificity 
was 97%. 
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(a) (b) 

Figure 5 Performance analysis based on (a) Sensitivity and (b) Specificity 
 

Table 3 showed FNR & FPR analysis for proposed FixupPACTBi-LSTM and existing algorithms. 
When the values of FNR & FPR were low, then the method had good predictive results. Table 3 
showed that recommended FixupPACTBi-LSTM achieved the lowest FNR & FPR values of 1.99 and 
2.00. Relating to this outcome, the proposed method was an error-prone model.  

From the graph in Figure 6(a), the readings showed that the lower error rate value of 
FixupPACTBi-LSTM (0.024) allowed model to be more suitable for epileptic seizure classification. 
Figure 6(b) showed comparative performance research of proposed FixupPACTBi-LSTM with other 
methods. During the analysis, model consumed a training time of 38173.97192ms, while existing 
methods showed an increased time. The outcome was given by 44946.83789ms for Bi-LSTM, 
44923.48999ms in favor of GRU, 47562.27197ms for LSTM, and RNN had 50137.44238 ms. 

 
Table 3 FNR & FPR analysis 

Algorithms FNR FPR 

Proposed FixupPACTBi-LSTM 1.996 2.008 

Bi-LSTM 4.426 4.382 

GRU 5.653 5.967 

LSTM 7.254 7.566 
RNN 11.06 10.934 

 

  
(a) (b) 

Figure 6 Graphical representation (a) Error Rate representation, (b) computational time 
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Figure 7 showed that PACT Activation Function in Bi-LSTM had efficiently reduced training 
time to a greater extent. Table 4 compared the proposed method to existing model using F-Measure. 
During the analysis, F-Measure values of existing Bi-LSTM, GRU, LSTM, and RNN were 95.57344, 
94.34698, 92.7451, as well as 88.9336%. Bi-LSTM method associated with Fixup achieved a higher F-
Measure of 98.00399%. 

 
Table 4 Performance analysis of Proposed FixupPACTBi-LSTM 

Algorithm F-Measure (%) 

Proposed FixupPACTBi-LSTM 98.00399 
Bi-LSTM 95.57344 

GRU 94.34698 
LSTM 92.7451 
RNN 88.9336 

 
The comparison of proposed method with existing model based on AUC was shown in Figure 7. 

AUC values of existing Bi-LSTM, GRU, LSTM, and RNN were 0.95, 0.94, 0.92, as well as 0.89, 
respectively. Meanwhile, the proposed method achieved 0.97, showing that model performed 
exceptionally well in differentiating between seizure and non-seizure events. The proposed method 
achieved the linear curve between (0.2-0.4) of false positive rate. 

Optimal channel selection sub-phase compared the performance of proposed LMC-WWO 
against the current algorithms. These systems included WWO, Coyote Optimization Algorithm 
(COA), Energy Valley Optimization (EVO), and Black Widow Optimization (BWO) which were 
based on channel selection time. During the research, minimum standard deviation of channel was 
used to determine fitness in the proposed model. For the recommended system, when the number 
of iterations varied from 10 to 50, the fitness value was between 0 and 2500. Meanwhile, existing 
BWO signified a gradual increase and provided high-range values for different iterations. This 
outcome showed that the usage of a memory-based search mechanism with a linear control 
parameter in the proposed system had improved the optimal channel selection process. 

 
Figure 7 AUC curve analysis 
 

Figure 8 showed that the proposed model reached superior performance compared to 
conventional methods. Recommended LMC-WWO achieved the lowest channel selection time of 
8769.83 ms. However, existent methods required an average of 33757.61 ms to train the data. The 
analysis showed that the proposed model had a low time complexity. 
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Figure 8 Graphical representation of channel selection time 
 
Table 5 Analyzing the proposed model in comparison 

Methods Methods used Dataset 
Accuracy 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 

Proposed work 
LMC-WWO and 

FixupPACTBi-LSTM. 
CHB-MIT 97 98 97 

(Lih et al., 2023) Transformer model - 85 87 82 

(Shoka et al., 
2023) 

Convolutional Neural 
Network (CNN). 

CHB-MIT 86.11 - - 

(Sunaryono et 
al., 2022) 

Gradient Boosting 
Machines (GBM) fusion. 

University of Bonn 

(UoB), CHB-MIT 
96.53 - - 

(Jibon et al., 
2023) 

Linear graph CNN and 
DenseNet 

CHB-MIT 96 97 98 

      

(Ilias et al., 2023) 
Short time-Fourier 

transform and gated 
multimodal unit. 

University of Bonn 95.33 - - 

4. Conclusions and Future Scope 

In conclusion, this research introduced an automatic epileptic seizure detection framework using 
FixupPACTBi-LSTM method. Experimental evaluation showed the effectiveness of the proposed 
method in improving seizure detection. During the research, CHB-MIT dataset was used to assess 
the performance of the model, showing that FixupPACTBi-LSTM achieved a high accuracy 
(97.99%), precision (98%), and specificity (97%) signifying its reliability. Building on this discussion, 
proposed LMC-WWO reduced channel selection time of 8769ms, while FixupPACTBi-LSTM 
classifier achieved a minimal computational time of 3817ms, justifying high efficiency.  The 
proposed system was evaluated with accurate results by classifying the types of epilepsy. However, 
this research did not focus on assessing severity of epilepsy. Future research should address this 
aspect to further improve epilepsy diagnosis and treatment.  
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