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Abstract. Maintaining a high level of safety awareness among drivers is essential to ensure the safe 
operation of automated vehicles (AVs). Many factors can influence the model's performance in 
achieving accuracy, such as the application of spatial filters, the type of feature selection, and the 
classifier. Complex modeling, accuracy achievement, and learning time are also practically difficult. 
No study has discussed the application of the Laplacian Spatial Filter (LSF) to driver vigilance 
classification performance. Therefore, this study aimed to analyze driving vigilance detection using 
LSF and linear classification models. The study involved signal preprocessing and feature extraction 
in signal energy, followed by the application of Kruskal - Wallis (KW) and Minimum Redundancy - 
Maximum Relevance (MRMR) for feature selection. Finally, various classification models such as 
Linear Discriminant Analysis (LDA), Logistic Regression (LR), Naive Bayes (NB), and Support Vector 
Machine (SVM) were used for exploration. The results were significant, with SVM without LSF 
achieving the highest average accuracy of 84.26% in the intra-subject and 70.15% across the 
subject. Based on this study, LSF was not recommended for EEG-based driver vigilance detection. 
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1. Introduction 

Driver vigilance is crucial for road safety, accident prevention, and meeting legal and 
ethical obligations as a driver. Sustaining attention and vigilance while driving diminishes 
hazards and improves the total safety of the driving environment for all individuals (Zainy 
et al., 2023; Zuraida, Wijayanto, and Iridiastadi, 2022). The main objective of automated 
driving, which uses computer systems and artificial intelligence, is to significantly reduce 
accidents caused by human error (Gan et al., 2023; Zhou, 2023). Despite the current 
cognitive deficiencies in most AVs (Cui et al., 2022), this potential of automated driving is a 
promising step towards a safer driving environment. According to the benchmarks set by 
the Society of Automotive Engineers (SAE), most AVs are found to operate at the L3 stage.  

Fundamentally, current automated driving software lacks the cognitive capacity to 
quickly predict and evaluate potential dangers, especially when faced with accidents or 
“edge cases,” including uncontrolled circumstances. Ensuring a trained safety driver  
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constantly supervises these AVs is crucial (Gupta et al., 2023; Pranoto et al., 2023). To 
achieve this aim, the company has recruited and provided safety training to its fleet of 
vehicles. Driver distraction and challenges in maintaining focus are often observed in the 
context of automated driving. In this scenario, securing control of an unwary driver usually 
takes a long time. A study showed that performing a monotonous driving task for 30 
minutes could affect the ability of an individual to maintain vigilance (Li et al., 2023a; Oztel, 
2021). Therefore, monitoring the safety attention of the driver is very important. 

Previous methods primarily rely on four distinct sources of information: physical 
characteristics, vehicle characteristics, physiological signals, and information from multiple 
sources (Luna et al., 2022). Vehicle characteristics include braking distance, lane departure, 
speed, and steering control. When drivers feel hyper-vigilant, the ability to perform 
essential driving activities is reduced, affecting personal operations. (Li et al., 2022a; 
Arefnezhad et al., 2019; Li et al., 2017). Moreover, drivers’ conduct and facial expressions 
can instinctively signify specific mental states (Li et al., 2023B). Decreased driver 
attentiveness can change many physical characteristics, such as frequency of blinking, 
duration of eye closure, Percentage of Eye Closure (PERCLOS), stance, gaze, and nodding 
frequency (Li et al., 2022b). As drivers become less aware, motorists tend to blink more 
often and keep individual eyes closed for longer, and eye movements may slow down due 
to reduced energy (Rogel et al., 2024). Using these characteristics to determine the driver’s 
level of vigilance is an indirect method, and the detection accuracy can be improved. 
Additionally, physical feature-based methods are commonly susceptible to external 
influences such as sunglasses and low illumination at night. 
 Driver vigilance is closely connected through an Electroencephalogram (EEG) used to 
detect and analyze electrical signals from the brain. This method helps studies acquire 
important perceptions of brain activity (Othmani et al., 2023; Nurfirdausi et al., 2022; Bi 
Xia, and Fei 2021; Teng, Bi, and Liu, 2018). EEG is a time series signal often reliable for 
assessing vigilance (Zhang and Eskandarian, 2021; Zhang and Etemad, 2021). However, the 
raw form of the EEG signal, which represents changes in electrical potential over time, 
cannot be directly used to assess vigilance (Wang et al., 2023; Yu et al., 2019). The signal 
frequency band changes' power spectrum is often used to evaluate vigilance. Following this 
discussion, spatial filters make records more closely resemble those obtained with ideal 
reference electrodes by removing global noise and increasing the activity of local sources 
under the electrodes to improve signal extraction. The bibliography uses various spatial 
filtering methods to improve the features of multiple types of EEG signals. A study by Alonso 
and Vellasco (2016) explained that the filtering methods are evaluated to identify 
individuals capable of increasing brain signal characteristics and improving classification 
accuracy. Laplacian Spatial Filter (LSF) produced the highest average results, showing a 
10% increase in proper classification compared to unfiltered data. Tsuchimoto et al. (2021) 
concluded that LSF outperformed in increasing the ratios of noise level to isolate 
sensorimotor behavior from EEG.  
 Previous studies show that using LSF has a beneficial effect on EEG categorization 
outcomes. However, the impact of the algorithm of LSF on driver vigilance-based EEG 
classification performance remains uncertain. Achieving high accuracy and reducing 
learning time when using complex artificial neural networks is challenging. Therefore, this 
study aimed to compare the classification performance of linear models with and without 
using LSF. The investigation uses a dataset on driving tasks totaling eight subjects 
conducted at night, previously published in (Zheng and Lu, 2017). The linear classification 
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models used include Linear Discriminant Analysis (LDA), Logistic Regression (LR), Naive 
Bayes (NB), and Support Vector Machine (SVM). Considering how effectively these models 
can handle EEG data (Nacpil et al., 2023; Gaur et al., 2021; Di et al., 2019; Sharmila and 
Geethanjali, 2016), the study understands that linear classification algorithms have 
significant potential as the most effective way to process EEG signals. Moreover, this finding 
also applies feature selection using Kruskal - Wallis (KW) and Minimum Redundancy - 
Maximum Relevance (MRMR), which aims to optimize accuracy and learning time 
(Lazcano-Herrera et al., 2023; Siuly et al., 2020). The results of this study show the effect of 
applying LSF on the performance of each linear classification model. 
 
2. Methods 

2.1. Dataset 
Detailed experiments were conducted on public datasets to evaluate the performance 

of the classification model against LSF implementation. EEG collection of driving data 
named SEED-VIG collected private data transferred locally, which was supplied by (Zheng 
and Lu, 2017). Additionally, the dataset contained EEG, EOG (Electrooculogram), and eye 
movement data from 23 participants using a driving task simulation system. The view of 
the highway was projected onto an LCD screen in front of the modified vehicle to copy real-
life events, as shown in Figure 1. Following this discussion, the simulated driving settings 
in virtual reality consisted of various weather conditions and road types. 

 

Figure 1 Driving simulation scenarios. 

 
Figure 2 Placement of electrodes for EEG measurement. 
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The Neuroscan system and eye-tracking glasses captured forehead EOG, EEG, and 
simultaneous eye motions during the study. The simulated driving studies were conducted 
in cars without extra engines and other parts. In the experiments, the participants were 
instructed to operate the vehicle using the steering mechanism and accelerator foot pedal. 
The driving scenarios were modified in real-time based on the subject's actions. Moreover, 
subjects do not receive any form of feedback after sleeping. 

The Neuroscan ESI measuring device acquired EEG and EOG systems with a frequency 
sampling of 1000 Hz. The EEG cap had 64 electrodes and was positioned using the 
international 10-20 standard. In addition, the EEG function only recorded 11 posterior EEG 
channels and six temporal EEG channels, containing 'FT7', 'FT8', 'T7', 'T8', 'TP7', 'TP8', 'CP1', 
'CP2', 'P1', 'PZ,' 'P2', 'PO3', 'POZ,' 'PO4', 'O1', 'OZ', 'O2 ' as shown in Figure 2. A total of 4-
channel forehead EOGs were provided in this data set for further analysis. Recordings of 
EEG signals were obtained from the posterior using 11-channel and 6-channel (orange 
color) and temporal location (blue color), correspondingly. Following the process, an 
infrared camera was installed on the SMI Eye Tracking Glasses 2 to capture eye gaze and 
multiple ocular motions, including eye blinks, saccades, and fixations. The labels in this 
dataset were PERCLOS levels measured by the eye tracker, as shown in Equation 1. The 
interval variables are derived from the summation of blink, fixation, saccade, and CLOS. The 
subject was annotated as awake when the PERCLOS level was less than 0.35. This subject 
was declared drowsy when the PERCLOS value was higher than 0.7. During the study, the 
subject was annotated tired between 0.35 and 0.7. 

 

𝑃𝐸𝑅𝐶𝐿𝑂𝑆 =
𝑏𝑙𝑖𝑛𝑘+𝐶𝐿𝑂𝑆

interval
 

(1) 

 

 

Figure 3 Number of samples for each class in each subject 

The 17-channel dataset contained the same experimental tasks but allowed the 
generation of different features. Assessing the volume of information in each data set to 
evaluate the results obtained during the classification process was important. Figure 8 
shows a box diagram of the number of EEG samples for the dataset. This study selected a 
collection of brain signals from eight subjects obtained from night experiments. The total 
EEG samples from each class contained 2393 awake states, 3454 tired, and 1233 drowsy 
samples. Moreover, one file contained EEG samples obtained from one subject. The number 
before each file name was used for each subject in this study. The sample size in percentage 
for each class is shown in Figure 3. 

2.2.  Tools and Materials 
 All computing processes were conducted on a desktop running Windows 11 64bit 
operating system, RTX 4080 super graphics card, on a 14th-generation Intel Core i9 



1716  Evaluation of Laplacian Spatial Filter Implementation in Detecting Driver Vigilance Using 
Linear Classifier 

processor. During the study, computing was implemented in MATLAB application version 
2023b. The EOG signal in the raw EEG data was ignored, and the EEG signal was then 
decomposed using the Fast-ICA method (Yue et al., 2022). The artifact signal was also 
cleaned using the Independent Component Label (IC-Label) toolbox (Pion-Tonachini, 
Kreutz-Delgado, and Makeig, 2019). All artifacts originating from eye blinks, heartbeats, 
muscle movements, and other artifacts were removed. 

2.3.  Preprocessing 
 The raw EEG data passed through processing using a band-pass finite impulse 
response (FIR) filter to eliminate non-brain signals. Studies have different methods for 
defining the boundaries of EEG frequency, but this finding selected the range of 1 - 75 Hz. 
The band-stop FIR filter eliminated signals with a 49 - 51 Hz frequency derived from electric 
current. First, the average signal was computed across all EEG electrodes and was 
eliminated from the EEG signal for every time point. The objective was to generate a 
reference that was silent or electrically neutral. Second, baseline signal correction was 
performed to mitigate the influence of significant aberrations in the EEG signal that 
exceeded acceptable limits. The EEG signal baseline was adjusted by subtracting the 
average time value starting at the beginning of the baseline period and continuing through 
the end of the stimulus phase. 

 
Figure 4 Pre-processing procedure of raw EEG signals 

 The EEG data was filtered during the study to eliminate external noise. However, 
internal artifacts originating from individuals, such as eye blinks, heartbeats, muscle 
movements, and other artifacts, had not been removed. Artifact filtering was essential for 
the purification of the EEG signal. Moreover, Independent Component Analysis (ICA) was 
implemented to characterize the constituent elements of the EEG signal. The fast-ICA 
algorithm used in this study (Yue et al., 2022) comprised two main components, namely 
signal preprocessing and independent component extraction. Preprocessing consisted of 
two sequential steps: signal concentrating and whitening. The input data was required to 
be whitened for the Fast-ICA algorithm to work properly with negative entropy. Following 
the discussion, the primary method used by Fast-ICA was to repeatedly identify an unmixed 
EEG signal that optimized the non-Gaussian measure. The assessment of non-Gaussian data 
was quantified using entropy. Therefore, the algorithm selected negative entropy to 
compute the unmixed EEG signal. The IC-Label algorithm selected components that did not 
originate from the brain (Pion-Tonachini, Kreutz-Delgado, and Makeig, 2019). Immediately, 
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the EEG signal was purified against any interference and unwanted elements; the signal was 
divided into segments with an 8-second duration. Figure 4 shows the comprehensive 
preprocessing steps in the study. 

2.4.  Feature Extraction 
 There were two schemes for the feature extraction process, and the difference in these 
schemes was in the use of LSF, as shown in Figure 5. Following the preprocessing stage, a 
single-subject EEG data sample was represented as a matrix with dimensions of 
17x1600x885. Value 17 corresponded to the number of channels, while 1600 reflected the 
signal duration, equivalent to 8 seconds. Before feature extraction, the energy contained in 
each EEG band was determined by analyzing the power in each channel. Equation 2, which 
represented LSF, was then applied to each EEG sample acquired from the preprocessing 
phase. 

 
Figure 5 Procedure for extracting EEG features 

 

𝑒𝑖
𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝑡) = 𝑒𝑖(𝑡) −

1

𝐾
∑ 𝑒𝑗

𝐾
𝑗 (𝑡)

 

(2) 

LSF calculated the difference between the average value of all nearby electrodes and 
the value of the analyzed electrode (Alonso and Vellasco, 2016). 

ie  was the electrode, and 

j  represented the index of the surrounding electrodes K. The Laplacian filtered signal was 

then computed according to Equation 3. Based on sE  the previously given definition, for 

every EEG section, sE  features were extracted from five different frequency ranges, namely 

delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13– 30 Hz), and gamma (31–75 Hz). 

 

𝐸𝑠 =
∑ 𝑒𝑖𝑗

2𝑛
𝑗=1
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𝑚
𝑖=1

 

(3) 

All sE  features used band-pass FIR filtering with non-overlapping 8-second signal 

segments. The sE  feature was obtained from the sum of voltage in each electrode squared 

and divided by the total sum of all electrodes squared. Since the number of samples 
between classes varied, the samples were multiplied using the synthetic minority 
oversampling techniques (SMOTE) algorithm, as shown in Equation 4. Where x was the 
original sample, r represented a random number between 0 and 1, j was between 1 and the 
nearest sample number, and z was the closest sample (Song et al., 2024). 

 

𝑥𝑖
′ = 𝑥𝑖 + 𝑟 × (𝑧𝑖𝑗 − 𝑥𝑖)

 

(4) 

2.5.  Feature Selection 
 KW (Maimaiti et al., 2020; Siuly et al., 2020) and MRMR (Lazcano-Herrera et al., 2023) 
were applied to select a subset of pertinent characteristics while keeping the initial feature 
space intact. This process was conducted to identify the most informative features for 
modeling. The KW test was a non-parametric statistical test used to assess when there were 
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significant disparities among three or more unrelated groups of samples. The non-
parametric alternative to one-way Analysis of Variance (ANOVA) was used when the usual 
assumptions of ANOVA, such as normality and homogeneity of variances, were not met. 
Following this process, the KW test statistic H was computed using Equation 5. N 
represented the total observation count across all groups, k was the number of clusters, Ri 
represented the cumulative sum of ranks for the i-th group, and ni was the aggregate 
quantity of observations in the i-th group. 

 

𝐻 = (
12

𝑁(𝑁+1)
) ∑

𝑅𝑖
2

𝑛𝑖
− 3(𝑁 + 1)𝑘

𝑖=1

 

(5) 

 MRMR was a method for selecting traits that were highly related to the target variable 
and showed minimal overlap with one another. The objective was to improve the efficiency 
and clarity of the model by reducing the quantity of input features to those providing the 
most valuable information. Additionally, the scoring function in MRMR was generally 
formulated as a composite of relevance and redundancy measurements as shown in 
Equation 6. 

 

𝑀𝑅𝑀𝑅(𝑓𝑖) = 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑓𝑖 , 𝑌) −
1

|𝑆|
∑ 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦(𝑓𝑖, 𝑓𝑗)𝑓𝑖∈𝑆

 

(6) 

Where fi was the candidate feature, and Y represented the target variable. The 
measurement of relevance was frequently assessed using mutual information 𝐼(𝑓𝑖; 𝑌). 

Moreover, mutual information 𝐼(𝑓𝑖; 𝑓𝑗) was often used to measure redundancy. 

 
2.6.  Classification 
 After performing a significance analysis using KW and MRMR, selected feature sets 
were acquired. The study performed experiments using four distinct linear classification 
models to assess the efficacy of various characteristics in detecting driver vigilance, 
including LDA (Di et al., 2019), LR (Gaur et al., 2021), NB (Sharmila and Geethanjali, 2016), 
and SVM (Nacpil et al., 2023). These models were trained to use   features extracted from 
different frequency bands applied as input. In addition, training sessions were conducted 
for each classifier with and without the deployment of LSF to guarantee the accuracy and 
dependability of the outcomes. These results were derived by calculating the average 
testing accuracy for each model using two classification schemes. A classification 
mechanism was initially implemented in each subject. This categorization method used 
data from the same subject for training and testing. 
 The second method included combining and randomizing EEG samples from eight 
subjects when separating the data into training and testing sets. For cross-subject 
classification, the study used features that produced the maximum accuracy as determined 
by feature selection outcomes. Training and test data sets were generated using a 5-fold 
cross-validation methodology. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃𝑠+𝑇𝑁𝑠

𝑇𝑃𝑠+𝑇𝑁𝑠+𝐹𝑃𝑠+𝐹𝑁𝑠

 

(7) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃𝑠

𝑇𝑃𝑠+𝐹𝑁𝑠

 

(8) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑠

𝑇𝑃𝑠+𝐹𝑃𝑠

 

(9) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁𝑠

𝑇𝑁𝑠+𝐹𝑃𝑠

 

(10) 

 

F-𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃𝑠

2𝑇𝑃𝑠+𝐹𝑃𝑠+𝐹𝑁𝑠

 

(11) 
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This study assessed the efficacy of the proposed method on a test data set by measuring five 
parameters (Singh and Jaiswal, 2022), including accuracy, precision, sensitivity, specificity, 
and F-score, as defined in Equation 7-11. True positives (TPs) occurred when the actual 
value and the prediction were positive. In addition, True negatives (TNs) occurred when 
the actual value and prediction were negative. False positives (FPs) were when the actual 
outcome was negative while the forecast was positive. Following the discussion, FPs were 
also referred to as a type 1 error. False negatives (FNs), known as type 2 errors, occur when 
the actual result is positive, but the forecast is negative. 
 
3.  Results and Discussion 

3.1.  Dataset Evaluation 
PERCLOS index value was obtained by Zheng and Lu (2017) using Equation 1. Figure 6 

showed that this index of several subjects was distributed centrally without outliers, but 
there was also a large amount of unbalanced data. The class with the most significant 
sample showed tired conditions among the three classes. Only S16 tired index data was 
centered on the drowsy condition, and S20 was on the awake condition. Moreover, data sets 
S05, S14, S15, and S16 signified a slightly even distribution of samples, prompting these 
samples to be selected for further analysis. 

 
 

Figure 6 Distribution of PERCLOS index for each class in each subject 

The efficiency of the classification model was affected by an imbalance in the number of 
samples. Models trained with imbalanced data showed bias towards the majority class 
because the models were optimized to reduce total error. Therefore, the model predicted 
predominantly the majority class, even though the cases were from the minority class. 
Unbalanced data led to a less-than-optimal performance for generalization, causing the 
model to face difficulty categorizing examples from the minority class. This model lacked 
sufficient examples to understand minority class characteristics effectively. Oversampling 
was a powerful method to overcome class imbalance in classification tasks, and it was used 
to affect class imbalance in a dataset by increasing the number of samples in minority 
classes to balance the class distribution. During the study, Equation 4 was used to balance 
the number of classes. 

3.2.   Scalp Topography Analysis 
Scalp topography, also called brain mapping or scalp mapping, refers to the spatial 

distribution of neural activity across the scalp's surface as measured by EEG methods, as 



1720  Evaluation of Laplacian Spatial Filter Implementation in Detecting Driver Vigilance Using 
Linear Classifier 

shown in Figure 7. This mapping included the electric field generated by brain nerve 
activity to electrode locations on the scalp. Figure 7(a) showed a scalp topography using 
features from signal energy calculations using Equation 3, while 7(b) signified the signal 
energy filtered using Equation 2. From this graph, the spatial distribution and temporal 
dynamics of neural activity in the human brain when awake, tired, and drowsy were 
examined. The analysis offered a valuable understanding of the functional organization of 
the nervous system and its function in cognition processes, sensory perception, motor 
control, and clinical disorders for drivers. In addition, the graph showed significant 
differences in patterns for each subject and class. There was an increase in activity in the 
left temporal brain area in subjects S05 and S14 as the level of drowsiness increased. 
Different patterns of improvement were shown by subjects S15 and S16. Each subject and 
class signified various patterns, making concluding it generally challenging. The source of 
activity arose from different electrodes for each subject. 

                      

(a) (b) 

Figure 7 Scalp topographies using LSF (a) and Scalp topographies without using LSF (b). 

The scalp topography produced by applying LSF varied from those without LSF. 
Topography without using LSF also showed different patterns for each subject and class. 
Moreover, the energy source was more localized than without using LSF. Visualization 
using LSF was more accurate because the energy from each electrode did not spread widely 
to match the electrode location. For example, in Figure 7(a), subject S15 in the class labeled 
drowsy acquired much energy in the frontal area where no electrodes were in the part. The 
outcome varied from the topography in Figure 7(b), which was in the exact location where 
the energy was more focused at electrode channel “O1”. This result showed that LSF was 
more suitable for viewing energy sources that appeared in the topography. 

3.3.  Classification Performance of Each Subject 
Classifying each subject, known as intra-subject classification, was a machine learning 

task aimed at classifying data samples in the same individual or subject. One method 
applied in this study was analyzing data from the same individual to produce predictions 
or diagnose conditions. Intra-subject classification analyzed data from each subject 
separately rather than combining data from multiple subjects. This method signified those 
subjects showed different patterns or characteristics in individual data, aiming for accurate 
classification or prediction. Four models were used in classification, and the results were 
compared to identify the model with the highest accuracy. 
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Figure 8 Classification accuracy without using LSF of each subject with different classifiers 

During the study, all models showed accuracy values greater than 59%, and there was 
poor performance in NB and LR models, as shown in Figure 8 as well as 9. The outcome 
showed that the NB model had a higher average accuracy than the LR. The SVM model had 
the highest average accuracy of 84.27% in intra-subject classification. The accuracy of the 
LDA model produced an average accuracy nearly the same as SVM, which was 84.24%. The 
lowest accuracy of SVM occurred in subject S14, with an accuracy value of 70.50%, and the 
highest was in subject S07 at 93.05%. Moreover, a comparison of classification performance 
for each model with and without using LSF is shown in Figure 10. The comparison results 
showed that LSF did not improve classification performance with LDA and SVM models. 
However, LSF increased the average accuracy value in NB and LR classification models. 
Applying LSF also improved the standard deviation value, leading to less precise detection 
and a significant decrease in some classification results. Consequently, LSF was not 
recommended for vigilance detection-based EEG classification. Based on the comparison 
results in Figure 10, the SVM model was selected for cross-subject classification. 

 

Figure 9 Classification accuracy using LSF of each subject with different classifiers 
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Figure 10 Comparison of the accuracy on each model with and without LSF 
 
3.4.  Result of Feature Selection 

Feature selection in classification included performing selection by selecting a subset 
of pertinent features from the initial set to improve the model's performance or reduce 
computational complexity. This selection aimed to maintain the most informative and 
discriminative features when irrelevant, redundant, or distracting features are found. By 
selecting only the most relevant features, the dimensionality of the data was reduced, 
leading to simpler, easier-to-interpret models and faster computation. Additionally, the 
original features were kept when reducing features led to decreased accuracy. A 
comparative analysis of feature selection outcomes using KW and MRMR methods in 
Equations 5 and 6 is shown in Figure 11. 

 

Figure 11 Comparison of accuracy on each number of features using the MRMR and KW 
algorithms 

A total of eight groups were formed with a total of 85 features. Based on the 
computational results of KW and MRMR algorithms, the selection started from the lowest 
number, 12 to 85, with 15% and 10% intervals for each level. From the graph, a conclusion 
showed that reducing irrelevant features based on KW and MRMR significantly reduced 
accuracy. There was an increase in the minimum accuracy value when the quantity of 
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features had been elevated. The number of features with 68 was close to the maximum 
accuracy value. However, with 76 features, it had slightly higher accuracy and did not affect 
computer work significantly. During the study, 76 features were used for the classification 
process between subjects. 

3.5.  Classification Performance on Cross-Subject 
 Cross-subject classification aims to classify data samples from several individuals or 
subjects collectively. The method pooled data from all subjects, and the SVM model was 
randomly trained on the combined data set to predict or perform classification tasks. This 
classification also aimed to develop a strong classification model that generalized to 
different individuals or subjects by collecting data from multiple sources and capturing 
general patterns while accommodating individual variability. The confusion matrix was 
used to assess the effectiveness of the classification model, as shown in Figure 12(a). This 
matrix reviewed the predictions performed by the model compared to the actual labels or 
ground truth. The confusion matrix presented the aggregate count of events in each cell. 
Each row represented the specific classes, and the columns signified the projected classes. 
Moreover, the numbers in the diagonal boxes represented correctly classified observations, 
while the numbers in the boxes to the right showed misclassified observations. The terms 
"bottom" and "correspond" refer to how these classifications relate to the original 
observations. 
 The confusion matrix proved that the SVM model was strong in classifying drowsy 
classes, shown by the fewest errors when faced with other classes, namely categories with 
awake and tired labels. The model was misclassified 221 times among the total awake class 
of 722 data. In addition, SVM struggled to classify data with tired labels, leading to 352 
prediction errors out of 1069 data. The model performance for each class was also 
supported by the receiver operating characteristic (ROC) curve, as shown in Figure 12(b). 
The characteristic curve showed the performance of the SVM model at all thresholds in 
different classifications. Additionally, the ROC graph signified that the y-axis represented 
the positive rate (also known as sensitivity), and the x-axis was the false positive rate 
(specificity subtracted from 1). Sensitivity refers to the proportion of positive events that 
were correctly classified. Moreover, the false positive rate represented the proportion of 
adverse events that were misclassified. 

  

Figure 12 Confusion matrix (a) and ROC curve (b) of SVM performance on cross-subject 
classification. 

 The area under the ROC curve (AUC) measured the total performance of an SVM. AUC 
ranges from 0 to 1, where a rating of 1 signified flawless categorization and a value of 0.5 
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implied performance equivalent to random guessing. Following the discussion, higher AUC 
values showed better model performance, with values closer to 1 reflecting more 
substantial class discrimination. The graph signified that the class with the label drowsy 
had the most considerable AUC value, 94.13%. This result implied that the SVM model was 
the strongest in classifying data with the label drowsy rather than the labels awake and 
tired. The average AUC value for SVM classifying EEG based on driver tired was 87.05%. 

Table 1 Cross-subject classification performance 

Parameter 
Class 

Awake Tired Drowsy 

True Positive 501 717 277 
False Positive 247 215 167 
False Negative 221 352 56 
True Negative 1155 840 1624 
Precision 0.6698 0.7693 0.6239 
Sensitivity 0.6939 0.6707 0.8318 
Specificity 0.8238 0.7962 0.9068 
Accuracy 0.7039 0.7039 0.7039 
F-Score 0.6816 0.7166 0.7130 

 During the study, Equation 7 was applied to the confusion matrix to calculate the model 
performance. The performance results of the SVM classification model in cross-subject 
classification as a whole are seen in Table 1. Additionally, the total accuracy value of the 
model was 70.39%, and the specificity parameter achieved the best values across all classes 
compared to other parameters. The specificity in this examination measured the ability to 
allocate a driver who was not drowsy, as two other class states, awake and tired, as the test 
had few FPs. Although the accuracy of inter-subject classification was lower compared to 
intra-subject, classifying between subjects in this study reflected real-world applications. 
Previous studies showed low accuracy in EEG classification cross-subject because of the 
dynamic nature of EEG over time and subject (Li et al., 2023A; Liu et al., 2023; Yuan et al., 
2023). 
 From the topographic maps in Figures 7(a) and 7(b), the finding showed that the 
application of LSF significantly influenced topographic patterns. This result signified that 
the energy was more focused on the electrode position when using LSF. Previous studies 
found that applying spatial filters to EEG data improved the performance of classification 
models (Tsuchimoto et al., 2021; Alonso and Vellasco, 2016). Moreover, using LSF to drive 
vigilance-based EEG data only increased accuracy in a few subjects. The average accuracy 
value for classification using LSF did not increase compared to that without using LSF. In 
this case, LSF also led to lower precision values, shown by higher standard deviation values. 
The results proved that evaluating the implementation of LSF was essential since the 
effectiveness of applying LSF varied for each subject. Additionally, the differences in the 
distribution of EEG data for each subject were more significant compared to the subject of 
the topic. 
 
4. Conclusions 

 In conclusion, LSF was applied to each brain signal frequency band using an equation 
that calculated the energy possessed by each channel and band. During this study, a BCI 
vigilance investigation was conducted to examine brain activity patterns of vigilance states 
in a driving task, and four classification models were compared. The signal visualization 
method was adopted to explore and compare patterns of vigilance estimates across subjects 
in a driving task. Moreover, topographic patterns using the LSF algorithm signified 
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substantial differences. The results of using LSF showed the energy that appeared was 
related to the location of the electrode. LSF increased variability in all classification models, 
and accuracy decreased significantly in SVM and LDA. Following the process, the results of 
applying KW and MRMR-type feature selection algorithms showed the best reduction in the 
number of features by 76 of the total number of features. KW algorithm had better feature 
quality with a higher average value and minimum accuracy with the same number of 
features. In this study, four types of classification models were used, namely LDA, LR, NB, 
and SVM. The classification results specified that using the signal energy features without 
LSF and SVM model was the most accurate when applied to intra-subject and cross-subject 
classification schemes. The intra-subject accuracy value was 84.27%, and across the subject 
was 70.39%. 

Symbols 

e  Electrode voltage N  Total observation count across all groups 

Laplacee  Laplacian spatial filter r  A random number between 0 and 1 

sE  Signal energy R  Ranks of the observations in a group 

f  Candidate feature S  Set of selected features 

H  Kruskal – Wallis  'x  SMOTE 

I  Mutual information x  Original sample 

K  Number of neighboring electrodes Y  Target variable 

k  Number of clusters z  The closest sample 

 
Abbreviations 

ANOVA Analysis of variance MOP Model Operating Point 

AUC Area under the curve MRMR Maximum relevance - minimum redundancy 

AV Automated vehicle NB Naïve Bayes 

BCI Brain-computer interface O Occipital 

CP Central – parietal  OZ Occipital – zero  

EEG Electroencephalogram P Parietal 

EOG Electrooculogram PERCLOS Percentage of eye closure 

FIR Finite impulse response PO Parietal – occipital 

FNs False negative POZ Parietal – occipital - zero 

FPs False positive PZ Parietal – zero 

FT Frontal – temporal  ROC Receiver operating characteristic 

IC Independent component SAE Society of Automotive Engineers 

ICA Independent Component Analysis SMOTE Synthetic minority oversampling technique 

KW Kruskal – Wallis  SVM Support vector machine 

LCD Liquid crystal display T Temporal 

LDA Linear discriminant analysis TNs True negative 

LR Logistic regression TP Temporal - parietal 

LSF Laplacian spatial filter TPs True positives 
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