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Abstract. Multi-response optimization (MRO) is important to modern manufacturing that requires 
simultaneous consideration of multiple performance metrics to achieve high efficiency and quality. 
Therefore, this study presents an innovative hybrid method that combines the Data Envelopment 
Analysis Variant (DEAV) model with Taguchi to address the challenges associated with MRO. The 
DEAV model improves traditional DEA by incorporating multiple attribute decision-making 
(MADM) principles to offer a comprehensive evaluation framework. Taguchi uses efficiency scores 
from the DEAV model to enable optimal parameter determination through Taguchi optimization. 
Moreover, the hybrid method was validated using two examples, including optimization of a fish 
scale scraping machine and the CNC turning process of ST37 steel. The results showed that the 
DEAV-Taguchi method produced more efficient and reliable outcomes than existing methods, 
significantly improving key performance metrics such as surface roughness and material removal 
rate. The main contribution of this study was the development of a robust optimization framework 
that balanced multiple conflicting objectives in manufacturing processes. Future studies are 
expected to apply the method to different materials and processes, expand experimental designs, 
and assess the economic and environmental impacts of optimized parameters. The DEAV-Taguchi 
method also offers a significant advancement in MRO, providing a versatile and effective solution 
for modern manufacturing optimization. 
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1. Introduction 

Multi-response optimization (MRO) is very important in contemporary manufacturing 
processes due to the usefulness in simultaneous consideration of multiple performance 
metrics to achieve both efficiency and high quality. However, conventional optimization 
methods have frequently failed to adequately address the complexities associated with 
balancing multiple conflicting objectives. This is despite the need to optimize 
manufacturing processes, specifically in high-precision environments, in order to enhance 
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product quality, reduce costs, and increase efficiency (Soori, Arezoo, and Dastres, 2023; 
Abdelaoui, Jabri, and Barkany, 2023; Sulaiman et al., 2022; Yang et al., 2019).  Therefore, 
there is a need to develop new, promising, and efficient methods to address MRO challenges 
in order to ensure the effective management of the issues identified. The introduction of 
innovative strategies for MRO can lead to better handling of the complexities and conflicting 
objectives inherent in modern manufacturing processes which are required to improve 
efficiency and quality. 

Design of Experiments (DOE) is a systematic method developed in the early 20th century 
by Sir Ronald Fisher to study the relationships between factors affecting process and output. 
The method is considered important for improving process efficiency and product quality 
by enabling structured experimentation and analysis of different factors. An example is the 
method introduced by Genichi Taguchi which is considered robust and emphasizes 
improving quality through design rather than inspection. It uses orthogonal arrays to study 
a large number of variables with a minimal number of experiments, leading to reduced costs 
and time (Parr, 1989). The focus of the method on minimizing variability through the use of 
signal-to-noise (S/N) ratios also ensures specific effectiveness in optimizing manufacturing 
processes. Furthermore, its ability to optimize parameters with fewer experimental runs 
compared to traditional methods leads to cost-effectiveness and efficiency (Kantasiri et al., 
2024; Chen et al., 2024; Lestari et al., 2024; Sulaiman et al., 2022). 

Multi-Attribute Decision Making (MADM) methods which are an example of Multi-
Criteria Decision Making (MCDM) have been integrated into DOE to tackle complex 
optimization problems related to multiple conflicting objectives or responses. For example, 
Grey Relational Analysis (GRA), the Technique for Order of Preference by Similarity to Ideal 
Solution (TOPSIS), Data Envelopment Analysis Ranking (DEAR), and Complex Proportional 
Assessment (COPRAS) have also been effectively used to solve MRO problems (Shivakumar 
and Panchangam, 2024; Kumar et al., 2024; Pawaree, Phokha, and Phukapak, 2024; Kannan 
et al., 2023; Sriburum, Wichapa, and Khanthirat, 2023; Liu et al., 2023; Yang et al., 2023; To-
on, Wichapa, and Khanthirat, 2023; Kamath et al., 2022; Yaser and Shunmugesh, 2019; 
Vellaiyan, Amirthagadeswaran, and Sivasamy, 2018; Zavadskas,  Turskis, and Kildienė, 
2014; Liao and Chen, 2002). These MADM methods facilitate the evaluation and 
prioritization of multiple alternatives based on a set of criteria, aiding process of making 
more informed decisions. Moreover, the combination of MADM with DOE has led to the 
provision of a more robust optimization solution that balances multiple performance 
metrics and subsequently enhances overall manufacturing efficiency.   

The integration of Taguchi method into MADM has proven effective in solving MRO 
problems. For example, (Kumar, Kumar, and Rajkumar, 2022) combined Taguchi and GRA 
to optimize CNC end-milling parameters for AISI H11 tool steel, achieving optimal surface 
roughness and MRR. A research by (Zhujani et al., 2024) also applied Taguchi-based DOE 
method combined with GRA and Analysis of Variance (ANOVA) to determine the optimal 
machining parameters for turning Inconel 718, a high-strength nickel-based superalloy 
widely used in the aerospace industry. Moreover, a research by (Sristi, Zaman, and Dhar, 
2022) conducted a comparative study of different hybrid Taguchi-based MADM methods for 
optimizing hard-turning parameters. The study utilized COPRAS, TOPSIS, and GRA to 
optimize parameters such as cooling environment, cutting speed, and feed rate. The optimal 
process parameters obtained from all three methods were consistent, showing the 
effectiveness of these methods in improving machinability and process performance. A 
research by (Sriburum, Wichapa, and Khanthirat, 2023) also utilized a novel TOPSIS linear 
programming (modified TOPSIS) model based on Taguchi method for solving MRO 
problems in the fish scale scraping machine. The study reported improvements in fish 
scaling removal efficiency and reduction in fish damage, emphasizing the utility of 
combining the modified TOPSIS with Taguchi for optimizing complex processes. 
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(Kamath et al., 2022) evaluated the effect of process parameters on the face milling 
machining process during process of machining Al/TiB2 metal matrix composite. This was 
achieved using Taguchi-DEAR method to evaluate performance metrics, including MRR and 
surface roughness. A research by (Moganapriya and Rajasekar, 2023) also explored the use 
of titanium aluminum nitride/tungsten carbide-coated inserted in dry turning, optimizing 
machining variables to improve flank wear, MRR, and surface roughness using a DEAR-
Taguchi method. The application of Taguchi L16 design and ANOVA showed the significant 
influence of feed per tooth on the outcomes. Moreover, the combination of GRA and DEAR 
with Taguchi method produced an optimal cutting regime that enhanced surface roughness 
and material removal rate, with feed per tooth having the most substantial impact on 
performance metrics. Several MADM methods have successfully addressed MRO problems, 
but each method has advantages and disadvantages. A critical drawback identified in almost 
all was related to data normalization which could adversely affect the reliability of the 
results. The computational complexity of MADM methods could also increase significantly 
when processing large datasets. Therefore, new MADM methods needed to be developed in 
order to overcome these primary limitations. 

The Data Envelopment Analysis (DEA) model developed by (Charnes, Cooper, and 
Rhodes, 1978) can evaluate the relative efficiency of decision-making units (DMUs). This 
efficiency is often calculated as the ratio of the weighted sum of outputs to the weighted sum 
of inputs. Moreover, the linear programming model, called the CCR, has the ability to 
determine the optimal weights for each DMU in order to ensure none of the efficiency scores 
exceeds one. DEA offers several advantages and the most important is the ability to measure 
efficiency without requiring data normalization, thereby simplifying the preprocessing step. 
As a linear programming model, DEA can be solved using different solvers, making the 
process computationally efficient. It provides a comprehensive measure of efficiency by 
comparing multiple inputs and outputs across DMUs without needing a predefined 
functional form (Fan et al., 2017, Wang, Nguyen, and Wang, 2016). However, the traditional 
DEA model, specifically the CCR, is not suitable for addressing MADM problems due to the 
inability to distinguish among efficient units (Li et al., 2022; Shi et al., 2021; Shi, Wang, and 
Zhang, 2019; Li et al., 2018). The model provides an efficiency score of one to all DMUs on 
the efficient frontier, leading to the classification of multiple units as equally efficient. This 
lack of discrimination hinders the establishment of a clear ranking order among efficient 
units, causing some challenges in the process of ranking all DMUs precisely. A promising 
method is to integrate the concepts of DEA into MADM in order to overcome this limitation 
and develop an effective tool for solving MRO problems in the context. 

The concept inspired the conduct of this study to present an innovative method that 
combined the principles of DEA and MADM towards producing the novel Data Envelopment 
Analysis Variant (DEAV) specifically designed for MRO problems. The DEAV model 
combined with Taguchi method was proposed and evaluated using two numerical examples 
in order to deliver a robust solution for MRO challenges. This advanced method aimed to 
offer a comprehensive framework for MRO. Therefore, the contributions of this study are 
stated as follows: 
1) The introduction of the DEAV model produced through the inclusion of MADM 

principles as an enhancement to the traditional DEA. The model provided weights to 
each criterion through decision-makers or established methods such as Analytic 
Hierarchy Process (AHP), Best-Worst Method (BWM), Criteria Importance Through 
Inter-criteria Correlation (CRITIC), and Entropy to provide a flexible and adaptable 
framework. 

2) The combination of the DEAV model with Taguchi method as a comprehensive 
optimization framework to effectively balance multiple conflicting objectives. The 



Wichapa et al. 2041 

Taguchi method utilizes efficiency scores from the DEAV model to obtain optimal 
parameters through optimization process.  

3) The method was subsequently validated through two examples, including optimization 
of a fish scale scraping machine and the CNC turning process of ST37 steel. The DEAV- 
Taguchi method showed significant improvements in key performance metrics such as 
surface roughness and material removal rate, outperforming existing methods. 

4) The method was confirmed to be adaptable for other MRO or MADM problems, showing 
versatility across different industrial settings. It was suggested that future studies 
should apply the method to different materials and processes, expand experimental 
designs, and assess economic and environmental impacts. 
The remainder of this study is organized as follows: Section 2 focuses on the 

methodology designed to determine the optimal machining parameters. Section 3 presents 
the results which show the effectiveness of the proposed method. Lastly, Section 4 provides 
a summary of the key results with an emphasis on the practical implications for 
manufacturing optimization and the potential of the method to address MRO problems. 

 
2. Methods 

 This study was divided into two phases with the first focused on Experimental Design 
which was used to identify the important factors, levels, and responses, as well as the 
application of Taguchi method. The second was on optimization of parameters through the 
utilization of a novel DEAV-Taguchi method as presented in the following Figure 1. 

 
Figure 1 The proposed framework of the study 

2.1.  Phase1: Experimental design 
 The experimental design used in this study was further divided into the following two 
sub-steps. 

2.1.1. Identifying the relevant factors and subsequent levels 
 The sub-step focused on determining the critical variables influencing the outcome of 
process and specifying different values, conditions, or levels. This was important to design 
the experiments that precisely captured the effects of each factor on response variables.  
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2.1.2. Applying Taguchi method 

 The sub-step focused on implementing a systematic method to efficiently plan the 
experiments with the aim of identifying the optimal conditions. The method emphasized 
the reduction of variability and enhancement of quality through the application of 
orthogonal arrays to examine a large number of variables with a minimal number of 
experiments. 

2.2. Phase 2: Determining the optimal parameters   
 Process of determining the optimal parameters was also divided into the following two 
sub-steps. 

2.2.1. Formulating a DEAV model 
 The DEAV model was used to convert responses obtained into a single output. The 
concepts of the original DEA model required evaluating the efficiency score for each run 
according to the criterion. In the decision matrix, each set of runs was treated as a set of 
DMUs, and responses were categorized as inputs and outputs. Moreover, the efficiency of 
DMUs was assessed by comparing the inputs and outputs to a frontier. This was achieved 
by using linear programming to calculate efficiency scores and identify optimal DMUs and 
inefficiencies. The aim was to determine the optimal weights that maximize the efficiency 
score (Ekk) for each DMU. A score of 1 shows efficiency while values below 1 suggest an 
improvement in DMU by reducing inputs or increasing outputs. The DEAV model 
incorporated MADM concepts and required weights for each criterion which were 
determined by decision-makers or through methods such as AHP, BWM, CRITIC, and 
Entropy. The definitions of indices, parameters, objective functions, and constraints are 
provided in the following sections. 
 Consider a set of DMUs, denoted as DMUj, each characterized by a set of inputs xij for i 
= 1,…, m and a set of outputs yri for r =1,…,s. Let uk represent the weights assigned to the 
output k evaluated while vk is the weights assigned to the input k evaluated. The DEAV 
model is an advanced method for evaluating the performance of DMUs by incorporating 
multiple inputs and outputs. Therefore, this study focuses on transforming the non-linear 
DEAV into a linear programming model to enhance computational efficiency and 
applicability. The novel linear programming model for DEAV was formulated through a 
series of steps. Initially, the non-linear form was expressed through Equation (1).  
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 Where, wi and wr are the weights for input and output variables, respectively. The 
weights were determined in this study through sensitivity analysis. The non-linear 
programming model presented in Equation (1) was later transformed into a linear 
programming model as shown in Equation (2). 
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 The linear programming DEAV model applied a sophisticated method to assess the 
performance of DMUs, using both inputs and outputs to provide a comprehensive 
evaluation of the efficiency. The aim was to maximize the efficiency score Ekk, which was 
the weighted sum of the variables uk, wr, and yrk. The model can be applied to a variety of 
MADM problems due to the ability to continuously assign importance weights to criteria, 
which is fundamental to MADM. Sensitivity analysis was subsequently used to determine 
the criteria weights for both inputs and outputs (wr and wi) in the DEAV model. 

2.2.2. Determining the optimal parameters using a novel DEAV - Taguchi method 
 This step discusses the development of Taguchi method from the results obtained from 
the DEAV model to optimize the parameters of the proposed machines. The aim was to 
provide a detailed and structured method to enhance the performance of machines. At the 
initial stage, the efficiency scores for each experimental run were calculated using the DEAV 
model to serve as the basis for further analysis. Subsequently, Taguchi method was applied 
using Minitab statistical software to provide a robust analysis of the experimental data. The 
primary response parameters considered were two types, including "Larger is better" and 
"Smaller is better" which were analyzed using signal-to-noise (S/N) ratios and considered 
important in Taguchi method for identifying optimal settings. Specifically, the factor for 
"Smaller is better" was calculated through Equation (3) while the factor for "Larger is 
better" was determined according to Equation (4). 
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 Where, y represents response, and n denotes the number of replications. Moreover, the 
Ekk response derived from the proposed DEAV model was calculated based on the objective 
that larger values were preferable as shown in Equation (4).  
 Taguchi method used the efficiency scores from the DEAV model to obtain optimal 
parameters through optimization process. Figure 2 shows the step-by-step process of using 
the DEAV model and Taguchi method to optimize machine parameters. 

 
Figure 2 The step-by-step process of using the DEAV -Taguchi method 
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3. Numerical examples 

 The validity of the proposed method was evaluated using two numerical examples. The 
first example was the fish scale scraping machine problem investigated by (Sriburum, 
Wichapa, and Khanthirat, 2023) while the second was a case study of the CNC turning 
process of ST37 steel. The detailed calculation steps for the examples are provided in 
Sections 3.1 and 3.2, respectively. 

3.1.  The fish scale scraping machine problem 
 The fish scale scraping machine problem investigated by (Sriburum, Wichapa, and 
Khanthirat, 2023) addressed the MRO challenge, with a particular emphasis on enhancing 
efficiency while minimizing damage to the fish. Based on the principles of the DEAV model 
in Equation (2), the efficiency was regarded as the output (y1) while the resulting fish 
damage was considered the input (x1). Table 1 presents the dataset for this study with a 
focus on the nine DMUs or runs and each is defined by three factors, including speed (S: 
rpm), time (T: seconds), and capacity (C: kg) assessed at three different levels. 

Table 1 The dataset for the MRO problem of a fish scale scraping machine 

Experiment  Speed (rpm) Time (seconds) Capacity (kg) x1 y1  Ekk 

1 50 180 20 1.200 3.800 0.9704 
2 50 240 25 1.467 4.400 0.9444 
3 50 300 30 2.000 3.800 0.7517 
4 60 180 25 1.467 4.933 1.0000 
5 60 240 30 1.733 4.733 0.9012 
6 60 300 20 3.000 3.800 0.6137 
7 70 180 30 1.533 4.533 0.9377 
8 70 240 20 3.000 3.933 0.6244 
9 70 300 25 3.800 4.000 0.5595 

 The dataset provided in Table 1 was used to compute the efficiency scores (Ekk) 
through the DEAV model. For example, the efficiency of DMU1 was calculated using 
Equation (5) as follows. 
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 The linear programming model could be solved using different optimization software. 
However, Lingo software was used in this study to determine all the efficiency scores (Ekk) 
for the fish scale scraping machine problem, as presented in Table 2. 
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Table 2 The details of the Lingo code for the fish scale scraping machine problem 

Lingo code for the DEAV model 

MODEL: 
SETS: 
ALTERNATIVE/1..9/: ; 
CRITERION/1..2/:w; 
DMU/1..9/: E,u,v; 
IJ(ALTERNATIVE, CRITERION): X;    
ENDSETS 
DATA:   
X= 
1.200 3.800 
1.467 4.400 
2.000 3.800 
1.467 4.933 
1.733 4.733 
3.000 3.800 
1.533 4.533 
3.000 3.933 
3.800 4.000; 
N_inputs=1; 
 
w= 0.50, 0.50; !w={wi,wr); 
 
ENDDATA 
MAX = @SUM(DMU (K): E(K)); 
@FOR(DMU(K):E(K) = @SUM(CRITERION(J)|j#GT# N_inputs :u(K)*(X(K,J)^w(J) ))  ); 
!Constraints;  
@FOR(DMU(K): @SUM(CRITERION(J)|J#LE#N_inputs :v(K)*(X(K, J)^w(J)   )) = 1  ); 
@FOR(DMU(K): @FOR(ALTERNATIVE(I):  
@SUM(CRITERION(J)|j#GT#N_inputs :u(K)*(X(I, J)^w(J)   )) <= @SUM(CRITERION(J)|J#LE# N_inputs 
:@SUM(CRITERION(J):v(K)*(X(I, J)^w(J)))      )));    
@FOR(DMU(K :)u(K)>=0); 
END 

 The Lingo code solved was used to present the Ekk values in the final column of Table 
1. This was followed by the application of Minitab statistical software to derive the optimal 
parameters, leading to the S/N Ratios of the Ekk response listed in Table 3. 

Table 3 Response table for S/N Ratios of the Ekk response for the fish scale scraping 
machine problem 

Experiment  Speed (rpm) Time (seconds) Capacity (kg) 

1 -1.0790 -0.2732 -2.8642 
2 -1.7148 -1.8304 -1.8470 
3 -3.2312 -3.9213 -1.3138 

Delta 2.1522 3.6481 1.5504 
Rank 2 1 3 

 The higher delta value presented in the table shows that process parameters have a 
more significant impact on the multi-response performance indicator. Consequently, the 
delta statistics showed that the Ekk response was most influenced by the time (T) followed 
by speed (S), and then capacity (C). It is important to state that the main effects plot for S/N 
ratios are shown in Figure 3. The method ensured the selected parameters achieved the 
maximum desired outcomes, offering a robust framework for optimizing the fish scale 
scraping machine. 
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Figure 3 The main effects plot for S/N ratios of the Ekk for the fish scale scraping machine 

 Figure 3 shows that the optimal parameters to achieve the desired Ekk are a speed of 
50 rpm, a time of 180 seconds, and a capacity of 30 kg. Moreover, the ANOVA results for the 
Ekk response are presented in the following Table 4. 

Table 4 ANOVA for S/N ratios for Ekk response for the fish scale scraping machine 

Source DF Seq SS Adj SS Adj MS F P 

Speed 2 7.3354 7.3354 3.6677 25.55 0.038 
Time 2 20.1053 20.1053 10.0527 70.03 0.014 

Capacity 2 3.7228 3.7228 1.8614 12.97 0.072 
Residual Error 2 0.2871 0.2871 0.1435   

Total 8 31.4506     
Source DF Seq SS Adj SS Adj MS F P 

 The efficiency scores Ekk for each run, derived from the DEAV model calculations, were 
subjected to ANOVA. The analysis showed that the factors of speed (S), time (T), and 
capacity (C) significantly influenced the Ekk response at P-values less than 0.05, showing 
strong statistical significance. Moreover, a detailed comparison of the proposed method 
with other MADMs such as TOPSIS-LP (Sriburum, Wichapa, and Khanthirat, 2023), TOPSIS 
(Hwang et al., 1981), WASPAS (Zavadskas et al., 2012), and ARAS (Zavadskas and Turskis, 
2010), COPRAS (Zavadskas, Kaklauskas, and Šarka, 1994), and MOORA with the full 
multiplicative form (Brauers and Zavadskas, 2010) is presented in Table 5. 

Table 5 ANOVA for S/N ratios for Ekk response for the fish scale scraping machine 

Methods Original parameters Optimal parameters 

Proposed S2: F1: D2 S1: F1: D3 
TOPSIS-LP S2: F1: D2 S1: F1: D3 

TOPSIS S2: F1: D2 S1: F1: D3 
WASPAS S2: F1: D2 S1: F1: D3 

ARAS S1: F1: D1 S1: F1: D3 
COPRAS S1: F1: D1 S1: F1: D3 
MOORA S2: F1: D2 S1: F1: D3 

 The comparison showed that the optimal parameters identified were consistent 
(S1:F1:D3) across the majority of MADM methods. The consistency confirmed the 
robustness and reliability of these methods in optimizing the parameters for the fish scale 
scraping machine. Moreover, the ranking alternatives of the DEAV model were evaluated 
against different MADM methods using the original parameters, specifically the decision 
matrix from Table 1, with weights wR1= 0.50 and wR2 = 0.50 in Table 6 and Figure 4. 
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Table 6 The ranking comparison of the proposed DEAV model against established MADM 
methods 

Run DEAV Rank TOPSIS Rank WASPAS Rank ARAS Rank TOPSIS Rank WASPAS Rank 

1 0.9704 2 0.8088 4 0.8814 2 0.8351 1 1.0000 1 1.9263 2 
2 0.9444 3 0.8568 2 0.8546 3 0.7204 3 0.8528 3 1.8245 3 
3 0.7517 6 0.6408 6 0.6825 6 0.4547 6 0.5351 6 1.1558 6 
4 1.0000 1 0.9004 1 0.9067 1 0.8033 2 0.9471 2 2.0455 1 
5 0.9012 5 0.7964 5 0.8205 5 0.6584 5 0.7727 5 1.6613 5 
6 0.6137 8 0.2961 8 0.5701 8 0.3358 8 0.3898 8 0.7705 8 
7 0.9377 4 0.8527 3 0.8495 4 0.7067 4 0.8344 4 1.7987 4 
8 0.6244 7 0.2994 7 0.5817 7 0.3530 7 0.4093 7 0.7975 7 
9 0.5595 9 0.0394 9 0.5347 9 0.3260 9 0.3756 9 0.6403 9 

 

 

Figure 4 The ranking comparison of the proposed DEAV model against established MADM 
methods 

 

Figure 5 The Spearman correlation coefficients for the fish scale scraping machine problem 

 Figure 5 shows the Spearman correlation coefficients for the comparison between the 
DEAV model and other well-known MADM methods. The results provided a strong 
correlation in ranking alternatives between the DEAV model and other MADM methods. 
These were specifically observed through the 0.950 recorded with TOPSIS, 0.983 with both 
ARAS and COPRAS, and a perfect 1.00 with WASPAS and MOORA. The high values showed 
that the DEAV model produced rankings considered significantly consistent with those 
generated by established MADM methods, thereby validating the effectiveness and 
reliability in multi-criteria decision-making contexts. 

3.2.  The case study of the CNC turning process applied to ST37 steel 
 Computer Numerical Control (CNC) turning introduced in the 1950s has been widely 
used for producing precise and complex components across different industries. The 
technology enables high-precision and repeatable manufacturing processes by automating 
the control of machining tools through programmed instructions. This capability is 
specifically important in industries such as aerospace, automotive, and electronics, where 
stringent demands for precision and consistency are predominant. In aerospace, CNC 
turning manufactures components with tight tolerances which are important for safety and 
performance, while in automotive, it produces engine parts and transmission components 
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with high precision. The electronics industry also benefits from CNC turning by producing 
intricate device components that require meticulous accuracy. This is due to the ability of 
CNC machine to enhance efficiency, reduce human error, and allow for the production of 
complex geometries unachievable with manual methods. Consequently, technology is a 
cornerstone of modern manufacturing, driving technological advancements and 
significantly improving product quality. 
 ST37 steel is a commonly used material in different industrial settings and considered 
the ideal subject for this study due to the extensive use and the complexity of the machining 
process. CNC turning of ST37 steel requires multiple responses, including surface 
roughness and material removal rate. These responses are critical to the overall 
performance and cost-effectiveness of the manufacturing process and are considered part 
of the challenging MRO problems. Therefore, some important steps are required to solve 
problem which include (1) preparing the ST37 steel specimens, (2) identifying the relevant 
factors with levels and responses, (3) applying Taguchi method for experimental design, 
and (4) determining the optimal parameters for machining using a novel DEAV-Taguchi 
method. 

3.2.1. The results of the experiment conducted using Taguchi method 
The experiment identified three critical factors, including speed (S), feed rate (F), and 

depth of cut (D) with each having three distinct levels. Moreover, the Taguchi method was 
used to determine the optimal parameters for the CNC turning machine processing of ST37 
steel in order to minimize costs and shorten the trial period. The L9-Taguchi experimental 
design was specifically selected for the case study. In each experimental trial, surface 
roughness (R1 or Ra) and material removal rate (R2 or MRR) were measured. The Ra 
response was measured using the Mitutoyo Surf test SV–3100 WB6163-460-0001/1 with 
a resolution of 0.01 µm. Meanwhile, the MRR response for all experimental runs was 
calculated through the following process. For example, in Run 1 

3

3

MRR ( ) / ( )

(620g 450g) / (7.85 / mm 39.5min)

548mm / min.

u m t

g

  = − 

= − 

=

 (6) 

 Where, ɷu is the weight of the unmachined workpiece in grams (g), ɷu is the weight of 
the machined workpiece in g, ρ is the density of ST37 steel in g/mm3, and t is the time for 
machining in minutes. The details of the other experimental results are presented in Table 
7. 

Table 7 The details of the other experimental results based on Taguchi method 

Runs S F D Ra MRR 

1 1000 0.06 0.1 1.790 548 
2 1000 0.11 0.3 1.799 2,827 
3 1000 0.16 0.5 1.895 6,087 
4 2000 0.06 0.3 1.357 2,904 
5 2000 0.11 0.5 1.382 7,209 
6 2000 0.16 0.1 2.117 2,628 
7 3000 0.06 0.5 1.349 7,025 
8 3000 0.11 0.1 2.024 3,598 
9 3000 0.16 0.3 2.013 10,525 

The results in Table 7 were used to calculate the S/N ratios for both the Ra and MRR 
responses using Minitab version 19. This led to the presentation of the main effects plots 
for the Ra and MRR responses in Figures 6 and 7, respectively. 
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Figure 6 The main effects plot for S/N ratios of the Ra response 

 

Figure 7 The main effects plot for S/N ratios of the MRR response 

 The optimal parameters to achieve the desired Ra were found in Figure 6 to be a speed 
of 2000 rpm, a feed rate of 0.06 mm/rev, and a depth of cut of 0.5 mm. Meanwhile, the 
values to achieve the desired MRR were recorded to be 3000 rpm, 0.16 mm/rev, and 0.5 
mm respectively in Figure 7. The ANOVA results for both responses are also presented in 
Tables 8 and 9, respectively. 

Table 8 ANOVA for S/N ratios for the Ra response 

Source DF Seq SS Adj SS Adj MS F P 

Speed 2 2.5275 2.5275 1.26374 97.37 0.010 
Feed rate 2 10.2382 10.2382 5.11912 394.42 0.003 

Dept of cut 2 7.6113 7.6113 3.80567 293.22 0.003 
Residual Error 2 0.0260 0.0260 0.01298   

Total 8 20.4030     
S 2 2.5275 2.5275 1.26374 97.37 0.010 

Table 9 ANOVA for S/N ratios for the MRR response 

Source DF Seq SS Adj SS Adj MS F P 

Speed 2 140.396 140.396 70.198 61.71 0.016 
Feed rate 2 97.103 97.103 48.551 42.68 0.023 

Dept of cut 2 219.880 219.880 109.940 96.65 0.010 
Residual Error 2 2.275 2.275 1.138   

Total 8 459.653     
S 2 140.396 140.396 70.198 61.71 0.016 

The factors of speed (S), feed rate (F), and depth of cut (D) were found to have a 
significant effect on both the Ra and MRR responses, with P-values less than 0.05. This 
showed that the determination of the optimal parameters for the two conflicting responses 
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presented a significant challenge due to the need to balance opposing objectives. Therefore, 
the MRO problem was planned to be solved through the proposed method. This was 
achieved by using the DEAV model to integrate the two responses for each experimental 
run into efficiency scores. Subsequently, the Minitab statistical software version 19 was 
applied to optimize the parameters for the CNC turning machine for ST37 steel based on 
Taguchi method. The detailed calculation steps of the proposed method are presented in 
the following section. 

3.2.2. Determining the optimal parameters using the DEAV model with the sensitivity 
analysis and Taguchi method 
 The initial decision matrix was obtained as shown in Table 10. The purpose of the 
matrix was to be used in calculating the efficiency scores of the DMUs or runs using the 
following steps: 

Table 10 The initial decision matrix for the case study 

Runs Ra (µm) MRR (mm3/min) 

1 1.790 548 
2 1.799 2,827 
3 1.895 6,087 
4 1.357 2,904 
5 1.382 7,209 
6 2.117 2,628 
7 1.349 7,025 
8 2.024 3,598 
9 2.013 10,525 

(1) The efficiency scores of each DMU using the DEAV model 

Sensitivity analysis was used to ascertain the weight of each criterion. This was 
achieved through the application of the weight adjustment method across nine scenarios to 
examine the impact of different weight distributions on the criteria. The scenarios are 
presented as follows: 

Scenario#1: Allocation of 90% to the Ra response and 10% to the MRR response. 
Scenario#2: Allocation of 80% to the Ra response and 20% to the MRR response. 
Scenario#3: Allocation of 70% to the Ra response and 30% to the MRR response. 
Scenario#4: Allocation of 60% to the Ra response and 40% to the MRR response. 
Scenario#5: Equal allocation of 50% to the Ra response and 50% to the MRR response. 
Scenario#6: Allocation of 40% to the Ra response and 60% to the MRR response. 
Scenario#7: Allocation of 30% to the Ra response and 70% to the MRR response. 
Scenario#8: Allocation of 20% to the Ra response and 80% to the MRR response. 
Scenario#9: Allocation of 10% to the Ra response and 90% to the MRR response. 

 The DEAV model was used to integrate the two responses into a single efficiency score 
for each run. These efficiency scores were analyzed using the Taguchi method in Minitab 
version 19 to determine the optimal parameters for the CNC turning process. Model (2) was 
used to calculate the efficiency of each DMU, which in this context was represented by each 
run. The DEAV model was implemented using Lingo software with relevant parameters, 
including the Ra, MRR, and the weights for each response, integrated into the Lingo code. 
An example of the efficiency calculation for Scenario#5 presented in Table 11 shows the 
step-by-step process and methods used to determine the efficiency scores of each DMU 
within the given scenario. This was necessary to clarify how the input and output variables 
were processed and the application of the criteria weights determined through sensitivity 
analysis to generate the final efficiency scores. 
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Table 11 The details of the Lingo code for Scenario#5 

Lingo code for the DEAV model 

MODEL: 

SETS: 

ALTERNATIVE/1..9/: ; 

CRITERION/1..2/:w; 

DMU/1..9/: E,u,v; 
IJ(ALTERNATIVE, CRITERION): X;    
ENDSETS 
DATA:   
X= 
1.790, 548 
1.799, 2827 
1.895, 6087 
1.357, 2904 
1.382, 7209 
2.117, 2628 
1.349, 7025 
2.024, 3598 
2.013, 10525; 
N_inputs=1; 
w= 0.50, 0.50; !w={wi,wr); 
ENDDATA 
MAX = @SUM(DMU (K): E(K)); 
@FOR(DMU(K):E(K) = @SUM(CRITERION(J)|j#GT# N_inputs :u(K)*(X(K,J)^w(J) ))  ); 
Constraints;  
@FOR(DMU(K): @SUM(CRITERION(J)|J#LE#N_inputs :v(K)*(X(K, J)^w(J)   )) = 1  ); 
@FOR(DMU(K): @FOR(ALTERNATIVE(I):  
@SUM(CRITERION(J)|j#GT#N_inputs :u(K)*(X(I, J)^w(J)   )) <= @SUM(CRITERION(J)|J#LE# N_inputs 
:@SUM(CRITERION(J):v(K)*(X(I, J)^w(J)))      )));    
@FOR(DMU(K :)u(K)>=0); 
END 

Table 12 The ranking comparison of the proposed DEAV model against established MADM 
methods 

Runs Parameters Ra (µm) MRR (mm3/min) Ekk 

1 S1: F1: D1 1.790 548 0.2420 
2 S1: F2: D2 1.799 2,827 0.5482 
3 S1:F3: D3 1.895 6,087 0.7838 
4 S2:F1: D2 1.357 2,904 0.6398 
5 S2: F2: D3 1.382 7,209 0.9988 
6 S2: F3: D1 2.117 2,628 0.4873 
7 S3: F1:D3 1.349 7,025 0.9980 
8 S3: F2: D1 2.024 3,598 0.5831 
9 S3: F3: D2 2.013 10,525 1.0000 

The execution of the Lingo code led to the determination of the efficiency scores (Ekk) 
for Scenario #5 in Table 12. This was followed by the application of the larger-is-better 
criterion of Taguchi to identify the optimal parametric conditions. The S/N Ratios of the 
Ekk response are presented in Table 13. 
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Table 13 Response table for S/N Ratios of the Ekk response 

Experiment S F D 

1 -6.5537 -5.4072 -7.7515 
2 -3.3782 -3.3054 -3.0335 
3 -1.5676 -2.7869 -0.7145 

Delta 4.9862 2.6203 7.0370 
Rank 2 3 1 

The higher delta value presented in the table shows that process parameters have a 
more significant impact on the multi-response performance indicator. Consequently, the 
delta statistics showed that the Ekk response was most influenced by the depth of cut (D), 
followed by speed (S), and then feed rate (F). It is important to state that the main effects 
plot for S/N ratios are shown in Figure 8. The method ensured the selected parameters 
achieved the maximum desired outcomes, offering a robust framework for optimizing the 
CNC turning process of ST37 steel. 

 
Figure 8 The main effects plot for S/N ratios of the Ekk  

The analysis showed that the optimal parameters to achieve the desired Ekk were a 
speed of 3,000 rpm, a feed rate of 0.16 mm/rev, and a depth of cut of 0.5 mm. Moreover, the 
ANOVA results for the Ekk response are presented in Table 14. 

Table 14 ANOVA for S/N ratios for the Ekk response 

Source DF Seq SS Adj SS Adj MS F P 

Speed 2 38.224 38.2242 19.1121 83.82 0.012 
Feed rate 2 11.552 11.5525 5.7762 25.33 0.038 

Depth of cut 2 77.158 77.1575 38.5788 169.20 0.006 
Residual Error 2 0.456 0.4560 0.2280   

Total 8 127.390     
S 2 38.224 38.2242 19.1121 83.82 0.012 

The efficiency scores Ekk for each run, derived from the DEAV model calculations, were 
subjected to ANOVA. The analysis showed that the factors of speed (S), feed rate (F), and 
depth of cut (D) significantly influenced the Ekk response at P-values less than 0.05, showing 
strong statistical significance. 

(2) Sensitivity analysis 

Sensitivity analysis is a method widely used to ensure the reliability and stability of 
solutions. Therefore, a comprehensive two-phase sensitivity analysis was adopted in this 
study. In the first phase, nine scenarios were developed to model different weights of 
criteria with a reflection of the emphasis on the Ra value over the MRR value. This was 
achieved using the weight adjustment method as stated in Step (1) to examine the impact 
of different weight distributions on the criteria. The same calculation steps applied to 
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evaluate the Ekk as in Scenario #5 were used for other scenarios with the results presented 
in Table 15. 

Table 15 The efficiency scores (Ekk) for all scenarios 

Runs 
Ekk 

Sc.#1 Sc.#2 Sc. #3 Sc. #4 Sc. #5 Sc.#6 Sc.#7 Sc. #8 Sc. #9 

1 0.6007 0.4788 0.3816 0.3042 0.2420 0.1780 0.1309 0.0963 0.0708 

2 0.7046 0.6621 0.6221 0.5846 0.5482 0.4753 0.4121 0.3573 0.3098 

3 0.7260 0.7404 0.7551 0.7701 0.7838 0.7376 0.6941 0.6531 0.6146 

4 0.9106 0.8341 0.7640 0.6998 0.6398 0.5407 0.4570 0.3863 0.3265 

5 0.9810 0.9859 0.9909 0.9958 0.9988 0.9262 0.8589 0.7965 0.7386 

6 0.6042 0.5728 0.5431 0.5150 0.4873 0.4263 0.3729 0.3262 0.2854 

7 1.0000 1.0000 1.0000 1.0000 0.9980 0.9208 0.8497 0.7840 0.7234 

8 0.6492 0.6323 0.6159 0.5999 0.5831 0.5240 0.4710 0.4233 0.3804 

9 0.7263 0.7871 0.8531 0.9246 1.0000 1.0000 1.0000 1.0000 1.0000 

The efficiency values of all scenarios were subsequently utilized to calculate the 
optimal parameters and predicted Taguchi results for each case using Minitab version 19. 
Therefore, Table 16 presents the optimal parameters with the predicted responses of 
alternatives for the nine scenarios. Table 16 focuses on selecting the most suitable 
experimental outcomes, with a clear prioritization of MRR over Ra. Optimization strategy 
aims to maximize MRR, achieving 10,603 mm³/min while maintaining Ra at 1.851 µm. 
Moreover, the optimal parameters identified were a speed of 3000 rpm, a feed rate of 0.16 
mm/rev, and a depth of cut of 0.5 mm. These "optimal parameters" were determined 
through the Taguchi method, targeting the best settings to enhance overall machining 
efficiency and performance. The predicted values labeled "Predict Taguchi results" were 
further obtained using Minitab version 19 to forecast the outcomes based on the 
determined parameter settings. 

Table 16 A comprehensive comparison of the optimal parameters across nine distinct 
scenarios 

Scenarios Original parameters Optimal parameters 
Predict Taguchi results 

Ra (µm) MRR (mm3/min) 

Scenario# 1 S3: F1: D3 S2: F1: D3 1.165 4,879 

Scenario# 2 S3: F1: D3 S3: F2: D3 1.578 8,734 

Scenario# 3 S3: F1: D3 S3: F2: D3 1.578 8,734 

Scenario# 4 S3: F1: D3 S3: F3: D3 1.851 8,766 

Scenario# 5 S3: F3: D2 S3: F3: D3 1.851 10,603 

Scenario# 6 S3: F3: D2 S3: F3: D3 1.851 10,603 

Scenario# 7 S3: F3: D2 S3: F3: D3 1.851 10,603 

Scenario# 8 S3: F3: D2 S3: F3: D3 1.851 10,603 

Scenario# 9 S3: F3: D2 S3: F3: D3 1.851 10,603 

 The optimal parameters S3:F3:D3 were selected when the importance weight of the 
MRR criterion was equal to or greater than for the Ra criterion. However, in a situation 
where the Ra criterion had more significance, the optimal parameters were changed. For 
example, in Scenario #3, the optimal parameters shifted to S3:F2:D3 when 70% weight was 
on the Ra response and 30% on the MRR response. In scenarios where the Ra response was 
significantly prioritized over the MRR criterion, such as in Scenario #1, the optimal 
parameters were adjusted to a speed of 2000 rpm, a feed rate of 0.06 mm/rev, and a depth 
of cut of 0.5 mm. This showed the choice of parameters mainly depended on the required 
surface finish quality for specific applications. 
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  The second phase was focused on using different MADM methods for a comparative 
analysis through the application of the data obtained from the DEAV model in Section 
3.2.2.1. The decision matrix from Table 5 with weights assigned as wRa = 0.50 and wMRR = 
0.50 were used for the analysis. The detailed comparison of the proposed method with 
other MADM such as TOPSIS (Hwang et al., 1981), WASPAS (Zavadskas et al., 2012), and 
ARAS (Zavadskas and Turskis, 2010), COPRAS (Zavadskas, Kaklauskas, and Šarka, 1994), 
DEAR (Liao and Chen, 2002; Kamath et al., 2022), and MOORA with the full multiplicative 
form (Brauers and Zavadskas, 2010) is presented in Table 17. This was necessary to 
determine the effectiveness and robustness of the proposed solution.  

Table 17 A comprehensive comparison of the optimal parameters across various MADM 
methods 

Methods Original parameters Optimal parameters 

Proposed S3: F3: D2 S3: F3: D3 

TOPSIS S3: F3: D2 S3: F3: D3 

WASPAS S3: F3: D2 S3: F3: D3 

ARAS S3: F3: D2 S3: F3: D3 

COPRAS S3: F3: D2 S3: F3: D3 

DEAR S3: F3: D2 S3: F3: D3 

MOORA S3: F3: D2 S3: F3: D3 

 The comparison showed that the optimal parameters identified were consistent 
(S3:F3:D3) across the majority of MADM methods. This consistency further confirmed the 
robustness and reliability of the methods in optimizing the parameters for the CNC turning 
process of ST37 steel. The uniformity across different MADM methods also suggests the 
parameters are optimal to achieve the desired performance metrics.  
 The ranking alternatives of the DEAV model were compared with different MADM 
methods using the original parameters, specifically the decision matrix from Table 10, with 
weights wRa = 0.50 and wMRR = 0.50. The results obtained from the comparison process are 
presented in Table 18 while the Spearman correlation coefficients are shown in Figure 9. 

Table 18 The ranking comparison of the proposed DEAV model against established MADM 
methods 

Run DEAV Rank TOPSIS Rank WASPAS Rank ARAS Rank COPRAS Rank MOORA Rank 

1 0.2420 9 0.0936 9 0.3005 9 0.3225 9 0.3505 9 0.3102 9 
2 0.5482 7 0.2415 7 0.4790 7 0.4541 7 0.5052 7 0.7028 7 
3 0.7838 4 0.5395 4 0.6434 4 0.6298 4 0.7130 4 1.0048 4 
4 0.6398 5 0.3070 5 0.5794 5 0.5528 5 0.6119 5 0.8202 5 
5 0.9988 2 0.6803 2 0.8241 3 0.7972 2 0.8997 2 1.2805 2 
6 0.4873 8 0.2010 8 0.4212 8 0.3991 8 0.4448 8 0.6247 8 
7 0.9980 3 0.6642 3 0.8254 2 0.7957 3 0.8970 3 1.2794 3 
8 0.5831 6 0.2970 6 0.4908 6 0.4670 6 0.5235 6 0.7475 6 
9 1.0000 1 0.8254 1 0.8268 1 0.8728 1 1.0000 1 1.2820 1 

 The Spearman correlation test showed a strong agreement between the ranking 
alternatives of the DEAV model and other MADM methods. This was specifically observed 
from the correlation coefficients of 0.976 recorded with WASPAS and a perfect 1.00 with 
TOPSIS, ARAS, COPRAS, and MOORA. The high values showed that the DEAV model 
produced rankings considered significantly consistent with those generated by the 
established MADM methods, validating the effectiveness and reliability in multi-criteria 
decision-making contexts. 
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Figure 9 The Spearman correlation coefficients for optimizing CNC turning of ST37 steel  

(3) Experimental validation 

 A confirmation test was conducted using the optimal parameters identified by the 
proposed method, which were a speed of 3000 rpm, a feed rate of 0.16 mm/rev, and a depth 
of cut of 0.5 mm. The results showed that the predicted Ra and MRR values were 1.851µm 
and 10,603 mm3/min as presented in Table 14. The optimal parameters were tested in 12 
replications and the results were close to the actual experiment within 95% confidence 
level as shown in Table 19. 

Table 19 Confirmation test at 95% confidence interval (CI) 

Responses 
95% CI 

Means Predicted 
Low High 

Ra 1.752 1.858 1.805 1.851 
MRR 10611 10763 10,687 10,603 

 The proposed method was further compared to the original parameters, S3:F3:D2, for 
each response, Ra = 2.013 µm and MRR= 10,525 mm³/min (see details in Table 10, run 9). 
The application of the optimal parameters led to a reduction in Ra to 1.805 µm and an 
increment in MRR to 10,687 mm³/min. The figures showed a 10.33 % improvement in 
surface roughness and a 1.54% increase in material removal rate. The results showed the 
significant benefits of optimizing parameters to enhance both the efficiency and quality of 
the machining process. Finally, Figure 10 presents the characteristics of the test specimen 
produced based on the optimal parameters, including a spindle speed of 3000 rpm, a feed 
rate of 0.16 mm/rev, and a depth of cut of 0.5 mm. 

 

Figure 9 The Spearman correlation coefficients for optimizing CNC turning of ST37 steel 
 

4. Conclusions  

 In conclusion, MRO was found to be important in modern manufacturing, where 
achieving efficiency and quality required considering multiple performance metrics 
simultaneously. The need for innovative strategies was due to the fact that traditional 
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optimization methods often struggled to balance conflicting objectives. This study 
presented a novel hybrid method for MRO by combining the DEAV model with Taguchi 
method. The DEAV model was used to improve on traditional DEA by incorporating MADM 
principles, offering a comprehensive evaluation of performance metrics. Taguchi method 
was later used to optimize parameters based on the efficiency scores of the DEAV model. 
 The proposed method was a systematic process initiated through the identification of 
relevant factors, determination of the critical variables influencing process outcomes, and 
the subsequent respective levels. Taguchi method was applied to design experiments using 
orthogonal arrays in order to efficiently study the effects of multiple variables. 
Subsequently, the DEAV model was formulated to convert response values into a single 
efficiency score for each experimental run. Optimization was achieved by analyzing these 
efficiency scores using Taguchi method to identify optimal parameters based on signal-to-
noise (S/N) ratios. The method was later validated through numerical examples by 
optimizing a fish scale scraping machine and the CNC turning process of ST37 steel. 
 The results showed that the DEAV-Taguchi method provided more efficient and 
reliable outcomes than existing methods. Specifically, it significantly improved scaling 
efficiency by 15% and reduced fish damage by 10% for the fish scale scraping machine. For 
the CNC turning process of ST37 steel, the method enhanced surface roughness by 10.33% 
through a reduction from 2.013 µm to 1.805 µm and increased the material removal rate 
(MRR) by 1.54% from 10,525 mm³/min to 10,687 mm³/min. 
 This study contributed a robust and adaptable optimization framework that integrates 
DEA and MADM principles with the systematic Taguchi method, effectively addressing MRO 
complexities and demonstrating versatility across different manufacturing processes. 
However, the findings were limited to specific applications, such as a fish scale scraping 
machine and CNC turning of ST37 steel, suggesting a need for further experiments to 
validate broader applicability across materials and processes. Economic impacts of 
optimized parameters were also not fully explored, signalling the need for future research 
to assess these dimensions for improved practical value. The integration of MADM and 
Taguchi required careful consideration of inherent limitations, urging future studies to 
address potential biases for greater reliability. Key recommendations include validating the 
method with diverse materials and processes, expanding experimental designs to better 
understand parameter interactions, and assessing economic and environmental impacts to 
enhance sustainability insights. Additionally, combining the DEAV model with other 
optimization and weighting techniques (e.g., CRITIC, Entropy, AHP, BWM) could increase 
adaptability and robustness, expanding the model's relevance in MADM scenarios by 
supporting more nuanced, criteria-based decision-making for complex industrial 
applications. 
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