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Abstract. Conventional contact-based hand signature recognition methods are raising hygienic 
concerns due to shared acquisition devices among the public. Therefore, this research aimed to 
propose a contactless in-air hand gesture signature (iHGS) recognition method using convolutional 
recurrent neural networks (C-RNN). Experiments have been conducted to identify the most suitable 
CNN architecture for the integration of CNN and RNN. A total of four base architectures were 
adopted and evaluated, namely MS-CNN-A, MS-CNN-B, CNN-A, and CNN-B. Based on the results, 
CNN-A was selected as the convolutional layer for constructing the integration of C-RNN due to its 
superior performance, achieving an accuracy rate of 95.15%. Furthermore, three variants of C-RNN 
were proposed, and experimental results on the iHGS database showed that the ConvBiLSTM 
achieved the highest accuracy at 98.10%, followed by ConvGRU at 97.47% and ConvLSTM at 
97.40%. 
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1. Introduction 

Hand signature is a handwritten name or initials that are typically used for identity 
verification and authentication purposes in legal documents, banking and finance 
transactions, employment agreements, and government services (Hashim, Ahmed, and 
Alkhayyat, 2022). Due to its uniqueness, two individuals sharing the same name will show 
distinct hand signature. This is due to individual behavioral traits such as pressure applied 
to the writing surface, speed, and the angle of handling the writing instrument (Impedovo 
and Pirlo, 2007). These factors will influence the overall appearance and style of signature, 
which contribute to its uniqueness. The practicality and widespread use of hand signature 
has made it to become one of the most commonly applied forms of behavioral biometrics. 
However, the traditional method for recognition is through manual checking by humans, 
which is susceptible to error during the identification of the signature (Akram, Qasim, and 
Amin, 2012). 

The advancement of technology has led to the introduction of automatic hand signature 
recognition systems, which have mitigated the risk of human error in the identification of 
hand signatures (Faundez-Zanuy, 2005). Generally, there are two types of hand signature 
recognition systems, namely offline and online (Julian and Ortega-Garcia, 2008; Gilperez et  
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al., 2008). The offline method only captures the appearance and shape by scanning the hand 
signature. Meanwhile, the online method captures other dynamic properties such as 
pressure applied to the writing surface and signature completion time. This system can be 
further classified into contact-based and contactless methods (Jain et al., 2020; Malik et al., 
2018). The contact-based method captures the hand signature using a pen and paper, as 
well as the latest method, which uses a stylus and tablet technology. The contactless method 
does not require direct contact with acquisition devices by in-air signing in front of a 
camera sensor. 

The contact-based method that uses pen and paper is vulnerable to forgery issues as 
individuals need to physically write their signature, exposing the shape and allowing 
imitation by others for unauthorized uses. Although the stylus and tablet method can 
address this issue by capturing dynamic properties, it is still a contact-based susceptible to 
germ and virus contamination as the acquisition devices are often shared among the public. 
Recently, the occurrence of the COVID-19 global pandemic has increased concerns about 
hygiene related to contact-based biometrics recognition systems, leading to high demands 
for contactless systems (Gan, 2022; Romadlon, Lestiana, and Putri, 2022; Supriatna et al., 
2022; Yatmo, Harahap, and Atmodiwirjo, 2021; Carlaw, 2020). Contactless hand signature 
recognition methods are already in existence (Khoh et al., 2021; Fang et al., 2017; Sajid and 
Cheung, 2015), but their applications in currently in the experimental stage. According to 
previous research, commercially available systems still rely on contact-based methods for 
applications such as identity verification in financial institutions (Sudharshan and Vismaya, 
2022; Karanjkar and Vasambekar, 2016; Cüceloğlu and Oğul, 2014). Shao et al., (2020), 
Levy et al., (2018) proposed hand gesture-based signature recognition method using built-
in sensors from mobile devices. Subjects perform in-air signatures when wearing a 
smartwatch or holding a smartphone to capture the gestures. However, this method only 
captures the device's coordinates over time, lacking spatial information on hand. Azlin et 
al. (2022) proposed a hand gesture-based recognition method using a camera sensor to 
capture signature. The method mainly focuses on compressing entire image sequences into 
a single image for recognition, without providing temporal information. 

The Convolutional Recurrent Neural Network (C-RNN) has been proposed to address 
the limitations of existing methods, which only use spatial or temporal features of hand 
signature. This model is designed to learn and classify the spatial-temporal features of hand 
signature by using convolutional layers for spatial feature extraction and dimension 
reduction, as well as recurrent layers for temporal feature learning. Moreover, there is 
currently only one publicly available in-air signed image-based database. Due to the 
scarcity of reports on hand gesture signature, the proposed method is evaluated solely on 
the in-air hand gesture signature (iHGS) database (Khoh, Pang, and Yap, 2022). The main 
contributions of this research include pre-processing methods for iHGS image sequences, 
such as palm area segmentation with the generation of two-dimensional (2D) and three-
dimensional (3D) features. Another contribution is the proposed three integrated 
architecture variants, namely Convolutional Long Short-Term Memory (ConvLSTM), 
Convolutional Bidirectional Long Short-Term Memory (ConvBiLSTM), and Convolutional 
Gated Recurrent Unit (ConvGRU). During the research, extensive experimental analysis was 
conducted to determine the optimal hyperparameter values that achieved the highest 
recognition accuracy with minimal computation time for the models. 
 
2. Methods 

 The database and pre-processing methods were initially introduced in this section, 
followed by a detailed explanation of proposed CNN and integrated C-RNN. 
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2.1. In-air hand Gestures Signatures Database (iHGS) 
 This database comprised a total of 2980 samples, including 2000 genuine and 980 
forged samples. Hand gesture signature acquisition was carried out in a controlled 
environment, using a Microsoft Kinect sensor that captured both color and depth images. 
The sensor was pre-set to operate at a resolution of 640 x 480 and 30 frames per second. 
Furthermore, 100 individuals who participated in database collection were instructed to 
stand one meter away from the sensor and position their hand in front, activating the 
standby mode, before performing hand gesture signature. Each individual contributed 20 
samples of genuine signature. For the collection of forged samples, participants were given 
a sufficient amount of time to learn and replicate the signature of other individuals. The 
acquisition of forged signature started after the participants showed readiness, with Figure 
1 showing a sample of the depth image. 

 

Figure 1 Depth image frame of a subject writing a signature in the air with their hand. 

2.2. Pre-processing 
 In this research, only the depth image sequences of in-air hand gestures were used to 
evaluate the performance of the proposed methods. After segmenting the palm area, 2D and 
3D features were generated. Specifically, 2D features store only spatial information, which 
is used to train the base CNN. 3D features store both spatial and temporal information, 
which are designated for training the integrated C-RNN. 

2.2.1. Palm Detection and Segmentation 
 Although CNN is designed to learn and extract features without the need for 
handcrafted feature extraction algorithms, the process still requires a large number of 
training samples to obtain optimal performance. Due to the scarcity of hand gesture 
signature samples, the background noises were removed to prevent the models from 
misinterpretation. The entire palm area is preserved and considered as the region of 
interest (ROI) of a particular sample. 
 The palm detection is initially performed using the thresholding method to remove the 
noise. A threshold value is set to 180, according to the outcome of the empirical tests to 
obtain the most optimum setting. Any pixel value in the image sequences below this 
threshold value is set to 0, corresponding to the pixel value of the black color. Although the 
palm region serves as the closest object to the sensor at the beginning of hand gesture 
signature motions, there are no restrictions on how the subjects can perform hand gesture. 
This phenomenon leads to the detection of both the palm and face regions. For instance, 
when subjects move their hand to the far left or right, both the face and palm regions 
become the closest objects to the sensor. Figure 2 shows instances where both regions are 
segmented together in the same frame. To address this issue, the predictive palm 
segmentation algorithm proposed by (Khoh, Pang, and Teoh, 2019) is applied, using the 
detected palm location in the first frame as a reference to predict the closest palm point in 
other frames. Figure 3 shows that only the palm region remains in the frame after applying 
the predictive palm segmentation. 
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Figure 2 Incorrect segmentation where both the face and palm region are captured 

 

Figure 3 Correct segmentation where only the palm region is captured after applying the 
predictive palm segmentation algorithm 

2.2.2. Feature Generation 
 In the feature generation stage, both 2D and 3D imagery features are generated from 
the segmented image sequences. The Motion History Image (MHI), proposed by (Davis and 
Bobick, 1997) is used for generating features for both 2D and 3D hand gesture signature 
features. Moreover, the MHI is a static image that condenses spatio-temporal information 
from a sequence of frames into a single image (Sincan and Keles, 2022; Lakshmi and 
Devendran,  2021; Ahad et al., 2012). In the generation of 2D features, in-air hand gesture 
signature – Motion History Image (iHGS-MHI) is used as the designated notation. The 
silhouettes of palm motion from the segmented image sequences are compressed into a 
single static image. Figure 4 shows the process of generating iHGS-MHI features, where MHI 
is produced from the segmented image sequences. 

The segmented image sequences are already in a 3D format which can be fed into the 
recurrent neural network (RNN). However, the method is not computationally efficient due 
to the need to identify the largest frame in the samples and apply zero-padding to 
standardize the number of depths for each hand gesture signature. This phenomenon is 
capable of causing an increase in computational resources as the model's input dimension 
needs to match the largest sample's frame numbers. The zero-padding method can also 
cause the model to consider the padded frames as part of the features due to the variation 
in the number of frames across the hand gesture signature samples. For instance, some 
samples can have fewer than 50 frames, while others are above 100 frames. To address this 
issue, a more computationally efficient method for 3D feature generation is introduced to 
reduce the number of padding frames. 

The depth for each sample is standardized to 10 blocks, containing 10 frames. In the 
initial stage of 3D feature generation, hand gesture samples of fewer than 100 frames are 
categorized as small, while those exceeding 100 frames are categorized as large. The 
segmented image sequences are partitioned into 10 blocks and MHI is generated from each 
block, compressing 10 frames into a single image, as shown in Figure 5. In comparison, the 
10th block of small samples is an empty block filled using the zero-padding method, while 
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large samples contain more than 10 frames, ranging from frame number 91 to the end of 
the sequence. Figure 6 shows a scenario featuring one sample with 43 frames and another 
with 183 frames. The small samples have sufficient frames only to the 4th block and the 
remaining are padded with zeros, while the large samples exceed 100 frames. The 10th 
block stores frame numbers 91 to 183, and the MHI appears larger compared to the 
previous 9 blocks due to the compression of more frames. Compared to the previous blocks, 
the 10th block in a large sample captures more than 10 frames. 

 
Figure 4 Feature generation of iHGS-MHI 

 

Figure 5 Feature generation of iHGS-MHI-BLOCKS 
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Figure 6 Illustration of HGS-MHI-BLOCKS on small and large samples 

2.3. Proposed architecture 
 In this section, the architecture of both CNN and RNN are presented, along with the 
integration method to build C-RNN. 

2.3.1. Convolutional Neural Networks (CNN) 

In this research, two variants of CNN are proposed, namely multiscale Convolutional 
Neural Networks (MS-CNN) which extract and learn features at multiple scales 
simultaneously, and the base CNN operating at a single scale. Each variant has the same 
number of layers. The first layer of the models is a convolution layer with a kernel size of 
3x3 and 32 filters. The second layer also has a kernel size of 3x3 but with 64 filters. 
Meanwhile, the main difference between both models is at the third and fourth layers. In 
MS-CNN, these layers consist of parallel convolution layers with 3x3 and 5x5 kernels, each 
having 64 filters to extract features at different scales. The feature maps from both 
convolutional layers are concatenated, resulting in a total of 128 filters. The third and fourth 
layers of the base CNN consist of convolutional layers with 128 filters each. Figure 7 shows 
the difference between parallel and typical single-scale convolution layers. 

 

Figure 7 Comparison of parallel and typical convolution layers 

The outputs of each convolutional layer are activated using the Rectified Linear Unit 
(ReLu) function. Max pooling is applied at the end before the feature maps are passed to 
other layers for further feature extraction and dimension reduction. The final layers of 
these models consist of fully connected (FC) layers, which learn and map the features 
extracted by the previous convolutional layers. Moreover, the first FC layer consists of 1024 
neurons, where 50% are dropped before passing to the final layer using the dropout 
regularisation method. This layer contains 100 neurons, corresponding to the total number 
of classes. Subsequently, the Softmax function is applied for classification purposes, which 
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computes the output of the final FC layer into a probability distribution with values ranging 
from 0 to 1, and the sum of all classes equal to 1. 

Both MS-CNN and CNN have two variants, which are with and without batch 
normalization. Specifically, batch normalization is a regularization method that is used to 
accelerate training time and improve model accuracy. This improvement is achieved by 
reducing the internal covariate shift, which is the change in the distribution of inputs to 
each layer during the training process (Bjorck et al., 2018; Kohler et al., 2018; Santurkar et 
al., 2018; Ioffe and Szegedy, 2015). Table 1 presents the detailed information for each 
architecture. 

Table 1 Proposed CNN Architectures 

Layer  MS-CNN-A MS-CNN-B CNN-A CNN-B 

1 Input 224 x 224 x 1 Input 224 x 224 x 1 Input 224 x 224 x 1 Input 224 x 224 x 1 

2 Conv, 32 kernel 3 x 3 
BatchNorm + ReLU 

Max-Pool 2 x 2 

Conv, 32 kernel 3 x 3 
ReLU Max-Pool 2 x 2 

Conv, 32 kernel 3 x 3 
BatchNorm + ReLU 

Max-Pool 2x2 

Conv, 32 kernel 3 x 
3 + ReLU Max-Pool 

2 x 2 
3 Conv, 64 kernel 3 x 3 

BatchNorm + ReLU 
Max-Pool 2 x 2 

Conv, 64 kernel 3 x 3 
ReLU Max-Pool 2 x 2 

Conv, 64 kernel 3 x 3 
BatchNorm + ReLU 

Max-Pool 2 x 2 

Conv, 64 kernel 3 x 
3 + ReLU Max-Pool 

2 x 2 
4 Parallel Convolution 

layer                        Conv 
3 x 3 (64 filters) & 5 x 5 
(64 filters), BatchNorm 

+ ReLU depth 
concatenation Max-

Pool 2 x 2 

Parallel 
Convolution layer                        

Conv 3 x 3 (64 filters) 
& 5 x 5 (64 filters),    

ReLU                       
depth concatenation 

Max-Pool 2 x 2 

Convolution layer                       
Conv, 128 kernel 3 x 
3 BatchNorm + ReLU 

Max-Pool 2 x 2 
 

Convolution layer                       
Conv,128 kernel 3 x 

3 ReLU                        
Max-Pool 2 x 2 

 

5 Parallel Convolution 
layer                        Conv 
3 x 3 (64 filters) & 5 x 5 
(64 filters), BatchNorm 

+ ReLU depth 
concatenation Max-

Pool 2 x 2 

Parallel 
Convolution layer                        

Conv 3 x 3 (64 filters) 
& 5 x 5 (64 filters),       

ReLU                       
depth concatenation 

Max-Pool 2 x 2 

Convolution layer                       
Conv, 128 kernel 3 x3 

BatchNorm + ReLU 
Max-Pool 2 x 2 

 

Convolution layer                       
Conv,128 kernel 3 x 

3 ReLU                       
Max-Pool 2 x 2 

 

6 FC Layer 1: 1024 
Dropout: 0.5               FC 
Layer 2: 100 Softmax 

FC Layer 1: 1024 
Dropout: 0.5               

FC Layer 2: 100 
Softmax 

FC Layer 1: 1024 
Dropout: 0.5                

FC Layer 2: 100 
Softmax 

FC Layer 1: 1024 
Dropout: 0.5              

FC Layer 2: 100 
Softmax 

2.3.2. Recurrent Neural Networks (RNN) 
 RNN is mainly designed for learning time series or sequential data. It can store and 
learn from sequential data due to the presence of recurrent connections. However, the base 
RNN often encounters vanishing gradient issues when dealing with long-sequence data. 
This limitation occurs due to the lack of a gating mechanism that can selectively store, 
update, or remove information. Hochreiter and Schmidhuber (1997) proposed the Long 
Short-Term Memory (LSTM) architecture to address the limitation of the base RNN. 

The LSTM architecture is comprised of four main components, namely memory cells, 
input, output, and forget gates. The core component is the memory cell, which is responsible 
for maintaining the internal state of the unit. The input gate manages and decides the 
amount of new information from the current input to be stored in the memory cell. The 
output gate is responsible for deciding which information should be passed to subsequent 
units and stored in the hidden state. Meanwhile, forget gate decides which information 
should be stored and removed. Another variant of LSTM, known as bidirectional LSTM, has 
also been proposed by Graves and Schmidhuber (2005). This variant is a stacked LSTM that 
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receives inputs from both the forward and backward directions, with a similar internal 
structure as the base LSTM. 

A more recent variant of RNN is the Gated Recurrent Unit (GRU), proposed by Cho et 
al. (2014), which has fewer parameters and uses only two gating mechanisms. In this 
variant, the update gate decides which information should be kept or removed from the 
candidate state, serving as a temporary memory space where new information is stored. 
Meanwhile, the reset gate determines the amount of past information to be removed from 
the hidden state. Table 2 summarises the information on all RNN architecture variants. 

Table 2 RNN Architectures Information 

Architecture   States Gating Mechanism Sequence 
Direction 

Base RNN Hidden State - Unidirectional 
LSTM Hidden State, Cell State Input, Output, Forget Unidirectional 
Bidirectional LSTM Hidden State, Cell State Input, Output, Forget Bidirectional 
GRU Hidden State, Candidate State Update, Reset Unidirectional 

2.3.3. Convolutional Recurrent Neural Networks (C-RNN) 
An integrated architecture is introduced that combines convolutional layers for spatial 

feature extraction with RNN for temporal feature learning. The sequence folding and 
unfolding layers developed by MathWorks (2022) are used to construct this integrated 
architecture. A sequence folding layer is added after the input layer, followed by 
convolutional layers, which are used to extract features from each frame from the image 
sequences. Subsequently, a sequence unfolding layer is added and convolutional features 
extracted from the image sequences are flattened and fed into the RNN layers for temporal 
feature learning. The outputs from the RNN layers are passed to a fully connected layer, 
where the Softmax function is applied for classification. Figure 8 shows the complete 
workflow of C-RNN, while the detailed information regarding the architectures is presented 
in Table 3. The three proposed variants of C-RNN include Convolutional Long Short-Term 
Memory (ConvLSTM), Convolutional Bidirectional Long Short-Term Memory 
(ConvBiLSTM), and Convolutional Gated Recurrent Unit (ConvGRU). 

 

Figure 8 Convolutional Recurrent Neural Network workflow 

Table 3 Proposed C-RNN Architectures 

Layer  ConvLSTM ConvBiLSTM ConvGRU 

1 Input 224 x 224 x 10 Input 224 x 224 x 10 Input 224 x 224 x 10 
2 Sequence Folding     Sequence Folding     Sequence Folding 
3 Convolutional Layers Convolutional Layers Convolutional Layers 
4 Sequence Unfolding, Flatten Sequence Folding, Flatten Sequence Folding, Flatten 
5 Long Short-Term Memory            

Dropout: 0.2               
Bidirectional Long Short-
Term Memory Dropout: 0.2 

Gated Recurrent Unit 
Dropout: 0.2 

6 FC Layer: 100    Softmax FC Layer: 100    Softmax FC Layer: 100    Softmax 
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2.4.  Experimental Setup 
 In this section, the implementation environments, the initial training of CNN variants, 
and the experiment with C-RNN are explained in detail. 

2.4.1.  Hardware and Software Configuration 
 The experiments were conducted in Matlab R2021a on a desktop computer running 
Windows 11 64-bit operating system. The computer is equipped with an Intel i5-12400f 
CPU, a base clock speed of 2.5 GHz, 16GB of RAM, and an Nvidia RTX 3060 GPU with 12GB 
of VRAM and 3584 CUDA cores. 

2.4.2. Training Hyperparameters 
 All the models are trained with a learning rate of 0.001, 20 epochs, and a mini-batch 
size of 32 using the Stochastic Gradient Descent with momentum (SGDM) optimizer. 
Moreover, the training process started from scratch five times, with the dataset divided into 
an 80:20 ratio. During each trial, 80% of the samples were randomly selected for training 
and 20% for testing purposes. Table 4 summarizes the training hyperparameters used in 
this research. 

Table 4 Training Hyperparameter 

Epoch Batch Size Learning Rate Train-Test Ratio Optimizer 

20 32 0.001 80:20 SGDM 

2.5.  Experiment Setting 

2.5.1. Experiment on CNN 
 The four proposed variants of CNN architectures, including MS-CNN-A, MS-CNN-B, 
CNN-A, and CNN-B, are initially trained on the 2D features, namely HGS-MHI. The 
architecture with the highest accuracy and the least amount of training time is selected as 
the convolutional layer foundation for constructing the C-RNN. 

2.5.2. Experiment on C-RNN 
 The CNN architecture that obtained the optimal performance from the first experiment 
is selected to construct the integrated architecture of C-RNN. The number of hidden units 
in the RNN serves as the main hyperparameter value. Experiments are carried out with 
hidden units of 128, 256, and 512 to identify the optimal value that obtains the highest 
recognition accuracy with minimal computation time. Table 5 shows the experimental 
setting for both CNN and C-RNN. 

Table 5 Experimental Setting 

Architecture Input Dimension Training Features Hidden Units (RNN) 

CNN 224x224x1 iHGS-MHI - 
C-RNN 224x224x10 iHGS-MHI-BLOCKS 128, 256, 512 

2.6. Evaluation Measurement 
 The evaluation metrics of accuracy, precision, specificity, recall, and F1-score are used 
to evaluate the performance of the proposed architectures. Equation 1 describes the 
calculation of accuracy, which is obtained by dividing the sum of True Positives (TP) and 
True Negatives (TN) by the total number of test data instances. This serves as the sum of 
True Positives (TP), True Negatives (TN), False Negatives (FN), and False Positives (FP), 
measuring the ratio of correctly predicted observations to the total observations. Equation 
2 defines precision as the ratio of TP to the sum of TP and FP, measuring the proportion of 
TP predictions out of all positive predictions made. Meanwhile, Equation 3 defines 
specificity as the ratio of TN to the sum of TN and FP, which measures the proportion of 
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actual negatives that are correctly identified. Equation 4 defines recall as the ratio of TP to 
the sum of TP and FN, measuring the proportion of actual positives that are correctly 
identified. Equation 5 defines the F1-score, which is a weighted average of precision and 
recall. The measurements are described as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

     (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 (4) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(5) 

 
3. Results and Discussion 

 In this section, the experimental results of averaged classification accuracy and model 
training computation time are analyzed and discussed in detail. 

3.1.  CNN Experimental Results 
 This section discusses the experimental results of four base variants of CNN to identify 
optimal convolutional layers for constructing the integrated architectures of C-RNN. As 
shown in Table 6, the experimental results for both variants of CNN and MS-CNN. MS-CNN-
A achieved an accuracy of 95.05%, requiring 1 minute and 56 seconds for computation. MS-
CNN-B recorded an accuracy of 93.90%, showing the need for only 1 minute and 35 seconds 
to train. Although batch normalization is generally used as a regularization method to 
enhance model accuracy and minimize training time, the first MS-CNN variant with batch 
normalization consumed more computation time by 21 seconds. Meanwhile, batch 
normalization also helped to increase the model accuracy by 1.15%. 

Table 6 Performance Comparison of MS-CNN and CNN 

Architecture Classification measurement (Averaged ± SD) 

 Accuracy Precision  Specificity Recall F1-Score Train Time 

MS-CNN-A 95.05 ± 0.86 96.13 ± 0.59 99.95 ± 0.01 95.25 ± 0.88 94.90 ± 0.84 1 min 56 sec 
MS-CNN-B 93.90 ± 0.58 95.10 ± 0.45 99.94 ± 0.01 93.90 ± 0.58 93.76 ± 0.63 1 min 35 sec 
CNN-A 95.15 ± 0.95 96.07 ± 0.82 99.95 ± 0.01 95.15 ± 0.95 94.96 ± 1.00 1 min 42 sec 
CNN-B 94.50 ± 1.13 95.67 ± 0.94 99.94 ± 0.01 94.50 ± 1.13 94.30 ± 1.23 1 min 27 sec 

 The MS-CNN variants are expected to have better performance compared to CNN, due 
to the presence of parallel convolution layers extracting features at different scales 
simultaneously. However, both variants of CNN outperform the MS-CNN, achieving an 
accuracy of 95.15%, which is 0.10% higher than MS-CNN-A. CNN-B obtained an accuracy of 
94.50%, which is 0.65% lower than the first variant, requiring a training time of 1 minute 
and 27 seconds. This significant difference is attributed to the lack of batch normalization, 
as observed in the MS-CNN results. 
 Figures 9 and 10 show the classification accuracy and computation time for all variants 
of MS-CNN and CNN. These initial experiments are carried out to identify the model with 
the highest recognition accuracy and the least amount of computational time, resulting in 
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the selection of CNN-A as the convolutional layer for constructing C-RNN. Although CNN-B 
is the fastest model, requiring the least amount of computation time to train, it is 
underperformed in terms of accuracy. Both variants of MS-CNN also obtained lower 
accuracy, leading to the selection of CNN-A as the best architecture, considering that all 
proposed architectures had training times within the range of 1 minute. 

 

Figure 9 Accuracy comparison of MS-CNN and CNN 

 

Figure 10 Computation time comparison of MS-CNN and CNN 

3.2. C-RNN Experimental Results 

 CNN-A with the highest recognition accuracy from the preliminary experiments is 
selected as the base for convolutional layers in the integrated architecture of C-RNN. The 
experimental results for three C-RNN variants show a different number of hidden units of 
128, 256, and 512, respectively. The optimal value for the hidden units is explored and 
analyzed to identify the architecture with the highest accuracy with minimal computation 
time. 
 All three variants of the C-RNN achieved greater accuracy compared to CNN 
architectures, as shown in Table 7. The average computation time also increased from 1 
minute to 3 minutes, which was expected as the model complexity rose with the integration 
of both CNN and RNN architectures. The ConvLSTM, ConvBiLSTM, and ConvGRU models 
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achieved accuracy of 97.20%, 97.40%, and 97.10%, respectively. Regarding computation 
time, ConvLSTM lasted for 3 minutes and 21 seconds to train, while ConvBiLSTM which 
used stacked LSTM layers to receive inputs from both forward and backward directions, 
was expected to require significantly more time. According to experimental results, 3 
minutes and 54 seconds were required for training, which was only 33 seconds more than 
the previous LSTM model. The fastest model among the three variants was ConvGRU, which 
requires 3 minutes and 10 seconds to train. This result is obtained due to the fewer 
parameters of the internal structure of GRU compared to LSTM, thereby requiring less 
computation time. 

Table 7 Average Classification Result (%) on 128 Hidden Units 

Architecture Classification measurement (Averaged ± SD) 
 Accuracy Precision  Specificity Recall F1-Score Train Time 

ConvLSTM 97.20 ± 0.82 97.75 ± 0.70 99.97 ± 0.01 97.20 ± 0.82 97.13 ± 0.88 3 min 21 sec 
ConvBiLSTM 97.40 ± 1.26 98.00 ± 0.91 99.97 ± 0.01 97.40 ± 1.26 97.33 ± 1.30 3 min 54 sec 
ConvGRU 97.10 ± 1.02 97.70 ± 0.81 99.97 ± 0.01 97.10 ± 1.02 97.02 ± 1.06 3 min 10 sec 

 Table 8 shows a significant rise in average training time, as the number of hidden units 
increases from 128 to 512. Based on the results, the computation time for ConvLSTM and 
ConvGRU increases by 32 seconds and 27 seconds, respectively. ConvBiLSTM shows the 
most significant increase in training time, rising from 3 minutes and 10 seconds to 4 
minutes and 56 seconds, due to the bidirectional nature. Although the number of hidden 
units is set to 256, a total of 512 hidden units is used, where 256 are allocated for the 
forward pass and 256 for the backward pass. As the computational time increases 
significantly, there is only a minor improvement in accuracy. The ConvLSTM, ConvBiLSTM, 
and ConvGRU also show accuracy increase of 0.20%, 0.07%, and 0.30%, respectively. 

Table 8 Average Classification Result (%) on 256 Hidden Units 

Architecture Classification measurement (Averaged ± SD) 

 Accuracy Precision  Specificity Recall F1-Score Train Time 

ConvLSTM 97.40 ± 0.68 97.88 ± 0.63 99.97 ± 0.01 97.40 ± 0.68 97.36 ± 0.73 3 min 53 sec 
ConvBiLSTM 97.47 ± 1.32 97.98 ± 1.01 99.97 ± 0.01 97.47 ± 1.32 97.40 ± 1.34 4 min 56 sec 
ConvGRU 97.40 ± 0.98 97.90 ± 0.80 99.97 ± 0.01 97.40 ± 0.98 97.33 ± 0.97 3 min 37 sec 

 In Table 9, as the number of hidden units increased from 256 to 512, ConvLSTM 
accuracy remained the same compared to the previous experiment with 256 units. 
However, the average training time increased from 3 minutes and 53 seconds to 5 minutes 
and 3 seconds, showing that a high number of hidden units does not benefit ConvLSTM. 
ConvGRU showed a modest accuracy increase of 0.05%, requiring an additional 1 minute 
and 4 seconds to train. The ConvBiLSTM showed the highest observed improvement in 
accuracy, with the number of hidden units increasing to 512, showing a 0.63% high as the 
average accuracy rises from 97.47% to 98.10%. This improvement was attributed to the 
increased training time, which facilitated the slowest architecture among the C-RNN 
variants. 

Table 9 Average Classification Result (%) on 512 Hidden Units 

Architecture Classification measurement (Averaged ± SD) 

 Accuracy Precision  Specificity Recall F1-Score Train Time 

ConvLSTM 97.40 ± 0.84 97.93 ± 0.74 99.97 ± 0.01 97.40 ± 0.84 97.36 ± 0.85 5 min 03 sec 
ConvBiLSTM 98.10 ± 0.86 98.48 ± 0.70 99.98 ± 0.01 98.10 ± 0.86 98.07 ± 0.88 7 min 27 sec 
ConvGRU 97.45 ± 1.08 97.93 ± 0.93 99.97 ± 0.01 97.45 ± 1.08 97.38 ± 1.12 4 min 33 sec 
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 Figure 11 shows an accuracy comparison of all C-RNN variants. Based on the results, 
ConvBiLSTM with 512 hidden units is the only architecture to achieve the highest accuracy 
of 98.10%, while other variants range from 97.10% to 97.47%. As shown in Figure 12,  
average training time also rises with the increase in the number of hidden units. The 
architectures with 128, 256, and 512 hidden units fall within an accuracy range of 97%, 
except for ConvBiLSTM with 512 hidden units. Furthermore, all architectures with 128 
hidden units are the most computationally efficient, with an accuracy within the range of 
97% and the least amount of training time. 

 

Figure 11 Accuracy comparison of C-RNN 

 

Figure 12 Computation time comparison of C-RNN 
 
4. Conclusions 

In conclusion, this research successfully proposed the use of C-RNN for in-air hand 
gesture signature (iHGS) recognition, introducing four base CNN architectures. The results 
showed that MS-CNN-A and MS-CNN-B captured and extracted features at different scales 
parallelly while the CNN-A and CNN-B were operated at a single scale. CNN-A was selected 
as the convolutional layer foundation for the integrated architecture, with the highest 
accuracy of 95.15%. Subsequently, three additional architectures were proposed, namely 
ConvLSTM, ConvBiLSTM, and ConvGRU. The experimental results showed a significant 
increase in recognition accuracy by minimizing the loss of information, preserving in a 3D 



Chuen et al. 1115 

representation, and feeding into the C-RNN models. However, this improvement was 
obtained due to increased computation time caused by the architectural integration, with 
the ConvBiLSTM obtaining the highest accuracy of 98.10%, while ConvLSTM and ConvGRU 
achieved 97.40% and 97.47%, respectively. The average training duration increased from 
1 minute to 3 minutes because of the architectural integration in the initial C-RNN 
experiments with 128 hidden units due to the increased complexity. The training time 
further increased to 4, 5, and 7 minutes, as the hidden units rose to 256 and 512. The 
optimal hyperparameter value was 128 hidden units for all variants of C-RNN, with an 
accuracy of 97% and an average training time of 3 minutes. However, only minor accuracy 
improvement was observed from 128 to 256 and 512, along with higher computational 
time. 
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