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Abstract. The mathematical equations that describe the hydrodynamic forces on a ship's hull are 
important in understanding how a ship moves. These equations are based on specific values that 
vary depending on the type of ship. This research will focus on a mathematical model based on a 
polynomial model in order to investigate the differences between the 3rd order polynomial (cubic 
model) and the 2nd order polynomial (quadratic model). The course stability index is determined by 
utilizing linear hydrodynamic derivatives and examined to understand the distinctions between the 
characteristics of cubic and quadratic models. In this research, the measurement data of the 
hydrodynamic forces of 12 model vessels (total of 27 loading conditions) that had been conducted 
for turning tests and the zigzag tests in the past at Kyushu University were targeted. The 𝜷 based 

2nd order model and the 𝒗′ based 3rd order model are applied for re-analysis, and the results of a 
comparative study on the difference and approximation characteristics of the hydrodynamic force 
due to the difference of the adopted models are shown. 

 
Keywords: Course stability index; Cubic model; hydrodynamic derivatives; Ship manoeuvrability; 

Quadratic model 

 
1. Introduction 

The International Maritime Organization (IMO) has approved Resolution A.751(18), 
known as the Interim Standards for Ship Manoeuvrability, in order to improve marine 
safety by removing ships with inadequate manoeuvrability. Currently, the issue of 
manoeuvring subjects has become significant due to the establishment of criteria for 
manoeuvring characteristics in the Standards for Ship Manoeuvrability Criteria (IMO, 
2002). The IMO has identified ship manoeuvrability as a critical factor in a ship's ability to 
change or maintain its course and speed. Larger ships, in particular, often encounter greater 
challenges in navigation due to their limited manoeuvrability. Any ship that is exceeds 100 
meters in length must meet the requirements outlined in the IMO's manoeuvring standards. 

Manoeuvring performance of a ship should be evaluated properly at the design phase 
in order to eliminate ships that, have poor manoeuvrability. Several methods to evaluate at 
the design stage have been developed such as direct and indirect methods (Hasanvand and 
Hajivand, 2019). Numerical simulations based on a mathematical model of hydrodynamic  
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forces acting on a ship is one of the evaluation methods for indirect methods. 
Moreover, the manoeuvring standards require to prove that a newly constructed ship 

meets the requirements for manoeuvring tests under fully loaded conditions in calm 
weather. During this process, numerical simulation plays a key role in ensuring the 
accuracy of hydrodynamic coefficients in mathematical models that depict the forces 
affecting a ship's manoeuvring abilities. 

The hydrodynamic forces on a ship's hull are mathematically represented by specific 
values known as hydrodynamic derivatives. These derivatives vary depending on the type 
of ship and are determined by analyzing the measured forces acting on the hull. They 
indicate the rate of change of the forces and moments. Hydrodynamic derivatives can also 
be expressed as a function of a ship's principal particulars, including length, beam, draught, 
trim, and displacement (Kijima et al., 1990).  

Additionally, there are various types of errors and uncertainties present in 
mathematical models of hydrodynamic forces that are utilized in predicting manoeuvring 
motions. (Dash, Nagarajan, and Sha, 2015; Wang et al., 2014). These issues are often related 
to the hydrodynamic derivatives that represent the hydrodynamic forces acting on a ship 
hull. (Ayub, Furukawa, and Ibaragi, 2021; Shenoi, Krishnankutty, and Selvam, 2015), model 
tests (Woodward, 2013), facilities equipment (Gavrilin and Steen, 2016; Woodward, 2014). 
Extrapolation of data may occur when applying the results of a mathematical model to drift 
angles and rotation rates that have not been tested within the model's range (ITTC 
Manoeuvring Committee, 2017; 2008). 

Analyzing and evaluating errors can be a challenging and time-intensive process, but 
it's necessary for validation. The accuracy of predicted results relies on the methods used 
to predict manoeuvring performance. Therefore, it is essential to make a dedicated effort 
to verify and validate prediction or simulation methods in order to accurately assess their 
accuracy. In order to properly evaluate the correlation between predicted outcomes and 
actual hydrodynamic forces, it is important to consider uncertainties in both the 
predictions and the measured data. 

A brief review of the mathematical models has been summarized by the International 
Towing Tank Conference (ITTC Manoeuvring Committee, 2011). Each method has it own 
advantages and disadvantages. The mathematical model for manoeuvring motions is 
categorized into several models such as; cross-flow model (Yoshimura, 1988; Oltmann and 
Sharma, 1984), Polynomial model (Viallon, Sutulo, and Soares, 2012), Manoeuvring 
Modelling Group Model (Yasukawa and Yoshimura, 2015), Fourier expansion model 
(Toxopeus, 2011a; 2011b; 2007; Kang and Hasegawa, 2007), Karasuno’s model (Karasuno 
et al., 2003), Vectorial model (Berge and Fossen., 2012; Fossen, 2011), RANS CFD (Liu et al, 
2021; Islam and Soares, 2018). 

The basic principles of the equations of motion for ship manoeuvring are based on 
Newton's second law of motion (Tao et al, 2021). The first theoretical approach focused on 
analyzing the ship as a rigid body with movements in surge, sway, and yaw and explaining 
the hydrodynamic forces and moments on the ship through first-order derivatives. 

Nonlinear hydrodynamic forces were found to be present at high velocities and when 
cross products of velocities occurred, causing forces and moments to deviate from linear 
behaviour. These non-linear forces can become comparable in magnitude to the linear 
component during a sharp turn with a significant rudder angle. Moreover, the yawing 
moment's non-linear aspect is typically five to ten times greater than its linear component. 
These non-linear terms are often depicted using cubic or quadratic polynomial equations, 
with coefficients typically established through captive model tests. 
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The Taylor series expansion is employed to represent the non-linearities, leading to a 
polynomial expression involving two variables (Luo et al., 2016). The hydrodynamic forces 
and moments acting on a ship can result in a variety of motions and orientation parameters. 
By utilizing the Taylor series expansion of a function with multiple variables, these 
functions can be simplified into a more manageable mathematical form. In this scenario, the 
sway forces and yawing moment can be accurately represented by using only the odd terms 
in the Taylor series due to the symmetry between port and starboard. 

Alternatively, the non-linearities could be accounted for using quadratic polynomial 
expressions (Fedyaevsky and Sobolev, 1963a). Although second-order terms may not be 
ideal since they are even functions, this issue can be circumvented by incorporating a 
modulus term and adjusting the way the non-linearities are expressed. The quadratic 
functions modulus approach can effectively demonstrate the hydrodynamic idea of cross-
flow drag at high angles of incidence, as it offers certain advantages. 

Non-linear forces and moments were computed using the quadratic form to depict the 
non-linear forces on a ship hull (Fedyaevsky and Sobolev, 1963b). An accurate 
representation was achieved by incorporating lateral force caused by drag from the cross-
flow velocity component. Nevertheless, the distribution of non-linear forces appeared to be 
more focused towards the stern. 

The linear whole ship model gave accurate predictions for small rudder movements 
but proved to be inaccurate for complete turning circles (Yang, Chillcce, and El Moctar, 
2023). In contrast, the non-linear whole ship model accurately depicted the three degrees 
of freedom motion in various manoeuvring scenarios, as validated by full-scale trials. 

Inoue (1978) suggested using a combination of cubic and quadratic terms to 
incorporate non-linear factors. While the improvement was marginal, the cubic model 
showed a slightly better fit to the data compared to the quadratic model. There is a 
noticeable distinction between the two models, indicating a need for further investigation 
to refine mathematical representations of hydrodynamic forces. 

The hydrodynamic derivatives are also important in other manoeuvring performances 
such as berthing (Zhang et al., 2023), the interaction between ships (Degrieck et al., 2021), 
shallow water effect (Yang, and el Moctar, 2024), and so on. (Shouji and Ohtsu, 1992) used 
the quadratic polynomial to express the hydrodynamic forces and moment acting on a main 
hull induced by manoeuvring motion and (Sawada et al., 2021) applied the cross-flow drag 
theory introduced by (Yoshimura, Nakao, and Ishibashi, 2009) to describe the 
hydrodynamic forces resulting from significant drift angles at low speeds. This model, 
which relies on fewer hydrodynamic derivatives than the traditional polynomial model, can 
effectively capture forces in both the transverse and turning directions. Furthermore, 
linearized hydrodynamic derivatives, as outlined by (Yasukawa and Sakuno, 2019). It can 
be used to calculate a ship's course stability index. 

This research will focus on a mathematical model based on a polynomial model in 
order to investigate the differences between 3rd order polynomial (cubic model) and 2nd 
order polynomial (quadratic model). Additionally, when comparing the cubic model and 
the quadratic model, it is commonly believed that the cubic model is more effective in 
accurately estimating hydrodynamic force, especially in cases of large motion. However, it 
is important to note that the cubic model does not include a term that is proportional to the 
square of the drift angle. This omission may seem inconsistent with theoretical studies. 
However, despite this drawback, the cubic model is still preferred due to its ability to 
effectively explain physical phenomena. As a result, various research institutes may use 
different models, including the selection of sway velocity 𝑣′. 
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In this research, the measurement data of the hydrodynamic forces of 12 model vessels 
(total of 27 loading conditions) that had been conducted for turning tests and the zigzag 
tests in the past at Kyushu University were targeted. The 𝛽 based second-order model and 
the 𝑣′ based third order models are applied for re-analysis, and the results of a comparative 
study on the difference and approximation characteristics of the hydrodynamic force due 
to the difference of the adopted models are shown. 

 
2.  Mathematical models for lateral force and yawing moment 

The dimensionless equations for manoeuvring motions can be described using 
equation (1) by taking into account the hull, propeller, and rudder components as follows, 

𝑋′ = 𝑋𝐻
′ + 𝑋𝑃

′ + 𝑋𝑅
′ ,

𝑌′ = 𝑌𝐻
′ + 𝑌𝑃

′ + 𝑌𝑅
′ ,

𝑁′ = 𝑁𝐻
′ + 𝑁𝑃

′ + 𝑁𝑅
′ .

  } (1) 

The subscripts "𝐻" , "𝑃"  and "𝑅"  represent the hydrodynamic forces that have been 
non-dimensionalized and are acting on a hull, propeller, and rudder. In this study, particular 
focus is placed on investigating the lateral force 𝑌𝐻

′  and yawing moment 𝑁𝐻
′ , as they have a 

significant impact on the accuracy of predicting manoeuvring. 
Moreover, the hydrodynamic forces and moments experienced by a ship are dependent 

on its motion and are impacted by variables such as the ship's dimensions and type of 
movement. As a result, numerous parameters are needed to accurately describe these 
forces. The Taylor series expansion method can be used to simplify the complex 
characteristics of hydrodynamic forces into a mathematical equation with multiple 
variables. It is important for the hydrodynamic forces and their derivatives to be 
continuous and not approach infinity within the range of values. This requirement is 
typically met when analyzing hydrodynamic bodies like ships. 

Additionally, the Taylor expansion is structured in a specific way as expressed in 
equation (2) when dealing with multiple variables. 

𝑓(𝑥1, … , 𝑥𝑘) = ∑
1

𝑎!

𝑛

𝑎=0

(Δ𝑥1𝜕𝑥1
+ ⋯ + Δ𝑥𝑘𝜕𝑥𝑘

)
𝑛

𝑓((𝑥1)0, … , (𝑥𝑘)0). (2) 

The combination of dimensionless sway velocity 𝑣′(= 𝑣/𝑈) and dimensionless yaw 
rate 𝑟′ or a combination of drift angle 𝛽(≃ sin 𝛽 = −𝑣′)  are frequently utilized as the 
variables such as 𝑥1, ⋯ , 𝑥𝑘. 
 

𝑓(𝑣′, 𝑟′) = [𝑒Δ
𝑣′𝜕

𝑣′+Δ
𝑟′𝜕

𝑟′+Δ
𝑣′
2 Δ

𝑟′𝜕
𝑣′𝑣′𝑟′+Δ

𝑣′Δ
𝑟′
2 𝜕

𝑣′𝑟′𝑟′+Δ
𝑣′
3 𝜕

𝑣′𝑣′𝑣′+Δ
𝑟′
3 𝜕

𝑟′𝑟′𝑟′ ]

× 𝑓[𝑣0
′ , 𝑟0

′, 𝑣0
′ 2

𝑟0
′, 𝑣0

′ 𝑟0
′2

, 𝑣0
′ 3

, 𝑟0
′3

],
   (3) 

or, 

𝑓(𝛽, 𝑟′) = [𝑒
Δ𝛽𝜕𝛽+Δ

𝑟′𝜕
𝑟′+Δ𝛽

2 Δ
𝑟′𝜕

𝛽𝛽𝑟′+Δ𝛽Δ
𝑟′
2 𝜕

𝛽𝑟′𝑟′+Δ𝛽
3 𝜕𝛽𝛽𝛽+Δ

𝑟′
3 𝜕

𝑟′𝑟′𝑟′ ]

× 𝑓[𝛽0, 𝑟0
′, 𝛽0

2𝑟0
′, 𝛽0𝑟0

′2
, 𝛽0

3, 𝑟0
′3

],
   (4) 

The terms involving 𝑣′𝑟′ (or 𝛽𝑟′), 𝑣′2
 squared (or 𝛽2), 𝑟′2

 squared, and other terms of 
a higher order are usually ignored. since their impact is considered less significant 
compared to the terms outlined in Equations (3) and (4). Alternatively, the hydrodynamic 
forces acting on a ship hull can be represented by equation (5) and (6) with second order 
polynomials as follows, 
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𝑓(𝑣′, 𝑟′) = [𝑒Δ
𝑣′𝜕

𝑣′+Δ
𝑟′𝜕

𝑟′+Δ
𝑣′
2 𝜕

𝑣′𝑣′+Δ
𝑟′
2 𝜕

𝑟′𝑟′+Δ
𝑣′
2 Δ

𝑟′𝜕
𝑣′𝑣′𝑟′+Δ

𝑣′Δ
𝑟′
2 𝜕

𝑣′𝑟′𝑟′ ]

× 𝑓[𝑣0
′ , 𝑟0

′, 𝑣0
′ 2

, 𝑟0
′2

, 𝑣0
′ 2

𝑟0
′, 𝑣0

′ 𝑟0
′2

],
   (5) 

or, 

𝑓(𝛽, 𝑟′) = [𝑒
Δ𝛽𝜕𝛽+Δ

𝑟′𝜕
𝑟′+Δ𝛽

2 𝜕𝛽𝛽+Δ
𝑟′
2 𝜕

𝑟′𝑟′+Δ𝛽
2 Δ

𝑟′𝜕
𝛽𝛽𝑟′+Δ𝛽Δ

𝑟′
2 𝜕

𝛽𝑟′𝑟′ ]

× 𝑓[𝛽0, 𝑟0
′, 𝛽0

2, 𝑟0
′2

, 𝛽0
2𝑟0

′, 𝛽0𝑟0
′2

].
   (6) 

Just like with 3rd order polynomials, the coupling term 𝑣′𝑟′ (or 𝛽𝑟′) and other higher 
order terms are typically not taken into account. As a result, mathematical models that rely 
on the Taylor series around 𝑣′ (or 𝛽) and 𝑟′ are commonly presented in equation (7) and 
(8), 

𝑌𝐻
′ = 𝑌𝑣

′𝑣′ + 𝑌𝑟
′𝑟′ + 𝑌𝑁𝐿

′ (𝑣′, 𝑟′),

𝑁𝐻
′ = 𝑁𝑣

′𝑣′ + 𝑁𝑟
′𝑟′ + 𝑁𝑁𝐿

′ (𝑣′, 𝑟′),
  } (7) 

or, 

𝑌𝐻
′ = 𝑌𝑣

′𝑣′ + 𝑌𝑟
′𝑟′ + 𝑌𝑁𝐿

′ (𝛽, 𝑟′),

𝑁𝐻
′ = 𝑁𝑣

′𝑣′ + 𝑁𝑟
′𝑟′ + 𝑁𝑁𝐿

′ (𝛽, 𝑟′),
  } (8) 

𝑌𝑣
′, 𝑌𝑟

′, 𝑁𝑣
′  and 𝑁𝑟

′ (𝑌𝛽
′, 𝑌𝑟

′, 𝑁𝛽
′  and 𝑁𝑟

′ ) represents linear hydrodynamic derivatives, while 

𝑌𝑁𝐿
′  and 𝑁𝑁𝐿

′  refer to nonlinear terms. The composition of linear terms, as depicted by the 
functions of 𝑣′ (or 𝛽) and 𝑟′, and their positions in the nonlinear terms vary among various 
research institutions. 

 

Figure 1 Ship manoeuvring motion in a body fixed coordinate system 

The 3rd order model, which utilizes dimensionless sway velocity 𝑣′  (Yasukawa and 
Yoshimura, 2015), is represented by equations in the ship fixed coordinate system 𝐺 − 𝑥𝑦 
displayed in Figure 1. 

𝑌𝐻
′ = 𝑌𝑣

′𝑣′ + 𝑌𝑟
′𝑟′ + 𝑌𝑣𝑣𝑣

′ 𝑣′3 + 𝑌𝑣𝑣𝑟
′ 𝑣′2𝑟′ + 𝑌𝑣𝑟𝑟

′ 𝑣′𝑟′2 + 𝑌𝑟𝑟𝑟
′ 𝑟′3,

𝑁𝐻
′ = 𝑁𝑣

′𝑣′ + 𝑁𝑟
′𝑟′ + 𝑁𝑣𝑣𝑣

′ 𝑣′3 + 𝑁𝑣𝑣𝑟
′ 𝑣′2𝑟′ + 𝑁𝑣𝑟𝑟

′ 𝑣′𝑟′2 + 𝑁𝑟𝑟𝑟
′ 𝑟′3.

  } (9) 

𝑌𝐻
′  and 𝑁𝐻

′  Illustrate the dimensionless values of lateral force and yawing moment. Kyushu 
University traditionally uses a second order model based on drift angle 𝛽  (Kijima et al., 
1990), which is represented by the equations below 
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𝑌𝐻
′ = 𝑌𝛽

′𝛽 + 𝑌𝑟
′𝑟′ + 𝑌𝛽𝛽

′ 𝛽|𝛽| + 𝑌𝑟𝑟
′ 𝑟′|𝑟′| + (𝑌𝛽𝛽𝑟

′ 𝛽 + 𝑌𝛽𝑟𝑟
′ 𝑟′)𝛽𝑟′ ,

𝑁𝐻
′ = 𝑁𝛽

′ 𝛽 + 𝑁𝑟
′𝑟′ + 𝑁𝛽𝛽

′ 𝛽|𝛽| + 𝑁𝑟𝑟
′ 𝑟′|𝑟′| + (𝑁𝛽𝛽𝑟

′ 𝛽 + 𝑁𝛽𝑟𝑟
′ 𝑟′)𝛽𝑟′.

 } (10) 

The 2nd order model terms of 𝛽  and 𝑟′  contain absolute symbols, signifying 
hydrodynamic force changes based on motion direction. The model in Equation (9) is 
referred to as the "cubic model", while the model in Equation (10) is known as the 
"quadratic model”. 

Table 1 Ship models principal dimensions 

Ship 
No. 

Ship Type 
Ship 

Name 
Loading 

Condition 
𝛽 

(deg.) 
𝑟′ 

𝐿 
(m) 

𝐵 
(m) 

𝑑𝑚 
(m) 

𝐶𝐵 

1 
Container C. SR108 

Full -4.0~ 
12.0 

0 ~ 
0.5454 

3.0 0.435 
0.163 0.572 

2 Ballast 0.094 0.518 

3 
VLCC 

Esso  
Osaka 

Full -4.0~ 
20.0 

0 ~ 
0.8000 

2.5 0.408 
0.170 0.831 

4 Ballast 0.080 0.793 

5 
Car C. Ship A 

Full -4.0~ 
10.0 

0 ~ 
0.9615 

2.5 0.482 
0.134 0.522 

6 Ballast 0.111 0.491 

7 
Cargo C. Ship B 

Full -4.0~ 
10.0 

0 ~ 
0.9615 

2.5 0.419 
0.140 0.698 

8 Ballast 0.082 0.666 

9 
ULCC Ship C 

Full -4.0~ 
20.0 

0 ~ 
0.9615 

2.5 0.466 
0.156 0.835 

10 Ballast 0.076 0.802 

11 

LNG C. Ship D 

Full 
-4.0~ 
20.0 

0 ~ 
0.9615 

2.5 0.409 

0.100 0.714 

12 Half 0.093 0.707 

13 Ballast 0.086 0.703 

14 
VLCC Ship E 

Full -4.0~ 
20.0 

0 ~ 
1.0000 

2.5 0.436 
0.157 0.802 

15 Ballast 0.077 0.761 

16 

Container C. Ship F 

Full 
-4.0~ 
20.0 

0 ~ 
0.9615 

2.5 0.386 

0.130 0.566 

17 Half 0.107 0.540 

18 Ballast 0.085 0.516 

19 
Cargo C. Ship G 

Full -4.0~ 
20.0 

0 ~ 
0.9615 

2.5 0.376 
0.158 0.651 

20 Ballast 0.072 0.574 

21 
Cargo C. Ship H 

Full -4.0~ 
20.0 

0 ~ 
0.9615 

2.5 0.408 
0.171 0.773 

22 Ballast 0.071 0.711 

23 

RO/RO Ship I 

Full 
-4.0~ 
20.0 

0 ~ 
0.9615 

2.5 0.367 

0.102 0.557 

24 Half 0.093 0.537 

25 Ballast 0.083 0.512 

26 
ULCC Ship J 

Full -4.0~ 
20.0 

0 ~ 
0.9615 

2.5 0.556 
0.183 0.821 

27 Ballast 0.089 0.783 

The hydrodynamic forces from captive model tests were reanalyzed for 12 different 
model ships. This analysis was based on the mathematical models in Equations (9) and (10), 
in order to determine the hydrodynamic derivatives. Table 1 provides details on the ships, 
including the range of drift angle 𝛽 , length 𝐿 , width 𝐵 , average draft 𝑑𝑚 , and block 
coefficient 𝐶𝐵. SR108 and Esso Osaka are known for their widely disclosed hull shape and 
experimental data. Ships A to J were used as test ships, with measurement data available 
for fully loaded, ballast, and, in some cases, half-loaded conditions. Table 2 and Table 3 
shows the determined hydrodynamic derivatives based on cubic model and quadratic 
model respectively. 
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Table 2 Cubic model hydrodynamic derivatives 

Ship 
No. 

𝑌𝑣
′ 𝑌𝑣𝑣𝑣

′  𝑌𝑟
′ 𝑌𝑟𝑟𝑟

′  𝑌𝑣𝑟𝑟
′  𝑌𝑣𝑣𝑟

′  𝑁𝑣
′  𝑁𝑣𝑣𝑣

′  𝑁𝑟
′ 𝑁𝑟𝑟𝑟

′  𝑁𝑣𝑟𝑟
′  𝑁𝑣𝑣𝑟

′  

1 0.234 3.272 -0.119 0.020 1.128 0.012 0.111 -0.288 -0.044 -0.047 -0.083 -0.579 

2 0.202 2.073 -0.124 0.051 0.938 -0.268 0.062 -0.137 -0.030 -0.056 0.043 -0.554 

3 0.430 1.452 -0.238 0.059 0.498 0.280 0.154 0.058 -0.071 -0.008 -0.117 -0.169 

4 0.335 0.759 -0.235 0.016 0.376 0.134 0.079 0.075 -0.056 -0.011 -0.029 -0.187 

5 0.346 2.437 -0.187 -0.109 1.085 -1.094 0.109 1.061 -0.069 -0.027 0.061 -0.605 

6 0.317 7.566 -0.175 -0.097 0.811 -1.932 0.087 0.723 -0.063 -0.032 0.115 -0.684 

7 0.320 4.768 -0.109 -0.060 0.521 -0.831 0.108 -0.088 -0.054 -0.024 -0.054 -0.228 

8 0.229 3.252 -0.110 -0.165 0.830 -0.878 0.066 -0.088 -0.045 -0.017 0.057 -0.366 

9 0.479 0.975 -0.269 -0.025 0.270 0.569 0.134 0.023 -0.055 -0.013 -0.018 -0.177 

10 0.371 0.613 -0.247 -0.055 0.202 0.182 0.065 0.099 -0.043 -0.005 0.007 -0.168 

11 0.359 0.948 -0.203 -0.005 0.281 0.153 0.076 -0.003 -0.044 -0.007 -0.017 -0.147 

12 0.333 0.644 -0.193 -0.028 0.281 0.192 0.070 0.018 -0.042 -0.006 -0.006 -0.148 

13 0.321 0.574 -0.193 -0.017 0.259 0.234 0.067 -0.033 -0.037 -0.010 -0.008 -0.116 

14 0.381 1.559 -0.221 0.023 0.531 0.047 0.127 0.012 -0.059 -0.013 -0.099 -0.164 

15 0.321 0.591 -0.205 -0.018 0.277 0.303 0.065 0.087 -0.046 -0.018 -0.030 -0.137 

16 0.280 3.498 -0.101 -0.055 1.036 -1.891 0.093 0.089 -0.048 -0.040 0.012 -0.350 

17 0.281 2.177 -0.093 -0.070 0.903 -1.246 0.076 0.067 -0.043 -0.042 0.073 -0.410 

18 0.284 2.156 -0.089 -0.078 0.829 -1.215 0.063 0.169 -0.035 -0.042 0.076 -0.462 

19 0.354 2.167 -0.155 -0.009 0.897 -0.901 0.125 0.095 -0.058 -0.041 -0.066 -0.275 

20 0.247 1.034 -0.128 -0.035 0.600 -0.478 0.056 0.086 -0.031 -0.036 0.043 -0.341 

21 0.295 2.470 -0.176 -0.023 0.546 -0.129 0.145 -0.157 -0.047 -0.026 -0.120 -0.135 

22 0.320 0.484 -0.199 -0.031 0.283 0.273 0.064 -0.062 -0.038 -0.015 -0.072 -0.021 

23 0.238 2.196 -0.124 -0.073 0.854 -1.486 0.075 0.213 -0.035 -0.033 0.123 -0.564 

24 0.231 2.003 -0.144 -0.020 0.781 -1.259 0.067 0.199 -0.032 -0.039 0.146 -0.601 

25 0.215 2.672 -0.124 -0.056 0.917 -1.733 0.058 0.322 -0.034 -0.041 0.166 -0.663 

26 0.476 1.538 -0.278 -0.031 0.269 0.492 0.151 0.139 -0.056 -0.024 -0.056 -0.201 

27 0.352 0.458 -0.285 -0.018 0.109 0.482 0.071 0.115 -0.048 -0.008 0.006 -0.215 

Table 3 Quadratic model hydrodynamic derivatives 

Ship 
No. 

𝑌𝛽
′ 𝑌𝛽𝛽

′  𝑌𝑟
′ 𝑌𝑟𝑟

′  𝑌𝛽𝑟𝑟
′  𝑌𝛽𝛽𝑟

′  𝑁𝛽
′  𝑁𝛽𝛽

′  𝑁𝑟
′ 𝑁𝑟𝑟

′  𝑁𝛽𝑟𝑟
′  𝑁𝛽𝛽𝑟

′  

1 0.179 0.899 -0.124 0.021 1.280 -0.427 0.118 -0.093 -0.034 -0.044 -0.151 -0.384 

2 0.163 0.591 -0.135 0.049 0.994 -0.451 0.065 -0.047 -0.019 -0.052 -0.007 -0.410 

3 0.372 0.601 -0.251 0.060 0.547 0.138 0.155 0.007 -0.068 -0.011 -0.128 -0.140 

4 0.294 0.344 -0.240 0.020 0.404 0.049 0.074 0.034 -0.052 -0.013 -0.033 -0.174 

5 0.409 -0.008 -0.141 -0.151 1.244 -1.771 0.091 0.279 -0.056 -0.041 0.073 -0.744 

6 0.274 1.484 -0.132 -0.136 0.930 -2.716 0.073 0.203 -0.047 -0.048 0.125 -0.768 

7 0.272 1.060 -0.082 -0.085 0.500 -0.719 0.110 -0.029 -0.043 -0.034 -0.088 -0.018 

8 0.197 0.712 -0.043 -0.225 0.871 -1.143 0.068 -0.027 -0.038 -0.023 0.064 -0.399 

9 0.435 0.405 -0.257 -0.037 0.277 0.541 0.136 -0.004 -0.049 -0.019 -0.023 -0.155 

10 0.345 0.248 -0.223 -0.077 0.240 0.077 0.061 0.039 -0.041 -0.007 0.005 -0.157 

11 0.323 0.383 -0.199 -0.009 0.279 0.146 0.076 -0.005 -0.040 -0.010 -0.012 -0.158 

12 0.300 0.285 -0.179 -0.042 0.250 0.261 0.068 0.006 -0.040 -0.008 -0.011 -0.134 

13 0.288 0.262 -0.185 -0.024 0.260 0.216 0.069 -0.019 -0.033 -0.013 -0.014 -0.093 

14 0.305 0.695 -0.231 0.032 0.604 -0.185 0.125 0.003 -0.052 -0.020 -0.115 -0.111 

15 0.297 0.236 -0.197 -0.025 0.302 0.220 0.061 0.035 -0.038 -0.026 -0.031 -0.126 

16 0.127 1.530 -0.079 -0.075 1.093 -2.077 0.089 0.035 -0.029 -0.057 -0.006 -0.283 
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Table 3 Quadratic model hydrodynamic derivatives (Cont.) 

Ship 
No. 

𝑌𝛽
′ 𝑌𝛽𝛽

′  𝑌𝑟
′ 𝑌𝑟𝑟

′  𝑌𝛽𝑟𝑟
′  𝑌𝛽𝛽𝑟

′  𝑁𝛽
′  𝑁𝛽𝛽

′  𝑁𝑟
′ 𝑁𝑟𝑟

′  𝑁𝛽𝑟𝑟
′  𝑁𝛽𝛽𝑟

′  

17 0.180 0.969 -0.064 -0.096 0.926 -1.321 0.073 0.026 -0.025 -0.060 0.065 -0.373 

18 0.185 0.953 -0.057 -0.106 0.876 -1.345 0.056 0.071 -0.016 -0.059 0.067 -0.417 

19 0.263 0.930 -0.148 -0.016 0.957 -1.111 0.123 0.027 -0.039 -0.059 -0.071 -0.241 

20 0.203 0.441 -0.112 -0.051 0.624 -0.563 0.053 0.033 -0.014 -0.052 0.025 -0.282 

21 0.179 1.102 -0.167 -0.032 0.591 -0.305 0.156 -0.091 -0.035 -0.038 -0.139 -0.064 

22 0.307 0.170 -0.185 -0.045 0.276 0.271 0.069 -0.037 -0.031 -0.021 -0.085 0.021 

23 0.143 0.956 -0.093 -0.101 0.851 -1.487 0.065 0.095 -0.020 -0.047 0.092 -0.461 

24 0.140 0.890 -0.133 -0.031 0.748 -1.170 0.059 0.082 -0.015 -0.055 0.121 -0.509 

25 0.092 1.192 -0.097 -0.081 0.943 -1.806 0.044 0.139 -0.016 -0.059 0.152 -0.605 

26 0.416 0.633 -0.264 -0.044 0.300 0.371 0.147 0.045 -0.046 -0.034 -0.063 -0.173 

27 0.334 0.179 -0.277 -0.025 0.112 0.445 0.067 0.043 -0.044 -0.011 0.001 -0.194 

 
3.  Results and Discussion 

3.1.  Comparison of approximation accuracy of hydrodynamic force 
 𝑌𝐻

′  and 𝑁𝐻
′  are calculated using hydrodynamic derivatives which were obtained based 

on Equations (9) and (10). The accuracy of predicted hydrodynamic force was compared 
based on the coefficient of determination 𝑅2 defined by equation (11). 

𝑅2 = 1 −
∑(𝑦𝑖 − 𝑓𝑖)2

∑(𝑦𝑖 − 𝑦𝑚)2
 (11) 

 Here, 𝑦𝑖  is the measured value of 𝑌𝐻
′  or 𝑁𝐻

′ , 𝑦𝑚  is the average value of the measured 
data, and 𝑓𝑖  is the value calculated by Equation (9) or Equation (10). The closer the value of 
𝑅2 to 1.0, the better the approximation accuracy results. Figure 2 compares 𝑅2 values of the 
cubic model and quadratic model for every ship and their loading conditions are shown in 
Table 1. Ship numbers (1-27) in Table 1 are shown on the horizontal axis. The lines 
connecting each point are added for convenience and have no physical meaning. For both 
𝑌𝐻

′  and 𝑁𝐻
′ , 𝑅2  values of the cubic model are generally closer to 1, indicating that the 

approximation accuracy of the cubic model is generally better than that of the quadratic 
model. Looking at the lateral force, the differences in the 𝑅2 values of Ship No. 5 to 8 (Ships 
A and B) are particularly large. For these model ships and loading conditions, as shown in 
Table 1, the maximum value of the drift angle at which the hydrodynamic force was 
measured is 10°. Figure 3 shows the comparison between ship No. 8 and ship No. 22, which 
have the same type of ship and loading condition. A large difference appears in the 
calculation results of ship No. 8 based on both models within a wide range of drift angles. 

  

Figure 2 Comparison of the 𝑅2 value for cubic and quadratic models (a) lateral force and 
(b) yawing moment 
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Figure 3 Comparison of lateral force and yawing moment by cubic and quadratic models 
for ship B (a) and Ship H (b) on fully loaded condition 

 On the other hand, for the yawing moment, there is a tendency for the differences in 
the values of 𝑅2  to increase model ships and loading conditions after Ship No. 14. The 
comparison between Ship No. 3 and Ship No. 14 is shown in Figure 4. Both of these ships 
have the same type and loading condition. From the figures, the nonlinearity with respect 
to 𝛽 appears to be large when 𝑟′ is large. 

  

Figure 4 Comparison of 𝑌𝐻
′  and 𝑁𝐻

′  by cubic and quadratic models for Esso Osaka (a) and 
Ship E (b) on fully loaded condition 
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3.2.  Effect of measurement range of drift angle 𝛽 on approximation accuracy 
 To clarify the cause of the differences in approximation accuracy shown in Figure 2, the 
range of drift angle used to calculate the hydrodynamic derivatives was changed and the 
analysis was performed again. The influence of the drift angle measurement range on the 
hydrodynamic forces' approximation accuracy was investigated. 
 First, for model ships and loading conditions shown as Ships No. 1 to 4 and Ships No. 9 
to 27 whose hydrodynamic forces were measured in the range of 𝛽 > 10°, the range of the 
measured hydrodynamic forces data used in the analysis was limited to 𝛽 ≤ 10°. After the 
hydrodynamic derivatives were obtained, the calculated results of lateral force and yaw 
moment were compared with the original results. For example, Figure 5 shows the results 
for the Esso Osaka (Ship No. 3) in fully loaded condition. The figures also show the 
measurement data in the range of 𝛽 > 10°, that were not used in the analysis. 
 In Figure 5 (right), regarding the lateral forces, there is a large difference between the 
calculation results of both mathematical models in the range where the value of 𝛽 is large. 
As the value of 𝛽 increases, the cubic model tends to exhibit a higher rate of increase for 
lateral force. Consequently, there is a widening discrepancy between the calculated results 
and the measured values. Conversely, for the yaw moment, it appears that the quadratic 
model yields better results when the turning motion is minimal (when the value of 𝑟′ is 
small). However, as the turning motions develop, the cubic model has better agreement 
with the measured values. 

  

Figure 5 Comparison of 𝑌𝐻
′  and 𝑁𝐻

′  by both mathematical models for Esso Osaka on fully 
loaded condition in the range of 𝛽 > 10° (a) and 𝛽 < 10° (b) 

 Next, Lateral force and yaw moment were determined for model ships and loading 
conditions of Ships No. 1 to 4 and Ships No. 9 to 27 using the hydrodynamic derivatives 
obtained from the measurement data of 𝛽 ≤ 10°, Figure 6 shows the values of 𝑅2 including 
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the measured data for 𝛽 > 10°. For lateral force, the quadratic model maintains the values 
of 𝑅2 close to 1.0 in many model ships and loading conditions, whereas the cubic model has 
a lower value of 𝑅2 compared to Figure 2. Although it was shown in Figure 2 that 𝑅2 values 
of the cubic model for Ships No. 5 to 8 have good approximation accuracy in the range of 
𝛽 ≤ 10°, it may be necessary to be careful when applying the conditions of motion outside 
the measurement range. On the other hand, the influence of the measurement range of 𝛽 
on approximation accuracy of the hydrodynamic forces using the quadratic model is 
considered relatively small. There is no significant difference in the yaw moment due to the 
difference between them. 

  

Figure 6 Comparison of the 𝑅2 value for cubic and quadratic forms (a) lateral force; and (b) 
yawing moment 

 Finally, Figures. 7 and 8 show the results of hydrodynamic derivatives for lateral force 
and yaw moment as functions of parameters representing hull form. The symbol ◼ 
indicates the hydrodynamic derivatives for Ships No. 5 to 8, and the symbol  indicates the 
hydrodynamic derivatives for other model ships and loading conditions. The parameters 
on the horizontal axis in each figure have the maximum value of 𝑅2  when polynomial 
approximation of the corresponding hydrodynamic derivatives is performed using the 
parameters. 
 Looking at the linear hydrodynamic derivatives first, there is a linear relation between 
the derivatives and the parameters on the horizontal axis regardless of the ◼ and  marks. 
On the other hand, when looking at the non-linear hydrodynamic derivatives, the variation 
is slightly larger than that of the linear derivatives. The symbol ◼ which shows the 
hydrodynamic derivatives for Ships No. 5 to 8 shows tendency different from the symbol  
which shows the hydrodynamic derivatives for other model ships and loading conditions, 
as mentioned above. It is considered that the narrow measurement range of the drift angle 
affects the analysis results. 

  

(a) (b) 

Figure 7 Hydrodynamic derivatives for lateral force in cubic form as a function of hull form 
parameters (a) 𝑌𝑣

′; (b) 𝑌𝑟
′ − 𝑚′ − 𝑚𝑥

′ ; (c) 𝑌𝑣𝑣𝑣
′ ; (d) 𝑌𝑣𝑣𝑟

′ ; (e ) 𝑌𝑣𝑟𝑟
′ ; and (f) 𝑌𝑟𝑟𝑟

′   
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(c) (d) 

  

(e ) (f) 

Figure 7 Hydrodynamic derivatives for lateral force in cubic form as a function of hull form 
parameters (a) 𝑌𝑣

′; (b) 𝑌𝑟
′ − 𝑚′ − 𝑚𝑥

′ ; (c) 𝑌𝑣𝑣𝑣
′ ; (d) 𝑌𝑣𝑣𝑟

′ ; (e ) 𝑌𝑣𝑟𝑟
′ ; and (f) 𝑌𝑟𝑟𝑟

′  (Cont.) 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 8 Hydrodynamic derivatives for yawing moment in cubic form as function of hull 
form parameters (a) 𝑁𝑣

′; (b) 𝑁𝑟
′ − 𝑥𝐺

′ 𝑚′; (c) 𝑁𝑣𝑣𝑣
′ ; (d) 𝑁𝑣𝑣𝑟

′ ; (e) 𝑁𝑣𝑟𝑟
′ ; and (f) 𝑁𝑟𝑟𝑟

′  
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3.3.  Course Stability Index 
 The course stability index (𝛥) can be determined by using the linear hydrodynamic 
derivatives provided in Equations (9) and (10) (Yoshimura, 2001; Yukawa and Kijima, 
1998). 

𝛥 = −𝑌𝑣
′𝑁𝑟

′ + 𝑁𝑣
′{𝑌𝑟

′ − (𝑚′ + 𝑚𝑥
′ )} = 𝑌𝛽

′𝑁𝑟
′ − 𝑁𝛽

′ {𝑌𝑟
′ − (𝑚′ + 𝑚𝑥

′ )}. (12) 

Here, a positive (+) 𝛥 indicates instability, while a negative (-) 𝛥 indicates stability. 
Then, Equation (12) can be rewritten to equation (13)-(15), 

𝛥 = −𝑌𝑣
′{𝑌𝑟

′ − (𝑚′ + 𝑚𝑥
′ )} {

𝑁𝑟
′

𝑌𝑟
′ − (𝑚′ + 𝑚𝑥

′ )
−

𝑁𝑣
′

𝑌𝑣
′ }

= −𝑌𝑣
′{𝑌𝑟

′ − (𝑚′ + 𝑚𝑥
′ )}(𝑙𝑟

′ − 𝑙𝑣
′ ),

 (13) 

𝛥 = 𝑌𝛽
′{𝑌𝑟

′ − (𝑚′ + 𝑚𝑥
′ )} {

𝑁𝑟
′

𝑌𝑟
′ − (𝑚′ + 𝑚𝑥

′ )
−

𝑁𝛽
′

𝑌𝛽
′ }

= 𝑌𝛽
′{𝑌𝑟

′ − (𝑚′ + 𝑚𝑥
′ )}(𝑙𝑟

′ − 𝑙𝛽
′ ),

 (14) 

where, 

𝑙𝑟
′ =

𝑁𝑟
′

𝑌𝑟
′ − (𝑚′ + 𝑚𝑥

′  )
, 𝑙𝑣

′ =
𝑁𝑣

′

𝑌𝑣
′ , 𝑙𝛽

′ =
𝑁𝛽

′

𝑌𝛽
′ . (15) 

 𝑙𝑟
′  represents the location where the yaw damping force is applied, while 𝑙𝛽

′  and 𝑙𝑣
′  

represent the locations where the sway damping force is applied. The positions of these 
points where forces are applied relative to each other can be used to assess the course 
stability of a ship. The stability of a ship depends on the positioning of the yaw damping 
force application point relative to the sway damping force application point. The ship is 
considered to be stable when the point at which the yaw damping force is applied is located 
in front of the point where the sway damping force is applied. On the other hand, if this is 
not the case, the ship is considered unstable. 
 The course stability indices of the quadratic and cubic models are being compared to 
determine the impact of using different model approaches according to equations (12) to 
(15). Figure 9 illustrates the linear hydrodynamic derivatives derived from analyzing 
measured hydrodynamic forces using both models, which are then utilized in calculating 
the course stability indices. 
 Figure 10 presents a comparison of course stability indices between 2 mathematical 
models for different model ships and loading conditions as detailed in Table 1. The x-axis 
shows the number of ships ranging from 1 to 27. It is clear that some ships show differences 
in course stability indices when using both mathematical models. Several factors may 
contribute to this discrepancy, such as differences in the mathematical properties of each 
model. 
 To achieve a better comprehension of the phenomenon, the relationship between the 
𝛥 and the hydrodynamic derivatives of both mathematical models for each of the 27 ships 
are being analyzed. The ships are then categorized into three groups based on the results 
of calculated 𝛥 for easier comprehension. 

I. Ships with consistent 𝛥 signs for cubic and quadratic models across all loading 
conditions. 

II. Ships exhibit different 𝛥 signs for cubic and quadratic models under certain 
loading conditions. 

III. Ships exhibit different 𝛥 signs for cubic and quadratic models across all loading 
conditions. 
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Figure 11 provides illustrations of the three categories, while Table 4 displays the 
breakdown of ships that fit into each category. 

  

  

Figure 9 Linear hydrodynamic derivatives based on quadratic and cubic models 

 
Figure 10 Quadratic model vs cubic model of 𝛥 

Table 4 List of ships 

Category 1 Category 2 Category 3 

SR108 
Ship A 
Ship B 
Ship H 
Ship J 

Esso Osaka 
Ship C 
Ship D 
Ship E 
Ship I 

Ship F 
Ship G 
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(a) (b) (c) 

Figure 11 Examples of 𝛥 for three different categories (a) Category 1 – SR108; (b) Category 
2 – Ship C; and (c) Category 3 – Ship F 

 Figure 12 displays the 𝑌𝐻
′  and 𝑁𝐻

′  curves of Ships No. 1 and 2 (SR108) under fully 
loaded and ballast conditions, fitted with cubic and quadratic models within the range of -
−10° < 𝛽 < 20° at 𝑟′ = 0. The red and blue solid lines on the graph represent fitting curves 
based on hydrodynamic derivatives from captive model test data, with the horizontal axis 
showing the drift angle 𝛽. The dashed lines on the graph indicate the inclines of the curves 
representing lateral force and yawing moment at the starting point, which are equivalent 
to linear hydrodynamic derivatives for 𝛽  and are referred to as slope lines. The figures 
display experimental data points marked with circles. The slope of the cubic model for 
lateral force is steeper than that of the quadratic model, whereas the opposite is true for 
yawing moment. These trends are consistent across both loading conditions. 
 A noticeable distinction exists between the 𝑌𝐻

′  and 𝑁𝐻
′  curves produced by cubic and 

quadratic models over a wide range of drift angles 𝛽. In general, when using the least square 
method to fit a curve with a cubic function, the resulting values tend to be larger beyond 
the input data range compared to fitting with a quadratic function. This discrepancy is 
attributed to the limited availability of experimental data for large drift angles. 
 Figure 13 displays the 𝑌𝐻

′  and 𝑁𝐻
′  curves for Ship C (Ships No. 9 and 10) under ballast 

and fully loaded conditions in category 2. The discrepancy in 𝛥 signs between the two ships 
are primarily due to variations in the yawing moment slope line in relation to drift angle 𝛽. 
Both ships exhibit a smaller inclination of the quadratic model slope line for lateral force 
compared to the cubic model. However, there is a contrasting trend in the yawing moment 
between Ship No. 9 and Ship No. 10, with Ship No. 9 showing a slightly larger inclination of 
the quadratic model slope line. This difference in tendencies is not observed in Category 1, 
where all 𝛥 signs are consistent. The varying 𝛥 signs are a result of differences in linear 
hydrodynamic derivatives between the two models, as detailed in Table 2 and Table 3. 
  In Category 3, Figure 14 displays the 𝑌𝐻

′  and 𝑁𝐻
′  curves of Ships No. 16 and 18 (Ship F) 

under fully loaded and ballast conditions. The 𝑌𝐻
′  and 𝑁𝐻

′ curves show no significant 
difference between fully loaded and ballast conditions. Yet, the slope line of the quadratic 
model is less steep compared to the cubic model when it comes to lateral force and yawing 
moment in relation to drift angle 𝛽. Conversely, the slope line inclination of the quadratic 
model for 𝑌𝐻

′  and 𝑁𝐻
′  in relation to the 𝑟′ is greater than that of the cubic model. This trend 

is also evident in Figure 9. 
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(a)  (b)  

Figure 12 Category 1 - The 𝑌𝐻
′  and 𝑁𝐻

′  curves of SR108 were modelled for both loading 
conditions (a) Fully loaded condition and (b) Ballast condition 
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(a)  (b)  

Figure 13 Category 2 - The 𝑌𝐻
′  and 𝑁𝐻

′  curves of Ship C were modeled for both loading 
conditions (a) Fully loaded condition and (b) Ballast condition 

 Previously, the focus was on comparing loading conditions to analyze the variation in 
hydrodynamic derivatives and 𝛥  between both mathematical models of the same ship 
types. Many ships display a difference in 𝛥 between the two models. Understanding the 
reasons behind these results is crucial. Consequently, ships within each category are being 
compared once more. 
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(a)  (b)  

Figure 14 Category 3 - The 𝑌𝐻
′  and 𝑁𝐻

′  curves of Ship F were modelled for both loading 
conditions (a) Fully loaded condition and (b) Ballast condition 

 The discrepancy between the cubic and quadratic models results can be attributed to 
differences in the values of linear hydrodynamic derivatives. By examining the course 
stability index values in Equation (12), it is evident that ships with different signs of 𝛥 have 
varying linear derivatives between the two models. For instance, Ship No. 17 exhibits a 
different sign in the 𝛥. Figure 15 shows that both models have different absolute values for 
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the 1st and 2nd terms of the 𝛥  for all ships. In the quadratic model, 𝑌𝛽
′𝑁𝑟

′  has a smaller 

absolute value compared to 𝑁𝛽
′ {𝑌𝑟

′ − (𝑚′ + 𝑚𝑥
′ )} , whereas the cubic model shows the 

opposite. This discrepancy is due to the distinct characteristics of the two functions. In 
general, when the nonlinearity of the data is low, a quadratic function tends to have smaller 
linear derivatives compared to a cubic model. This is supported by the data in Figure 15, 
where the absolute values of the 𝛥 terms in the quadratic model are consistently smaller 
than those in the cubic model. 

 
(a)  

 
(b)  

Figure 15 Comparison of the linear derivatives absolute value (a) cubic model and (b) 
quadratic model 

 Moreover, most ships with fully loaded and ballast conditions, including Esso Osaka 
Ship C, Ship, Ship E, and Ship I, show pretty much all the different signs of 𝛥 in both the cubic 
and quadratic models. However, there are exceptions, such as Ship F and Ship G, where both 
ships show distinct signs of 𝛥 between the two models in all loading conditions. 
 Both models in Category 1 consistently yield the same results regardless of whether 
𝑌𝛽

′𝑁𝑟
′  is greater than 𝑁𝛽

′ {𝑌𝑟
′ − (𝑚′ + 𝑚𝑥

′ )} or vice versa. However, there is a difference in 

results in categories 2 and 3. The value of 𝑌𝛽
′𝑁𝑟

′ is greater than 𝑁𝛽
′ {𝑌𝑟

′ − (𝑚′ + 𝑚𝑥
′ )} only for 

the quadratic model. This indicates the importance of considering the discrepancies in 
linear hydrodynamic derivatives between both mathematical models when assessing the 
course stability of a ship in ballast conditions. 
 Next, we compare ships from Category 1 with ships from Category 2 or 3 for all loading 
conditions. Ship No. 1 and Ship No. 2 from Category 1 (SR108) are compared with Ship No. 
16 and Ship No. 18 from Category 3 (Ship F). These ships were chosen because they are 
both container carriers, but they have different 𝛥 tendencies that need to be investigated. 
 Figure 16 evaluates the differences in values between the first and second terms 
without taking into account the negative signs in Equation (12) between Ship No. 1 and Ship 
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No. 16. In Ship No. 1, both mathematic models show that the absolute value of 𝑌𝛽
′𝑁𝑟

′  is 

smaller than 𝑁𝛽
′ {𝑌𝑟

′ − (𝑚′ + 𝑚𝑥
′ )} . However, the cubic model for Ship No. 16 shows a 

different outcome. This discrepancy in absolute values is attributed to the limited 
experimental data and mathematical differences between the two models, as previously 
discussed. 

 
(a)  

 
(b)  

Figure 16 𝑌𝛽
′𝑁𝑟

′ and 𝑁𝛽
′ {𝑌𝑟

′ − (𝑚′ + 𝑚𝑥
′ )} Comparison (a) ship no. 1 and (b) ship no 16 

 It has been verified that there are variations in the results obtained from the cubic and 
quadratic models when measuring hydrodynamic forces at different drift angles. To further 
explore these differences in calculating 𝛥, the locations where yaw and sway damping force 
are applied to all ships are analyzed. It is observed that the quadratic model generally yields 
a lower value compared to the cubic model. 
 
4. Conclusions 

Manoeuvring motion and two mathematical models for lateral force and yawing 
moment using cubic and quadratic polynomials have been discussed. The cubic model is 
more accurate for hydrodynamic forces measured over a large range of motion, while the 
quadratic model may be more accurate for smaller ranges. It is important to consider these 
differences when using the cubic model for turning tests and CMT on a small range of 𝛽 and 
𝑟′. On the other hand, the comparison of 𝛥 results between the cubic and quadratic models 
are examined. The discrepancy in 𝛥  is attributed to the varying linear hydrodynamic 
derivatives in the two models. The presence of measured hydrodynamic forces across a 
wide range of drift angles leads to divergent outcomes between both mathematical models. 
This highlights the importance of carefully considering the differences in linear 
hydrodynamic derivatives from the cubic and quadratic models when assessing the course 
stability index under ballast conditions. 
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