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Abstract. Biomass is widely recognized as a promising substitute for fossil fuels due to zero CO2 
emissions, global availability, storage capacity, and immediate response to demand. Therefore, this 
research aimed to develop and apply a multiple linear regression model to predict the calorific value 
in oxidative torrefied sugarcane bagasse. An innovative method was used to enhance the efficiency 
of torrefaction process, focusing on predicting the calorific value through temperature and oxygen 
concentration. Detailed analyses of collected data were carried out in the RStudio software 
environment, which showed the capacity of the model to explain calorific value of sugarcane 
bagasse, achieving a coefficient of determination R2 of 88.29%. The results showed that the model 
enhanced the understanding of biomass torrefaction processes and provided valuable tools for 
optimization, promoting more efficient and sustainable practices in energy generation from 
agricultural residues such as sugarcane bagasse. The novelty of this research was in presenting a 
specific and rigorous method to address a significant challenge in the field of renewable energy, 
offering tangible results that could have a significant impact on the industry. 
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1. Introduction 

The persistent expansion of energy consumption in recent decades is contributing to 
the depletion of fossil fuel resources, high environmental pollution, and increased climate 
change (Hu et al., 2018). To replace fossil fuel, renewable energy sources offer a significant 
solution for a sustainable future (Germán et al., 2023). Therefore, research has been 
conducted to develop renewable energy sources and other efficient technologies to prevent 
potential global energy and environmental crises (Kartal and Özveren, 2022). In this 
context, biomass offers several advantages as a suitable alternative to fossil fuels (German 
et al., 2023; Lamandasa et al., 2021; Prihantini et al., 2021). These include zero CO2 
emissions, global availability according to demand, and storage capacity (Kalak, 2023).  
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Biomass is an incredibly adaptable material that can be converted into biofuels and 
biochemical products through various thermochemical conversion technologies, such as 
pyrolysis (Cen et al., 2021; Huang et al., 2020), gasification (Fan et al., 2020) and combustion 
(Tu et al., 2018). However, thermochemical use of biomass is constrained by high moisture 
content, low calorific value, volumetric energy density, and significant hygroscopicity (Xu et 
al., 2021). These challenges lead to reduced conversion efficiency, alongside high costs 
associated with the collection, storage, and transportation of biomass (Chen, Peng, and Bi, 
2015). 

Among the available biomass options, lignocellulosic has been proven effective as the 
most preferred due to both technical and social factors (Fandiño et al., 202). This preference 
is based on several factors, including lack of competition with food resources, higher energy 
density, lower requirements for fertilizers, water, pesticides, and rapid growth (Verdugo et 
al., 2022). Consequently, it is essential to explore new methods for efficiently using biomass 
from sectors such as agro-industry and the paper industry, as well as improving the inherent 
characteristics (Gutiérrez et al., 2022). 

Several preprocessing methods such as torrefaction have shown potential to address 
some of the limitations associated with the use of raw biomass in pyrolysis, gasification, or 
combustion processes (Parkhurst, Saffron, and Miller 2016; van der Stelt et al., 2011). 
Torrefaction or mild pyrolysis, is a thermochemical process occurring in the range of 200 to 
300°C at atmospheric pressure, with limited or no oxygen presence (Thengane et al., 2020). 
This process is conducted in a non-oxidizing environment at temperatures ranging from 200 
to 300°C (Chen et al., 2021). Torrefaction can also be carried out with a limited amount of 
oxygen in the gas phase (oxidative torrefaction) (Devaraja et al., 2022), thereby potentially 
reducing costs due to the exothermic oxidation reactions of biomass leading to widespread 
application in the industry (Leontiev et al., 2018). Although research has examined the 
applications of torrefaction and enhanced biomass, information on system integration and 
practical applications in the industry remains insufficient (Kusrini et al., 2018). There has 
been a significant increase in commercial advancement and adoption of biomass 
torrefaction technology recently, as shown by a significant increase in the number of 
operational demonstration plants (Hazra et al., 2023; Wilén et al., 2014; Koppejan et al., 
2012).  

The widespread adoption has shown the need to develop a model that predicts the 
properties of torrefied biomass or improves torrefaction conditions (Adeleke et al., 2020). 
This will facilitate the design of large-scale torrefaction equipment and optimize the process 
overall (Liu et al., 2023). Torrefaction technology requires development to create predictive 
models that can be used for assessing the viability of the process. For example, (Watts et al., 
2023) used a regression model to determine the optimal torrefaction temperature using 
thermogravimetric data. This shows the need for idea identification of variations among the 
parameters influencing oxidative torrefaction. 

Various regression methods that are available vary based on the type of variables and 
the assumed functional relationship. Among these methods, linear regression is the most 
fundamental and powerful in terms of information (Mahbobi and Tiemann, 2015). Linear 
regression assumes that the relationship between two variables is linear or can be linearized 
through some transformation. In this context, the observed data show a potential linear 
relationship among variables. However, multiple linear regression is considered the fit 
model since the Higher Heating Value (HHV) is the dependent variable, while temperature 
and oxygen concentration serve as independent variables. This model assumes that more 
than one independent variable influences or correlates with the value of the dependent 
variable (Granados, 2016).  

Angelique (Conag et al., 2019), proposed a new predictive model for the HHV based on 
components of Sugarcane Residue (SCR), which were both raw and torrefied due to the 
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inadequacy of existing models. Although moisture correlated negatively with the HHV of 
fuels, it is often excluded in conventional models. Despite the negative contribution of 
moisture because of combustion, its removal was observed to require additional energy 
which affected HHV. The model was established through multivariate linear regression 
with experimental and bibliographic data, achieving a minimum R2 of 0.90, with a mean 
absolute error of less than 6% and a mean bias of less than 1%. This model aimed to 
anticipate the potential use of SCR as a renewable energy source (Conag et al., 2019). 

Wei-Hsin Chen et al. investigated the production of biocarbon and the yield of 
sugarcane bagasse torrefaction. The experiment was carried out using bilinear 
interpolation (BLI), inverse distance weighting interpolation (IDW), and regression 
analysis for predictions. The results showed that torrefied biomass at 275°C for 60 minutes 
or at 300°C for 30 minutes or more was suitable for biocarbon generation, as a low-carbon 
impact alternative to coal with low energy efficiency at 300°C. All three methods were 
suitable for predicting yield, with IDW showing an error below 5%. Therefore, second-
order regression analysis was recommended for more accurate predictions (Chen et al., 
2017). 

(Oladosu et al., 2024) conducted an experiment using a tubular furnace for 
torrefaction, exploring the effects of temperature, retention time, moisture content, and 
particle size on HHV as well as energy yield (EY) of Bambara groundnut shell (BBGS). The 
results showed an optimal HHV of 21.78 MJ/kg with 1 mm particles, a temperature of 
260°C, 23 minutes retention, and 10% moisture. The model obtained was applied to 
validate the input-output relationships using Response Surface Methodology (RSM) and 
Bayesian Information Criterion (BIC) stepwise regression, developing a regression model 
with a balance between interpretability and solid predictive performance. 

Ighalo et al. (2020) explored an innovative method to predict HHV of biomass using a 
linear regression algorithm (LRA) and stochastic gradient descent (SGD) in a machine 
learning environment. The experiment was based on a dataset comprising 78 proximate 
and ultimate analyses. The results showed that LRA model had higher accuracy compared 
to SGD. The evaluation was also carried out using stratified cross-validation, stratified 
random splits, and holdout testing, obtaining a coefficient of determination R2>0.999 in all 
cases. The research suggested that LRA and SGD were highly accurate artificial intelligence 
models for predicting biomass HHV (Ighalo et al., 2020). 

Qian et al. (2018) developed regression models based on proximity to anticipate the 
HHV of poultry waste (PW). The data of PW was obtained from literature to build the 
models, which were validated with additional samples and compared with previous 
models. The most accurate model integrated linear terms (all proximate components), 
polynomial terms (quadratic and cubic terms of volatile matter), and interaction effects 
(fixed carbon and ash). The results showed a higher R2 (91.62%) and lower estimation 
errors compared to previous models, serving as a potential tool for predicting PW HHV 
without the need for expensive equipment (Qian et al., 2018). 

Based on the description, this research represents a significant contribution to the 
existing knowledge on oxidative torrefaction of sugarcane bagasse and the prediction of 
calorific value by developing and applying a multiple linear regression model. By 
addressing the influence of temperature and oxygen concentration, the analysis aims to 
explore biomass conversion mechanisms. This offers a precise tool to optimize the 
processes, promote more efficient, and sustainable practices in energy production from 
agricultural waste. Therefore, the hypothesis states that both temperature and oxygen 
concentration during oxidative torrefaction have a significant impact on the calorific value 
of sugarcane bagasse. Therefore, this research aimed to develop a predictive model for the 
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calorific value of sugarcane bagasse following torrefaction process using temperature and 
oxygen concentration as input parameters. 

This research presents a novel method by developing a predictive tool to estimate the 
calorific value of sugarcane bagasse torrefied under controlled conditions of temperature 
and oxygen concentration. Compared to previous reports, this research integrates a 
detailed analysis of the correlation between specific variables such as oxygen concentration 
and temperature, providing greater precision in the estimation of energy value of the 
biofuel. Furthermore, the use of mathematical models to represent the experimental data 
contributes significantly to improving the understanding of torrefaction process which 
serves as fundamental for future optimizations in the production of fuels from biomass. 
 
2. Methods 

 Experimental research was conducted using sugarcane bagasse as biomass, subjected 
to an oxidative torrefaction process. Initially, particle size was controlled within a range of 
500 μm to 850 μm (Abdulyekeen, Daud, and Patah, 2024) and 1 kg was used. The sample 
was dried at 105°C for 24 hours according to the procedures of (Liborio et al., 2023). This 
control of particle size and standardized drying process ensured homogeneous initial 
conditions for biomass before torrefaction process, thereby contributing to the consistency 
and reproducibility of experimental results (He et al., 2023). 

2.1.  Experimental Setup 
 The reactor consisted of a sealed chamber designed for torrefaction, supplied with 
inert gases such as nitrogen and oxygen to create a controlled environment. The role of 
nitrogen (N2) in the oxidative torrefaction process was essential to creating a controlled 
environment within the reactor. Nitrogen acted as an inert gas that prevented the 
undesired oxidation of biomass during the process. By introducing nitrogen into the sealed 
chamber, an oxygen-free environment was created, preventing spontaneous combustion 
and other undesired effects associated with the presence of oxygen. This enables 
torrefaction to be conducted in a more controlled and predictable manner, ensuring the 
quality and consistency of the final products obtained from the process. Within this 
chamber, temperature and oxygen concentration are monitored and regulated to ensure 
optimal conditions throughout the process. Exhaust gases were also maintained, allowing 
thorough monitoring of the products from torrefaction, as shown in Figure 1.   
 The oxidative torrefaction process included controlling the flow of nitrogen, acting as 
an inert gas, and oxygen (1). To regulate this flow, Pure nitrogen, and synthetic air were 
used as a mixture of oxygen and nitrogen. Both gases passed through a mixer before 
entering the reactor (2), where temperature was monitored (3). The resulting gases were 
filtered to capture particulate matter.  

 

Figure 1 Schematic diagram of the experimental setup 
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2.2. Parameters   
 To conduct torrefaction, temperatures ranging from 200 to 300°C were applied, 
alongside oxygen concentrations of 0%, 10%, and 20%, each for 30 minutes, as shown in 
Table 1. The 0% oxygen setting showed pure nitrogen input, while 20% represented the 
atmospheric oxygen level, and 10% denoted an intermediate mixture between these 
extremes. The variation in these parameters facilitated subsequent biomass analysis using 
a calorimetric bomb to obtain diverse HHV.   
 The 30 minutes time period was selected in the experimental protocol for torrefaction 
of sugarcane bagasse to allow adequate assessment of how torrefaction conditions vary 
during the period. This specific period, along with variations in temperatures and oxygen 
concentrations, included a significant range of torrefaction conditions. Furthermore, the 
duration was considered sufficient to induce significant changes in the properties of 
sugarcane bagasse, including HHV, while maintaining a practical and manageable duration 
for the experiments. 

Table 1 Temperatures and Concentrations 

Temperature °C Oxygen concentration (%) 

200 0 10 20 

220 0 10 20 

240 0 10 20 

260 0 10 20 

280 0 10 20 

300 0 10 20 

2.3. Model  
 A multiple linear regression model was used for this analysis, where the dependent 
variable was HHV, while the independent variables consisted of temperature and oxygen 
concentration per volume. Using the RStudio software environment, comprehensive 
assessments were conducted, including the analysis of collinearity among variables, 
inspection of regression residuals, determination of the coefficient of determination (R2), 
coefficients associated with the linear equation, as well as F-tests and other relevant 
statistical diagnostics. This method allowed for a comprehensive and rigorous evaluation 
of the relationship between predictor variables and the response variable within the 
context of multiple linear regression model. In the context of the multiple linear regression 
model, it was presumed that events follow a functional structure defined by equation 1: 

𝑦𝑗 =  𝑏0  +  𝑏1𝑥1𝑗  +  𝑏2𝑥2𝑗  +  ⋯ +  𝑏𝑘𝑥𝑘𝑗  +  𝑢𝑗  (1) 

where: 

• yj represents the dependent variable, in this case, the calorific value of the torrefied 

sugarcane bagasse for sample j. 

• b0 is the independent term or intercept, which shows the expected value of yj when all 

independent variables xij are equal to zero. 

• 𝑏1, 𝑏2,…, 𝑏𝑘 are the regression coefficients showing the expected change in 𝑦𝑗  for each 

unit change in the independent variables 𝑥1𝑗 , 𝑥2𝑗 ,…, 𝑥𝑘𝑗  respectively. 

• 𝑥1𝑗 , 𝑥2𝑗 ,…, 𝑥𝑘𝑗  represent the independent variables, in this case, the experimental 

conditions such as oxygen concentration and temperature for sample j. 
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• 𝑢𝑗  is the error or random disturbance term, which captures the influence of factors 

not included in the model. 

 This formulation aims to capture the linear relationship between predictor variables 
and the response variable, thereby enabling a quantitative interpretation of the influence 
of temperature and concentration on HHV. 
 
3. Results and Discussion 

 The results obtained through the calorimetric bomb are presented in Table 2, where 
values of HHV are recorded based on temperature and concentration. The independent and 
dependent variables were initially assessed for collinearity, as shown in Table 2. This was 
carried out to determine the existence of linear relationship, an essential condition for the 
application of the regression model. The analysis was based on a correlation matrix, the 
content of which was visualized in Figure 2. 

Table 2 Data obtained from the calorimetric bomb 

Temperature °C Concentration % HHV (kJ/kg) 

200 0 18934 
220 0 19493 
240 0 20241 
260 0 21328 
280 0 21658 
300 0 23827 
200 10 18950 
220 10 20381 
240 10 21130 
260 10 21493 
280 10 24860 
300 10 25841 
200 20 19683 
220 20 20716 
240 20 21027 
260 20 21602 
280 20 24718 
300 20 26988 

 Oxidative torrefaction could be more favorable because the presence of oxygen during 
the process was able to reduce energy loss, improve efficiency and profitability, modify 
biomass properties. This phenomenon contributed to high handling and energy density, 
offering an enhanced final product quality with lower formation of undesired compounds. 
According to Table 2, there was an increasing trend in HHV as torrefaction temperature 
rose. This suggested that higher temperatures led to greater biomass densification and 
decomposition, causing elevated fixed carbon content and calorific value. Additionally, HHV 
values were higher for lower oxygen concentrations (0% and 10%), compared to an oxygen 
concentration of 20%. This showed that the presence of oxygen during torrefaction 
contributed to partial oxidation of the biomass, which could reduce carbon content and 
calorific value. The analysis was based on a correlation matrix, as shown in Figure 2. 
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Figure 2 Correlation matrix among the variables 

 Figure 2 shows a correlation matrix between the variables used in the research: oxygen 
concentration (concen), temperature (temp), and Higher Heating Value (HHV_1). Each 
component of the matrix is described below: 

• Correlation between concentration (concen) and temperature (temp): The correlation 

coefficient was 0.0, showing that there was no significant linear relationship between 

these two variables. This suggested that oxygen concentration did not vary 

proportionally with temperature in the roasting process. 

• Correlation between temperature (temp) and Heating Value (HHV_1): The coefficient 

of 0.90 suggested a strong positive correlation, showing a corresponding increase in 

temperature alongside heating value. This showed the importance of temperature as a 

significant factor in optimizing torrefaction process to improve energy content of 

bagasse. 

• Correlation between concentration (concen) and Heating Value (HHV_1): The 

coefficient of 0.27 showed a weak positive correlation, suggesting that oxygen 

concentration has a minor influence on heating value compared to temperature. 

 The matrix included a color code on the lower scale, ranging from -1 (perfect negative 
correlation) to 1 (perfect positive correlation). The colors showed the magnitude and 
direction of the correlations, where darker shades show a stronger relationship and lighter 
represent weak or no correlations. Following this confirmation, RStudio software was used, 
setting HHV as a function of temperature and concentration, with the result shown in Table 
3. 

3.1. Residual Value 
 The initial exploration of the summary of linear regression showed the assessment of 
residuals. Based on Table 3 and Figure 3, the residuals showed a uniform distribution, 
which tended to be symmetric. This suggested that the mean value was close to zero, while 
the maximum and minimum values including 0.25 and 0.75 percentiles showed similarities 
with opposite signs. The observation suggested that the model was appropriate as the 
residuals did not show significant systematic patterns, thereby supporting the validity of 
the applied linear regression. 
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Table 3 Distribution and evaluation of linear regression model residuals 

Residues: Min 1Q Median 3Q Max 

 -1611.42 -334.73 67.22 374.35 1309.66 

 
Figure 3 Boxplot of the distribution of residual values 

Figure 3 shows a boxplot of the residuals obtained from the predictive model used in the 
research. This plot provided valuable information for analyzing the distribution of the 
residuals, identifying possible outlier, as well as evaluating the symmetry and dispersion of 
the errors. 

• Median: The central line within the box represented the median of the residuals, which 

was close to 0. This showed that the model errors were balanced between 

overpredictions and underpredictions, suggesting a good model fit. 

• Box (IQR - Interquartile Range): The box enclosed the interquartile range (IQR), which 

represented 50% of the data. In this case, the residuals were mainly concentrated 

between values of approximately -500 and 500. The concentration was around the 

median showing that most of the model errors were within a reasonable range. 

• Whiskers: The whiskers in the plot extended to the minimum and maximum values, 

excluding outliers. In this case, the whiskers showed a dispersion that extended from 

approximately -1500 to 1000, showing some limited variability in the residuals. 

• Outliers: A point outside the range of the whiskers was observed, which corresponded 

to an outlier. This showed a specific data point where the model had a considerably 

larger error, suggesting the need for a detailed review to determine a special case or an 

error in the data. This boxplot showed that the model residuals were properly 

distributed, with acceptable symmetry and a limited presence of outliers. Most of the 

errors were concentrated near 0, which supported the accuracy and stability of the 

proposed predictive model. 

3.2. Coefficients 
 After analyzing the residuals and confirming the model accuracy, some coefficients 
were observed, as shown in Table 4.  

 



Racero-Galaraga et al. 1705 

Table 4 Coefficients of the Linear Regression Model 

Coefficients: Estimate Std. Error t-value Pr(>|t|)  

(Intercept) 5649.31 1546.893 3.652 0.00236 ** 

Concentration 77.108 25.301 3.048 0.00814 ** 

Temperature 61.623 6.048 10.189 3.90E-08 *** 

Signif. codes: 0="***" 0.001="**" 0.01="*" 0.05=" " 1= 

 The table shows the estimated coefficients for each variable in the linear regression 
model, together with the standard error, t-value and associated p-value. Significance levels 
are indicated by codes: *** for p < 0.001, ** for p < 0.01 and * for p < 0.05, while the absence 
of a symbol indicates that p > 0.05, which means that the coefficient is not statistically 
significant. These significance values reflect the strength of the relationship between the 
predictor variables and the response variable in the model; thus, coefficients with p less 
than 0.05 are considered statistically significant, indicating a strong association in the 
context of the fitted model. 

In addition to providing the coefficients 𝑏0, 𝑏1 𝑎𝑛𝑑 𝑏2of the equation, the regression 
summary included the standard error. Specifically, the standard error served as a measure 
of the distance between the observed values in the sample and the values predicted by the 
regression line. This error allows the construction of confidence intervals for the estimated 
coefficients, as shown in Table 5. The analysis contributed to the evaluation of the accuracy 
and reliability of the estimated coefficients within the context of multiple linear regression 
model. 

Table 5 Confidence Intervals for Estimation Coefficients with 95% Confidence Level 

Reliability (Intercept) Concentration Temperature 

2.50% 2352.19004 23.18087 48.73173 
97.50% 8946.43695 131.0358 74.51399 

 The 𝑡 − 𝑣𝑎𝑙𝑢𝑒  and the 𝑃𝑟(|𝑡|)  are available, which are essentially used to accept or 
reject the null hypothesis 𝐻𝑜: 𝑏1 =  0. When 𝑏1 or 𝑏2 is null, it will show the absence of a 
linear relationship. Asterisks (*) show the significance level of a variable for the linearity of 
the model. The concentration variable is highly significant, while the temperature is 
significant, reaffirming non-collinearity. 
 The analysis of 𝑃𝑟(|𝑡|) and confidence intervals can reject the null hypothesis (𝐻𝑜) as 
the values show a high linear relationship. A relevant piece of information is the coefficient 
of determination 𝑅2, which reaches 0.8829 with an adjusted 𝑅2 of 0.8673. This shows that 
the model explains 88.29% of the variability in HHV based on temperature and oxygen 
concentration. Moreover, the value of 𝑅2 is similar to the adjusted 𝑅2, suggesting that the 
independent variables are relevant to the model. 

3.3. ANOVA 
 In the analysis of variance represented in Table 6, the 𝐹 − 𝑣𝑎𝑙𝑢𝑒 being greater than 1 
rejects the null hypothesis, with a 𝑝 − 𝑣𝑎𝑙𝑢𝑒  of 1.03𝑥10−07 , showing significance in the 
overall model. This is further supported by the significance of the 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 of the 
independent variables. 

3.4. Residuals 
 Analyzing the residuals, the linearity of the model can be easily observed. For example, 
plotting the residuals against the variable shows the distribution of values, including some 
outliers, as presented in Figure 4. 
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Table 6 Analysis of Variance (ANOVA) 

 Df Sum Sq Mean Sq F value Pr(>F)  

Concentration 1 7134834 7134834 9.2882 0.008142 ** 

Temperature 1 79744907 79744907 103.813 3.90E-08 *** 

Residuals 15 11522387 768159    

 
Figure 4 Distribution of residuals versus temperature and concentration to assess model 
linearity 

 Another method to assess the normality of the residuals is through a Q-Q Plot, as shown 
in Figure 5. This plot shows data distribution, indicating that the central data points are 
more closely related to the line compared to the ends, namely outliers. 

 

Figure 5 Q-Q plot to assess normality of residuals 

 Based on the results, an oxidative torrefaction process can predict the HHV with 
temperature and oxygen concentration at an 88.29% confidence level using the following 
model, as shown in equation 2: 
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𝐻𝐻𝑉 =  5649.313 + 77.108 ∗ concentration + 61.623 ∗ temperature (2) 

 The results have significant practical implications for the biomass industry, providing 
an accurate predictive tool for optimizing the oxidative torrefaction processes of sugarcane 
bagasse. The ability to predict calorific value of bagasse based on temperature and oxygen 
concentration enables industry stakeholders to make informed decisions regarding optimal 
operating parameters to maximize energy efficiency and the quality of the final product. 
Furthermore, the results suggest essential areas for future research, such as exploring other 
process variables that can influence calorific value, as well as validating the proposed model 
in different industrial contexts and with several types of biomass. This line of future 
research can lead to further improvements in the efficiency and sustainability of energy 
production from biomass, significantly contributing to the transition towards cleaner and 
renewable energy sources. 
 Predicting the HHV of torrefied biomass is essential for assessing efficiency, energy use, 
and optimizing torrefaction processes to ensure the viability of biomass as a renewable 
energy source. However, the ability of this model to predict the HHV of other biomasses 
requires external validation using different experimental data to show broader 
applicability. 
 
4. Conclusions  

 In conclusion, this research applied a multiple linear regression model to predict the 
HHV of sugarcane bagasse based on oxidative torrefaction using temperature and 
concentration as predictor variables. The results showed a significant relationship between 
HHV and temperature, while the correlation with concentration was weaker. The model 
showed good predictive capability, explaining 88.29% of the variability in HHV. The 
examination of coefficients showed that both temperature and concentration were 
significant variables in predicting HHV. The validity of the estimated coefficients was 
supported by confidence intervals and significance values. However, the unexplained 
portion, accounting for 11.71% could be attributed to factors such as insufficient samples 
or the presence of outliers. The regression assumptions were also satisfied, since F-test 
showed a p-value of 1.03𝑥10−07, and the model achieved a confidence level of 95%. 
Although the model showed accuracy in predicting HHV, there was a suggestion for 
improvement by including other relevant parameters such as volatile materials and 
moisture. Furthermore, the economic viability of oxidative torrefaction in the presence of 
oxygen to reduce costs was discussed. These results supported the application of oxidative 
torrefaction as an effective strategy to enhance the calorific properties of sugarcane 
bagasse, potentially driving more sustainable practices in energy generation from waste. 
The model presented in Equation 2 was developed based on data obtained from an 
experiment conducted within a 30 minute torrefaction period. Although the design was the 
experimental setup, its underlying principles and methodology could potentially be applied 
to other cases with similar conditions. Extrapolating the model to significantly different 
torrefaction durations or conditions could require additional validation and adjustment. 
The coefficients and relationships established in the model were not directly translated to 
scenarios beyond the scope of the original experimental design. Therefore, careful 
consideration and possibly recalibration of the model were recommended for application 
to other torrefaction durations or conditions to ensure accuracy and reliability. 
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