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Abstract: This study focuses on Model Order Reduction (MOR) to optimize such systems' simulation and 
analysis capabilities in the context of increasingly complex electrical and electronic systems, coupled with 
computational and processing resource limitations. This paper proposes the Mixed Balanced Truncation (MBT) 
algorithm, which combines the strengths of Balanced Truncation (BT) and Positive-Real Balanced Truncation 
(PRBT) while addressing their respective limitations. The MBT algorithm is developed based on Lyapunov and 
Riccati equations, ensuring the stability and passivity of the reduced-order system. The proposed method is 
validated through large-scale electrical circuit systems, using RLC network models as illustrative examples. The 
results demonstrate that MBT achieves effective order reduction with minimal error while reducing 
computational costs. The main contributions of this work in developing the new reduction algorithm include 
the introduction of a novel definition of mixed balanced systems and theoretical advancements through the 
development of theorems, lemmas, and corollaries accompanied by rigorous mathematical proofs. This study 
makes significant theoretical contributions and provides practical solutions for designing, modeling, and 
reducing the complexity of electrical and electronic systems, particularly passive linear systems in general. 

Keywords: Computational Efficiency; Descriptor Systems; Electrical Circuit Simulation; 

Mixed Balanced Truncation; Model Order Reduction 

 

1. Introduction 

In circuit simulation, Modified Nodal Analysis (MNA) is a widely used method for constructing 
mathematical models of circuit behavior (Choupanzadeh and Zadehgol, 2023; Pavan and Temes, 
2023; Hao and Shi, 2022; Günther et al., 2005). This technique represents the input-output 
relationship of a circuit as a linear descriptor system, expressed by the following equation (1). 

{
𝑬𝒙̇(𝒕) = 𝑨𝒙(𝒕) + 𝑩𝒖(𝒕)

𝒚(𝒕) = 𝑪𝒙(𝒕) + 𝑫𝒖(𝒕)
⇔ 𝑮(𝒔): = 𝑫 + 𝑪(𝒔𝑬 − 𝑨)−𝟏𝑩 (1) 

where 𝑬 ∈ ℝ𝒏𝒙𝒏, 𝑫 ∈ ℝ𝒎𝒙𝒎, 𝑪 ∈ ℝ𝒎𝒙𝒏, 𝑩 ∈ ℝ𝒏𝒙𝒎, 𝑨 ∈ ℝ𝒏𝒙𝒏, 𝒙(𝒕) ∈ ℝ𝒏, 𝒖(𝒕) ∈ ℝ𝒎, 𝒚(𝒕) ∈ ℝ𝒎 
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Remark 1. The system described by equation (1) exhibits several key characteristics and 
requirements (these properties ensure the system meets the demands for simulation, analysis, and 
the application of model reduction algorithms):   
- The system is minimal, ensuring no redundant states. 
- The dynamics are stable and passive, indicating that the system does not generate energy and 

all eigenvalues of the pencil matrix pair (E, A) have non-positive real parts. 
- The initial conditions are such that the state variables, inputs, and outputs are all zero. 
- Matrices A and E are nonsingular, with ranks equal to n, and matrices A and E-1A are stable. 
- The matrix D satisfies the condition D + DT ≥ 0, ensuring that the system's output matrix is 

positive semi-definite. 
Dimensionality Reduction (DR) or Model Order Reduction (MOR) is a crucial technique widely 

applied in mathematical modeling across various fields, including electrical and electronic systems 
(Benner et al., 2021; Benner et al., 2020; Fortuna et al., 2012; Schilders et al., 2008). The primary goal 
of DR and MOR is to simplify a complex, high-dimensional model by replacing it with a lower-
dimensional model while preserving the system's essential physical properties and dynamic 
behavior. This simplification significantly reduces computational complexity, enabling faster 
computations required for real-time simulations. Furthermore, it reduces computational workload 
and storage requirements, enhancing hardware performance and cost efficiency, especially in 
resource-constrained environment.  

In large-scale circuit simulations, many model reduction algorithms are applied in various 
critical applications. Among them, methods such as Krylov subspace (Freund, 2022; Freund, 2000), 
Rational Krylov (Ali et al., 2019), Moment Matching (Benner and Feng, 2021; Prajapati and Prasad, 
2020), Asymptotic Waveform Evaluation (Jiang and Yang, 2021), Lanczos technique (Wittig et al., 
2002), Arnoldi iteration (Song et al., 2017; Jiang and Xiao, 2015), Proper Orthogonal Decomposition 
(Gräßle et al., 2020; Manthey et al., 2019), Singular Value Decomposition (Younes et al., 2021), 
Principal Component Analysis (Anaparthi et al., 2005), Padé approximation (Singh et al., 2008), 
Singular Perturbation (Khan et al., 2019; Huisinga and Hofmann, 2018), Matrix Interpolation (Kassis 
et al., 2016; Samuel et al., 2014), frequency weighting balance truncation (Floros et al., 2019; Rydel 
and Stanisławski, 2018), time weighting balance truncation (König and Freitag, 2023), and others 
stand prominent (Kumar and Ezhilarasi, 2023a; Gugercin and Antoulas, 2004).  

During the exploration of foundational methodologies prior to developing a new model order 
reduction algorithm, the research team focused particularly on two techniques: Balanced 
Truncation (BT) (Axelou et al., 2023; Kumar and Ezhilarasi, 2023b; Hossain and Trenn, 2023; Suman 
and Kumar, 2021; Grussler et al., 2021; Antoulas, 2005; Mehrmann and Stykel, 2005) and Positive-
Real Balanced Truncation (PRBT) (Poort et al., 2023; Breiten and Unger, 2022; Zulfiqar et al., 2018; 
Benner and Stykel, 2017; Reis and Stykel, 2010; Reis and Stykel, 2010; Tan and He, 2007; Tan and 
He, 2007). These methods were prioritized due to their ability to preserve the physical properties of 
the original system, specifically stability (for BT) and passivity (for PRBT). Both BT and PRBT ensure 
that reduced-order models retain these crucial physical characteristics, which are essential for 
circuit simulations.  

Balanced Truncation (BT), a classical approach to MOR, was first introduced by Moore in 1981. 
This method has been extensively studied, refined, and applied across various applications (Axelou 
et al., 2023; Kumar and Ezhilarasi, 2023b; Hossain and Trenn, 2023; Suman and Kumar, 2021; 
Grussler et al., 2021; Antoulas, 2005; Mehrmann and Stykel, 2005). BT operates by balancing the 
controllability and observability Gramians of the system and then truncating states with small 
singular values. This technique ensures system stability is preserved and achieves minimal 
reduction error, particularly in cases of moderate-order reduction. However, a notable limitation of 
BT is its inability to maintain the passivity of the original system, which is critical in practical 
applications, such as ensuring that electrical circuits do not generate energy (Breiten and Unger, 
2022).  
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To address the limitations of BT, the Positive-Real Balanced Truncation (PRBT) method was 
developed for positive-real systems (Reis and Stykel, 2010; Tan and He, 2007). PRBT enables model 
order reduction while preserving the system’s passivity, a property that ensures the system cannot 
generate or amplify energy. Numerous studies have explored improvements and applications of 
PRBT, highlighting its significance in various fields (Poort et al., 2023; Breiten and Unger, 2022; 
Zulfiqar et al., 2018; Benner and Stykel, 2017). Although PRBT preserves essential physical 
properties such as stability and passivity, it often leads to larger reduction errors compared to BT 
and involves solving more complex problems, resulting in higher computational costs. 

Several hybrid methods have been proposed to combine the strengths of BT and PRBT while 
mitigating their respective weaknesses (Salehi et al., 2022; Salehi et al., 2021a; 2021b; 2021c; Zulfiqar 
et al., 2020; Lindmark and Altafini, 2017; Zulfiqar et al., 2017; Unneland et al., 2007a; 2007b; Phillips 
et al., 2002). These methods often involve complex balancing techniques or employ mixed 
Gramians. These methods often rely on intricate balancing techniques or the use of mixed 
Gramians. However, their applicability is typically restricted to standard linear systems, rendering 
them unsuitable for direct application to linear descriptor systems, which are frequently 
encountered in circuit analysis models. Furthermore, methods described in studies such as (Salehi, 
Karimaghaee and Khooban, 2021a; Salehi et al., 2022; Salehi, Karimaghaee, and Khooban, 2021b) 
require solving two Riccati equations, which adds computational complexity and cost. 

To overcome these challenges, we propose a novel algorithm named Mixed Balanced Truncation 
(MBT), specifically designed to reduce the order of continuous-time descriptor systems in the 
circuits model. MBT leverages the advantages of both BT and PRBT by incorporating techniques 
that ensure the system remains stable and passive while minimizing computational costs and 
reducing errors. This novel approach addresses the limitations of previous methods and provides 
a more efficient solution for DR in practical applications. 

The primary contributions of this paper include a comprehensive definition of the proposed 
methods, three theorems that establish the theoretical foundation, two lemmas, two corollaries, and 
a new algorithm. The effectiveness and applicability of the proposed MBT method are 
demonstrated through illustration examples and simulations. This study advances the current body 
of literature by providing new insights and practical solutions for model order reduction in large-
scale electronic circuit simulations, representing a significant step forward in this research field. 
This research contributes to the theoretical understanding of MOR. It offers a practical algorithm 
that can be applied to improve the efficiency and performance of electronic and electrical systems. 
The proposed MBT method paves the way for more effective and reliable simulations, crucial for 
designing and analyzing modern complex systems.  

2. Preliminaries 

2.1.  Balanced Truncation (BT) for reducing model order 
The Balanced Truncation (BT) algorithm is constructed on the principle of balancing the 

Grammians of the system. This involves using a non-singular transformation matrix to equalize 
and diagonalize the controllability and observability of Grammians. The reduced-order model is 
then obtained by eliminating the modes associated with minor Hankel singular values, which 
represent low-energy modes with minimal influence on the system's behavior. The implementation 
details of the BT algorithm are presented in (Axelou et al., 2023; Kumar and Ezhilarasi, 2023b; 
Hossain and Trenn, 2023; Suman and Kumar, 2021; Grussler et al., 2021; Mehrmann and Stykel, 
2005; Antoulas, 2005).  
Theorem 1 (Antoulas, 2005). If the system described by Equation (1) is stable, then the matrices Kc 
(controllability Gramian) and Ko (observability Gramian) are symmetric and positive definite. These 
matrices satisfy the following Lyapunov equations (2) and (3). 

𝑨𝑲𝒄𝑬𝑻  + 𝑬𝑲𝒄𝑨𝑻  = −𝑩𝑩𝑻 (2) 

𝑨𝑻𝑲𝒐𝑬 + 𝑬𝑻𝑲𝒐𝑨 = −𝑪𝑻𝑪 (3) 



163 
International Journal of Technology 16(1) 160-175 (2025)  

 

 

 

2.2.  Positive-Real Balanced Truncation (PRBT) for reducing model order 
The Positive-Real Balanced Truncation (PRBT) algorithm extends the principles of BT to address 

passive systems specifically. In this technique, the matrices Jc (control Gramian) and Jo (observation 
Gramian) are computed by solving two Riccati equations. The implementation details of the PRBT 
algorithm are presented in (Poort et al., 2023; Breiten and Unger, 2022; Zulfiqar et al., 2018; Benner 
and Stykel, 2017; Reis and Stykel, 2010; Reis and Stykel, 2010; Tan and He, 2007; Tan and He, 2007).  
Theorem 2 (Reis and Stykel, 2010; Tan and He, 2007). A system described by equation (1) exhibits 
passivity if and only if its transfer function G(s) is of the positive-real type. This condition is met if 
there exist matrices Jc and Jo that satisfy the following Riccati equations (4) and (5).  

𝑨𝑱𝒄𝑬𝑻  + 𝑬𝑱𝒄𝑨𝑻 = (𝑬𝑱𝒄𝑪𝑻 − 𝑩)𝒊𝒏𝒗(𝑫 + 𝑫𝑻)(𝑩 − 𝑬𝑱𝒄𝑪𝑻)𝑻 (4) 

𝑨𝑻𝑱𝒐𝑬 + 𝑬𝑻𝑱𝒐𝑨 = (𝑬𝑻𝑱𝒐𝑩 − 𝑪𝑻)𝒊𝒏𝒗(𝑫 + 𝑫𝑻)(𝑪𝑻 − 𝑬𝑻𝑱𝒐𝑩)𝑻 (5) 

These equations ensure that the system maintains passivity while reducing its order, effectively 
preserving the original system's essential characteristics.  

3. Reduction of Model Order Using Mixed Balanced Truncation 

 The Mixed Balanced Truncation algorithm is utilized to reduce the model order of mixed-
balanced systems. Therefore, it is first necessary to determine whether the system in question 
conforms to this balanced form. A system is said to satisfy the mixed balanced property if it fulfills 
the criteria specified in Definition 1. 
Definition 1. A linear descriptor system described by equation (1) satisfying Remark 1 is termed a 
mixed-balanced system if it meets the following conditions (6) or (7). 

𝑲𝒄  = 𝑲𝒄
𝑻  =  𝑱𝒐  =  𝑱𝒄

𝑻  =  𝑿𝑩 =  𝒅𝒊𝒂𝒈 (𝝍𝟏, 𝝍𝟐, . . . , 𝝍𝒏) (6) 

𝑱𝒐 =  𝑱𝒐
𝑻 =  𝑲𝒄  =  𝑲𝒄

𝑻  =  𝑿𝑩 =  𝒅𝒊𝒂𝒈 (𝝍𝟏, 𝝍𝟐, . . . , 𝝍𝒏) (7) 

where Kc and Jo satisfy Equations (2) and (5), and Jc and Ko satisfy Equations (3) and (4). 
(𝜓1, 𝜓2, . . . , 𝜓𝑛)are the Hankel singular values of the mixed-balanced system with 𝜓1, 𝜓2, . . . , 𝜓𝑛 > 0. 
Remark 2. If the system described by equation (1) does not satisfy the criteria defined in Definition 
1, then it is possible to convert this system into a mixed-balanced system using Theorem 3. 
Theorem 3. Consider the system described by equation (1) satisfying the conditions outlined in 
Remark 1. A non-singular transformation always exists via a transformation matrix Tz, such as 
equation (8) or (9). 

𝑻𝒛
𝑻𝑱𝒐𝑻𝒛 = 𝑻𝒛

−𝟏𝑲𝒄𝑻𝒛
−𝑻 =  𝑿𝑩 =  𝒅𝒊𝒂𝒈 (𝝍𝟏, 𝝍𝟐, . . . , 𝝍𝒏) (8) 

𝑻𝒛
𝑻𝑲𝒐𝑻𝒛 =  𝑻𝒛

−𝟏𝑱𝒄𝑻𝒛
−𝑻  =   𝑿𝑩 =  𝒅𝒊𝒂𝒈 (𝝍𝟏, 𝝍𝟐, . . . , 𝝍𝒏) (9) 

 
Proof of Theorem 3. By applying the Cholesky decomposition to Kc and Jo, followed by performing 
Singular Value Decomposition on the matrix 𝑷𝑇𝑸, being the Cholesky factors, we then calculate Tz 
and its inverse. This results in equations (10) and (11). 

𝑻𝒛
−𝟏𝑲𝒄𝑻𝒛

−𝑻  =   𝑿𝑩
−𝟏/𝟐𝑺𝟏

𝑻𝑸𝑻 × 𝑷𝑷𝑻 × 𝑸𝑺𝟏𝑿𝑩
−𝟏/𝟐

= 𝑿𝑩
−𝟏/𝟐𝑺𝟏

𝑻 × (𝑸𝑻𝑷) × (𝑷𝑻𝑸) × 𝑺𝟏𝑿𝑩
−𝟏/𝟐 

⇔ 𝑻𝒛
−𝟏𝑲𝒄𝑻𝒛

−𝑻 = 𝑿𝑩
−𝟏/𝟐𝑺𝟏

𝑻 × 𝑺𝟏𝑿𝑩𝑺𝟐
𝑻 × 𝑺𝟐𝑿𝑩𝑺𝟏

𝑻 × 𝑺𝟏𝑿𝑩
−𝟏/𝟐 

⇔ 𝑻𝒛
−𝟏𝑲𝒄𝑻𝒛

−𝑻  = 𝑿𝑩
−𝟏/𝟐 × 𝑿𝑩 × 𝑿𝑩 × 𝑿𝑩

−𝟏/𝟐 = 𝑿𝑩 =  𝒅𝒊𝒂𝒈 (𝝍𝟏, 𝝍𝟐, . . . , 𝝍𝒏) 

(10) 

𝑻𝒛
𝑻𝑱𝒐𝑻𝒛 = 𝑿𝑩

−𝟏/𝟐𝑺𝟐
𝑻𝑷𝑻 × 𝑸𝑸𝑻 × 𝑷𝑺𝟐𝑿𝑩

−𝟏/𝟐 = 𝑿𝑩
−𝟏/𝟐𝑺𝟐

𝑻 × (𝑷𝑻𝑸) × (𝑸𝑻𝑷) × 𝑺𝟐𝑿𝑩
−𝟏/𝟐 

⇔ 𝑻𝒛
𝑻𝑱𝒐𝑻𝒛 = 𝑿𝑩

−𝟏/𝟐𝑺𝟐
𝑻 × 𝑺𝟐𝑿𝑩𝑺𝟏

𝑻 × 𝑺𝟏𝑿𝑩𝑺𝟐
𝑻 × 𝑺𝟐𝑿𝑩

−𝟏/𝟐 

⇔ 𝑻𝒛
𝑻𝑱𝒐𝑻𝒛 = 𝑿𝑩

−𝟏/𝟐 × 𝑿𝑩 × 𝑿𝑩 × 𝑿𝑩
−𝟏/𝟐 = 𝑿𝑩 =  𝒅𝒊𝒂𝒈 (𝝍𝟏, 𝝍𝟐, . . . , 𝝍𝒏) 

(11) 

Lemma 1. For a system described by equation (1) satisfying Remark 1, the eigenvalues of the 
matrices KcJo or JcKo are positive and remain invariant under non-singular transformations 
facilitated by the matrix Tz. 
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Proof of Lemma 1. By performing the diagonalization of the matrix product KcJo, we derive 𝑲𝑐𝑱𝑜 =

𝑻𝑧𝜦𝑻−1
𝑧, where Λ is a diagonal matrix containing the eigenvalues ρi of KcJo; Tz represents a matrix 

with eigenvectors of KcJo as its columns. Additionally, we have equation (12). 

𝑲𝒄𝑱𝒐 = 𝑷𝑷𝑻 ×  𝑸𝑸𝑻 = 𝑷 × (𝑸𝑻𝑷)𝑻 ×  (𝑸𝑻𝑷) × 𝑷−𝟏 

⇔ 𝑲𝒄𝑱𝒐 = (𝑻𝒛𝑴𝑩
𝟏/𝟐𝑺𝟐

−𝟏) × (𝑺𝟐𝑿𝑩𝑺𝟏
𝑻) ×  (𝑺𝟏𝑿𝑩𝑺𝟐

𝑻) ×  (𝑺𝟐𝑿𝑩
−𝟏/𝟐𝑻𝒛

−𝟏) ⇔ 𝑲𝒄𝑱𝒐

= 𝑻𝒛𝑿𝑩
𝟐𝑻𝒛

−𝟏 

(12) 

Thus, we can infer that 𝜌𝑖 = 𝜓𝑖
2, where 𝜓𝑖  are the Hankel singular values of the mixed-balanced 

system, satisfying 𝜓𝑖
2 > 0. Therefore, Lemma 1 is proven. 

Lemma 2. For a system described by equation (1) that meets the conditions in Remark 1, achieving 
a mixed-balanced state through a non-singular transformation using the matrix Tz is always 
possible, resulting in the new system matrices described by equation (13). 

𝑬𝑿 = 𝑻𝒛
-1𝑬𝑻𝒛; 𝑨𝑿 = 𝑻𝒛

-1𝑨𝑻𝒛; 𝑩𝑿 = 𝑻𝒛
-1𝑩; 𝑪𝑿 = 𝑪𝑻𝒛; 𝑫𝑿 = 𝑫 (13) 

Proof of Lemma 2. When equations (8) and (13) are substituted into equations (2) and (5), the 
updated system is described by equations (14) and (15). 

𝑨𝑿𝑿𝑩𝑬𝑿
𝑻  + 𝑬𝑿𝑿𝑩𝑨𝑿

𝑻 = −𝑩𝑿𝑩𝑿
𝑻 (14) 

𝑨𝑿
𝑻𝑿𝑩𝑬𝑿, +𝑬𝑿

𝑻𝑿𝑩𝑨𝑿 = (𝑬𝑿
𝑻𝑿𝑩𝑩𝑿 − 𝑪𝑿

𝑻)(𝑫𝑿 + 𝑫𝑿
𝑻)−𝟏(𝑪𝑿

𝑻 − 𝑬𝑿
𝑻𝑿𝑩𝑩𝑿)𝑻 (15) 

These new equations (14) and (15) possess solutions that meet the criteria of Definition 1. Therefore, 

by employing the equivalent transformation with the non-singular matrix Tz, the original system 

converts into the mixed-balanced system, thereby establishing the validity of Lemma 2. 

Algorithm 1. Reduce Model Order Using Mixed Balanced Truncation 

Input: The dynamical system G(s) described by equation 1 satisfying the conditions of Remark 1. 

Output: Reduced-order system described by the reduced matrices: ( , , , , )
r r r r r

E A B C D  

Equivalent transformation of the original system to a mixed-balanced system: 
1. Compute Kc and Jo from equations (2) and (5). 
2. Perform Cholesky decomposition on Kc and Jo as equations (16) and (17). 

𝑲𝑐 = 𝑷𝑷𝑇 (16) 
𝑱𝑜 = 𝑸𝑸𝑇  (17) 

where P and Q are invertible lower triangular matrices. 
3. Decompose the singular values of the product 𝑷𝑇𝑸 as equation (18). 

𝑷𝑇𝑸 = 𝑺1𝑿𝐵𝑺2
𝑇 (18) 

where U and V are orthogonal matrices, and XB is a diagonal matrix containing singular values. 
4. Calculate the conversion matrix Tz and inverse according to equations (19) and (20). 

𝑻𝑧 = 𝑷𝑺2𝑿𝐵
−1/2 (19) 

𝑻𝑧
−1 = 𝑿𝐵

−1/2𝑺1
𝑇𝑸𝑇 (20) 

5. Calculate the updated system matrices of the mixed-balanced system using the 
conversion equation (13). 

Reduce Model Order Using Mixed Balanced Truncation: 
6. Choose the intended reduced dimension r where 0 < r < n. 
7. Compute the projection matrices as equations (26) and (27). 

𝑽𝑀𝐵𝑇 = 𝐓𝑧(:,1:r) (21) 

𝑾𝑀𝐵𝑇 = 𝐓𝑧
−1(1:r,:)𝑇; (22) 

8. Calculate the matrices of the reduced order system as in the equations in (23). 

𝑬𝑟  =  𝑾𝑀𝐵𝑇
𝑇𝑬𝑽𝑀𝐵𝑇; 𝑨𝑟  =  𝑾𝑀𝐵𝑇

𝑇𝑨𝑽𝑀𝐵𝑇; 𝑩𝑟  =  𝑾𝑀𝐵𝑇
𝑇𝑩; 𝑪𝑟  =  𝑪𝑽𝑀𝐵𝑇; 𝑫𝑟 = 𝑫 (23) 

 
Remark 3. In this algorithm, we utilize the Gramians Kc and Jo. Alternatively, we can use the 
Gramians Jc and Ko owing to the balanced and symmetric nature of the system. 
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Corollary 1. The mixed-balanced system obtained from Algorithm 1 (from Step 1 to Step 5) retains 
the properties described in Remark 1. The control matrix XBc and the observer matrix XBo of the 
mixed-balanced system are symmetric, positive definite diagonal matrices, as in expression (24). 

𝑿𝐵𝑐  =   𝑿𝐵𝑜 =  𝑿𝐵  =  𝑑𝑖𝑎𝑔 (𝜓1, 𝜓2, . . . , 𝜓𝑛) (24) 

Proof of corollary 1. To verify the stability and passivity of the resulting mixed-balanced 
system, we solve the Lyapunov equation for the new control matrix XBc and the Riccati 
equation for the new observation matrix XBo, as specified in equations (25) and (26), 
respectively. 

𝑨𝑋𝑿𝐵𝑐𝑬𝑋
𝑇  + 𝑬𝑋𝑿𝐵𝑐𝑨𝑋

𝑇 = −𝑩𝑋𝑩𝑋
𝑇 (25) 

𝑨𝑋
𝑇𝑿𝐵𝑜𝑬𝑋 + 𝑬𝑋

𝑇𝑿𝐵𝑜𝑨𝑋 = (𝑬𝑋
𝑇𝑿𝐵𝑜𝑩𝑋 − 𝑪𝑋

𝑇)𝑖𝑛𝑣(𝑫𝑋 + 𝑫𝑋
𝑇)(𝑪𝑋

𝑇 − 𝑬𝑋
𝑇𝑿𝐵𝑜𝑩𝑋)𝑇 = 𝟎 (26) 

where: 

𝑿𝐵𝑐 = 𝑻𝑧
−1𝑲𝑐𝑻𝑧

−𝑇 =  𝑿𝐵  =  𝑑𝑖𝑎𝑔 (𝜓1, 𝜓2, . . . , 𝜓𝑛) (27) 

𝑿𝐵𝑜 = 𝑻𝑧
𝑇𝑱𝑜𝑻𝑧 =  𝑿𝐵  =  𝑑𝑖𝑎𝑔 (𝜓1, 𝜓2, . . . , 𝜓𝑛) (28) 

The matrices XBc and XBo exhibit diagonal symmetry and positive definiteness, confirming the 
conditions specified in Theorem 1 and Theorem 2. Therefore, the resulting mixed-balanced system 
shows stable and passive behavior 
Theorem 4: The reduced-order system obtained from Algorithm 1 maintains the stability and 
passivity of the original system (1). 
Proof of Theorem 4. Equations (25) and (26), when represented as matrix blocks, lead to equations 
(29) and (30). 

[
𝒂11 𝒂12

𝒂21 𝒂22
] [

𝒙𝐵1 𝟎
𝟎 𝒙𝐵2

] [
𝒆11 𝒆12

𝒆21 𝒆22
]

𝑇

 + [
𝒆11 𝒆12

𝒆21 𝒆22
] [

𝒙𝐵1 𝟎
𝟎 𝒙𝐵2

] [
𝒂11 𝒂12

𝒂21 𝒂22
]

𝑇

= − [
𝒃1

𝒃2
] [

𝒃1

𝒃2
]

𝑇

 (29) 

[
𝒂11 𝒂12

𝒂21 𝒂22
]

𝑇

[
𝒙𝐵1 𝟎

𝟎 𝒙𝐵2
] [

𝒆11 𝒆12

𝒆21 𝒆22
] + [

𝒆11 𝒆12

𝒆21 𝒆22
]

𝑇

[
𝒙𝐵1 𝟎

𝟎 𝒙𝐵2
] [

𝒂11 𝒂12

𝒂21 𝒂22
] 

= ([
𝒆11 𝒆12

𝒆21 𝒆22
]

𝑇

[
𝒙𝐵1 𝟎

𝟎 𝒙𝐵2
] [

𝒃1

𝒃2
] − [𝒄1 𝒄2]𝑇)𝑖𝑛𝑣(𝑫 + 𝑫𝑇) 

× ([𝒄1 𝒄2]𝑇 − [
𝒆11 𝒆12

𝒆21 𝒆22
]

𝑇

[
𝒙𝐵1 𝟎

𝟎 𝒙𝐵2
] [

𝒃1

𝒃2
])𝑇 

(30) 

where: 
𝒙𝑩𝟏 = 𝒙𝑩𝟏

𝑻 =  𝒅𝒊𝒂𝒈 (𝝍𝟏, 𝝍𝟐, . . . , 𝝍𝒏) (31) 

𝒙𝑩𝟐 = 𝒙𝑩𝟐
𝑻 =  𝒅𝒊𝒂𝒈 (𝝍𝟏, 𝝍𝟐, . . . , 𝝍𝒏) (32) 

(𝑬𝒓, 𝑨𝒓, 𝑩𝒓, 𝑪𝒓, 𝑫𝒓) = (𝒆𝟏𝟏, 𝒂𝟏𝟏, 𝒃𝟏, 𝒄𝟏, 𝑫) (33) 
 
Following this, the reduced-order system satisfies the Lyapunov condition expressed in 
equation (34). 

𝒂11𝒙𝐵1𝒆11 + 𝒆11𝒙𝐵1𝒂11
𝑇 = −𝒃1𝒃1

𝑇
 (34) 

and the Riccati equation (35). 

𝒂11𝒙𝐵1𝒆11 + 𝒆11𝒙𝐵1𝒂11
𝑇 = (𝒆11

𝑇𝒙𝐵1𝒃1 − 𝒄1
𝑇)𝑖𝑛𝑣(𝑫 + 𝑫𝑇)(𝒄1

𝑇 − 𝒆11
𝑇𝒙𝐵1𝒃1)𝑇 = 𝟎 (35) 

xB1 is a positive definite, symmetric, and diagonal matrix, meeting the requirements of Remark 1, 
Theorem 1, and Theorem 2, so the reduced-order system obtained from Algorithm 1 preserves both 
the stable and passive of the original system (1). 
Corollary 2. The system was reduced using Algorithm 1, which employs the controllability Gramian 
xBc and the observability Gramian xBo. Both Gramians exhibit diagonal, symmetric, and positive 
definite properties, containing r Hankel singular values derived from the original mixed-balanced 
system. 
Proof of Corollary 2. From equations (29) to (32), it follows that what must be proven.  
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Theorem 5. Considering system (1) satisfying Remark 1. When applying the MBT algorithm for 
order reduction, the upper bound of error is defined by condition (36). 

‖𝐺𝑀𝐵𝑇(𝑠) − 𝐺(𝑠)‖𝐻∞ ≤ 2 ∑ 𝜓𝑖

𝑛

𝑟+1

 (36) 

Proof of Theorem 5. Transforming equation (15) into equation (37) 

𝑨𝑋
𝑇𝑿𝐵𝑬𝑋, +𝑬𝑋

𝑇𝑿𝐵𝑨𝑋 = −𝑪𝑛
𝑇𝑪𝑛 (37) 

where 𝑪𝑛
𝑇 is as in equation (38) 

𝑪𝑛
𝑇 = (𝑬𝑋

𝑇𝑿𝐵𝑩𝑋 − 𝑪𝑋
𝑇)𝑠𝑞𝑟𝑡(𝑖𝑛𝑣(𝑫𝑋 + 𝑫𝑋

𝑇)) (38) 

System (1) is a mixed-balanced system, and equations (2) and (5) are consequently converted into 
equations (39) and (40). 

𝑨𝑋𝑿𝐵𝑬𝑋
𝑇  + 𝑬𝑋𝑿𝐵𝑨𝑋

𝑇 = −𝑩𝑋𝑩𝑋
𝑇 (39) 

𝑨𝑋
𝑇𝑿𝐵𝑬𝑋 + 𝑬𝑋

𝑇𝑿𝐵𝑨𝑋 = −𝑪𝑛
𝑇𝑪𝑛 (40) 

These equations are two Lyapunov equations. Based on the transformations and demonstrations 
in the BT algorithm, the error according to the Hinf norm between the original and reduced-order 
systems satisfies Theorem 5. 

4. Illustrative example 

Considering the RLC network as a model of a transmission line (Akram et al., 2020), and selecting 
the number of nodes k = 8, the order of the system is n = 15. By convention, the state variables 𝒙𝟐𝒊−𝟏 
represent the voltage across Ci, 𝒙𝟐𝒋denotes the current through Lj, u is the input voltage, and y is the 

output current, where i ranges from 1 to 2k and j ranges from 1 to 2k-1. 
We apply the BT, PRBT, and MBT algorithms to reduce the order of the RLC ladder network 

model from r = 1 to r = n-1. Figure 1 illustrates the Absolute Error plot using the H-infinity norm 
between the reduced-order and original systems. Table 1 shows the absolute errors corresponding 
to each order r of the model. 

 

Figure 1 Absolute error plot with decreasing order of r 

The plot in Figure 1 depicts the Absolute Hinf Error versus the model order r for three model 

reduction algorithms: BT, PRBT, and MBT. From this result, we have the following Analysis and 
Observations: 
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- MBT algorithm: MBT shows stable and low error values across all model orders. This indicates 

that MBT is highly reliable and maintains the accuracy of the reduction order model. The error 

curve for MBT (green dash-dot line) suggests that MBT is an effective method for model 

reduction. 
- BT algorithm: BT's error curve (red dashed line) is stable and does not show significant 

variations, indicating that low errors are maintained across different model orders. BT, like 

MBT, proves to be a reliable method for model reduction. 
- PRBT algorithm: PRBT shows significant fluctuations in error values across different model 

orders. As the order decreases, the error of PRBT (represented by the blue solid line) increases 

rapidly, indicating a lack of stability. The error values vary considerably, depending on the 
chosen model order. This suggests that PRBT might be less reliable and sensitive to the choice 

of r. 

From Table 1, in conjunction with the numerical results, several insights can be gleaned: 
- Both MBT and BT algorithms show consistent and stable error reduction across all model 

orders. They progressively reduce the H-infinity norm error without significant fluctuations, 

making them both reliable choices for model order reduction. 
- While PRBT exhibits large fluctuations in errors, MBT maintains a steady, demonstrating 

superior stability 

 
The Hankel singular Values (HSV) of the transmission line model, upon transformation into a 

mixed-balanced system, are detailed in Table 2. In table 2, the HSV gradually decreases as the order 

r increases. This trend aligns with both theoretical expectations and practical observations, as 
smaller HSV values indicate a lesser loss of information from the original system, consequently 

resulting in a proportional increase in the reduction error as the system order decreases. 

  By comparing Table 2 with the error reduction upper bound formula specified by the MBT 
method in equation (36), the maximum values of the estimated error are listed in the "Proposed 

error" column of Table 1. When these predicted errors are compared with the real errors shown in 

the "MBT error" column of Table 1, it is clear that the formula presented in Theorem 6 is accurate. 
  Performing order reduction on the RLC ladder network model to achieve a 3rd-order 

representation, we generate Absolute Error in Amplitude (dB) vs. Frequency (rad/sec), Phase Error 

(dec) vs. Frequency (rad/sec), and Absolute Error (Amplitude) vs. Time (second) plots for the three 
methods in Figure 3 and Figure 4, respectively. 

 

Table 1 Comparison of H-infinity Norm Errors between BT, PRBT, and MBT 

Model Order (r) BT Error PRBT Error MBT Error Proposed error 

1 1.749991 1.866309 1.717820 13.65631 
2 1.734798 4.938759 1.574066 12.31516 
3 1.739218 8.155481 1.637961 10.98345 
4 1.646226 2.999828 1.525381 9.707632 
5 1.534106 3.504173 1.599395 8.461003 
6 1.502363 7.664413 1.353905 7.287345 
7 1.364971 35.10419 1.451378 6.160561 
8 1.328143 161.3269 1.299514 5.111082 
9 1.240640 4610.024 1.220345 4.118088 
10 1.154465 2971.094 1.127298 3.196535 
11 1.083673 165.6717 0.985305 2.329888 
12 1.021401 57.23219 0.917855 1.518259 
13 0.9848805 60.56017 0.901017 0.945749 
14 0 0 0 0 
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Table 2 The HSV of mixed-balanced system 

μi HSV μi HSV μi HSV 

1 1.226872736948283 6 0.586829045407931 11 0.433323477959059 
2 0.670576895359906 7 0.563391797949794 12 0.405814550194131 
3 0.665852832023017 8 0.524739486454494 13 0.386254508104516 
4 0.637910984013295 9 0.496497172492625 14 0.372874846777396 
5 0.623314517294628 10 0.460776660475757 15 0 

   

  From the Frequency Domain Error plot in Figure 3, we have the Comparison (Magnitude and 
Phase Errors) as follows: 

  - Magnitude Error: 

  + error_BT (red dashed line): The magnitude error increases from approximately -20 dB at low 
frequencies to 0 dB at high frequencies, suggesting that the BT algorithm exhibits higher error 

compared to both PRBT and MBT. 

+ error_PRBT (blue solid line): The magnitude error of PRBT is lower and more stable than BT, but 
shows slight fluctuations in the mid-frequency range. 

+ error_MBT` (green short dashed line): The magnitude error of MBT closely matches PRBT at high 

and low frequencies, indicating that MBT performs as well or better than PRBT and significantly 
better than BT. 

- Phase Error: 

  + error_BT: The phase error for BT is relatively low and stable at low and mid frequencies but 
increases slightly at high frequencies. 

  + error_PRBT: The phase error for PRBT is higher than BT, especially at low and mid frequencies. 

  + error_MBT: The phase error for MBT is lower than PRBT and comparable to BT at high 
frequencies, indicating that MBT maintains better phase accuracy. 

  - Accuracy in Frequency Domain: 

  + BT exhibits larger errors in both magnitude and phase within the frequency domain, in 
comparison to PRBT and MBT. 

  + PRBT improves magnitude accuracy but has higher phase errors. 

  + MBT maintains the smallest errors in both magnitude and phase, especially in the high-
frequency range, indicating better accuracy in the frequency domain. 

 

Figure 2 Frequency Domain Error plot between BT, PRBT, and MBT Algorithms 
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Figure 3 Time Domain Error plot between BT, PRBT, and MBT Algorithms 

  From The Time Domain Error plot as Figure 4, we have the Comparison between BT, PRBT, and 
MBT algorithms as follows: 

  - error_BT: The time domain error for BT is smaller and more stable initially but tends to increase 

over time. 
  - error_PRBT: The time domain error for PRBT oscillates around zero, but with larger oscillations 

than BT. 

  - error_MBT: The time domain error for MBT is very small and follows PRBT closely, indicating 
performance that is equivalent to or somewhat better than PRBT but larger than BT. 

  Overall evaluation: 
  - MBT proves to be a performing method in both the frequency and time domains, with small 

and stable errors. 

  - PRBT is also a good method, particularly for reducing magnitude errors but has higher phase 

errors. 
  - BT performs worse compared to PRBT and MBT, with larger errors in the frequency domain. 

  - Both the MBT and BT algorithms demonstrate high reliability for model order reduction, 

offering stable and consistent performance across various orders. They both achieve high accuracy 
at higher orders, making them suitable for practical applications requiring precise reduced models. 

  Therefore, MBT is the preferred method for minimizing errors and maintaining the highest 

accuracy in model order reduction systems. MBT proves to be a superior choice when compared to 
PRBT due to its consistent, low error performance and preserved passivity, while it matches the 

robustness, reliability, and stability of BT. 

5. Discussion and Future Directions 

5.1.  Contributions to Scientific Theory of the Research Results 
The research team developed a model order reduction algorithm (Algorithm 1: Reduce Model 

Order Using Mixed Balanced Truncation, MBT) to address the limitations of two original 
algorithms. Specifically, MBT outperforms BT by preserving both stability and passivity, offering 
lower computational costs and reducing errors compared to PRBT. 

During the development of MBT, the authors presented mathematical arguments accompanied 
by proofs, including Definition 1: Mixed-balanced system definition; Theorem 3: Existence of non-
singular transformation; Lemma 1: Eigenvalue invariance under transformation; Lemma 2: 
Achieving mixed-balance via transformation; Corollary 1: Properties of the mixed-balanced system; 
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Theorem 4: Stability and passivity of reduced-order systems; Corollary 2: Gramian properties in 
reduced systems; Theorem 5: Error bound in MBT algorithm. 

The MBT reduction algorithm simplifies passive circuits with numerous state variables, 
minimizing computational costs and optimizing the simulation and analysis of high-order systems. 

The algorithm and theoretical findings can be applied to the design, development, testing, 
evaluation, measurement support, response prediction, risk warning, and functional verification of 
high-order electrical systems using lower-order circuit models. 

The content and results of this research can serve as reference material for learning, research, and 
teaching on system identification, model order reduction, and circuit design and simulation. 

The study provides knowledge and source codes to support the development of a reduction 
toolbox for linear systems in MATLAB. 

In resource-constrained environments: 
- Complex systems with large, multi-source datasets: Obtaining comprehensive input signals 

poses challenges in designing, analyzing, surveying, evaluating, predicting, modeling, identifying, 
and simulating systems. MBT focuses on the most impactful input and output signals identified 
through preliminary assessments of measurable operational parameters. It does not require a full 
system model. Instead, it identifies key signals, eliminates less impactful components, and 
generates a reduced-order model that effectively simulates critical responses without detailed data. 
This method optimizes resource usage, ensures system performance, and preserves key feedback 
properties. 

- Based on statistical datasets: MBT remains crucial in reducing complexity by focusing on the 
most significant state variables.  This not only simplifies the system but also accelerates signal 
processing and reduces computational load, ensuring enhanced efficiency while preserving the core 
dynamic characteristics of the system. 

5.2.  Computational Costs of the Algorithms 
The BT, PRBT, and MBT algorithms rely on the principle of Gramian balancing, followed by 

truncation of balanced equivalent system matrices. The computational complexity differences stem 

from solving matrix equations to determine the observability and controllability Gramians of the 

original system. 

Lyapunov equation complexity: 𝑶(𝒏𝟑 + 𝒏𝒎𝟐). If n m , the 𝑶(𝒏𝟑) term dominates. If 𝒎 ≫ 𝒏, 

the 𝑶(𝒏𝒎𝟐) term dominates. For 𝒏 ≈ 𝒎 , the overall complexity is 𝑶(𝒏𝟑).  
Performance Consideration: The complexity is primarily determined by the sizes of n and m. In 

cases where m is relatively small, the computational cost is dominated by the matrix-matrix 

multiplications involving A, P, and E. Solving two Lyapunov equations in BT incurs this cost twice. 

Riccati equation complexity: 𝑶(𝒏𝟑 + 𝒏𝟐𝒎 + 𝒏𝒎𝟐 + 𝒎𝟑). If 𝒏 ≫ 𝒎 , the complexity is dominated 

by 𝑶(𝒏𝟑). If 𝒎 ≫ 𝒏, the complexity is dominated by 𝑶(𝒎𝟑). For 𝒏 ≈ 𝒎 , the overall complexity is 

𝑶(𝒏𝟑). The inversion of 𝑫 + 𝑫𝑻 and the multiplication involving B, C and D contribute significantly 
to the complexity when mmm is large. This is critical for performance optimization. Solving two 

Riccati equations in PRBT doubles this cost. 

In MBT, determining the Gramians involves solving one Lyapunov equation and one Riccati 
equation, making MBT less computationally expensive than PRBT. 

5.3.  Limitations of the MBT Algorithm 
While MBT achieves better computational efficiency and lower reduction errors than PRBT, its 

complexity remains higher than BT, with greater deviations from the original model. 

As with most algorithms, MBT's accuracy and processing speed depend on factors such as 

software data types, matrix solver precision, hardware configuration, firmware performance, 
programming language, implementation optimization, and the complexity of the original system's 

data. 
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MBT is designed for linear systems (1) meeting requirements in Remark 1. Systems not satisfying 

Remark 1 require intermediate transformations to conform to the required format. 

Solving complex matrix equations in MBT can lead to increased computational costs for systems 

with large datasets, posing challenges for hardware with limited processing capabilities. 

5.4.  Development Directions 
Reduce algorithm complexity by employing Newton iteration, low-rank approximations, or 

rational Krylov subspace methods. 
To minimize reduction-induced errors, integrate optimization techniques (De Guzman et al., 

2024; Jusuf et al. 2024; Wichapa et al. 2024; Nitnara and Tragangoon, 2023; Hendrarini et al., 2022), 

with objectives such as error minimization and preservation of system physical properties. 
For nonlinear systems, preprocess using linearization algorithms before applying MBT. 

For unstable systems or those with mixed stable/unstable components: 

+ Decompose into stable and unstable subsystems, apply MBT to the stable component, and 

combine the reduced-order model with the unstable component. 

+ Use partial stabilization techniques to transform the unstable system into a stable one before 

applying MBT. 

6. Conclusions 

In this paper, we introduced a novel Mixed Balanced Truncation (MBT) algorithm tailored for 

reducing linear time-invariant continuous-time descriptor systems, specifically within the context 
of electrical and electronic circuit simulations. Our approach aimed to amalgamate the benefits of 

Balanced Truncation (BT) and Positive-real balanced truncation (PRBT) while mitigating specific 

drawbacks. The MBT algorithm demonstrated superior performance in consistently maintaining 
low error values across various model orders, indicating high reliability for model order reduction 

with minimal loss of accuracy. Compared to BT and PRBT, MBT showed marked improvement in 

error metrics, with a steady and predictable decrease in errors, significantly outperforming PRBT, 

which had large fluctuations and sensitivity to reduction order. MBT retained the essential 

properties of the original system, including stability and passivity, as confirmed by theoretical 

proofs and numerical simulations. Its application to an RLC ladder network model effectively 
reduced computational complexity while preserving the original system's dynamic behavior, which 

is valuable for resource-limited environments. Additionally, our study contributes to the theoretical 

understanding of model order reduction by providing new insights into the transformation and 
balancing of descriptor systems supported by established theorems, lemmas, and corollaries. Future 

work could explore further optimizations and extensions of the MBT approach to other types of 

systems and applications, thereby broadening its impact and utility within electronics and electrical 
engineering.  
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