
International Journal of Technology 15(4) 1102-1117 (2024)
 Received October 2023 / Revised February 2024 / Accepted March 2024

 International Journal of Technology

 http://ijtech.eng.ui.ac.id

Revolutionizing Signature Recognition: A Contactless Method with
Convolutional Recurrent Neural Networks

Alvin Lim Fang Chuen1, Khoh Wee How1*, Pang Ying Han1, Yap Hui Yen1

1Faculty of Information Science & Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit

Beruang, 75450, Melaka, Malaysia

Abstract. Conventional contact-based hand signature recognition methods are raising hygienic
concerns due to shared acquisition devices among the public. Therefore, this research aimed to
propose a contactless in-air hand gesture signature (iHGS) recognition method using convolutional
recurrent neural networks (C-RNN). Experiments have been conducted to identify the most suitable
CNN architecture for the integration of CNN and RNN. A total of four base architectures were
adopted and evaluated, namely MS-CNN-A, MS-CNN-B, CNN-A, and CNN-B. Based on the results,
CNN-A was selected as the convolutional layer for constructing the integration of C-RNN due to its
superior performance, achieving an accuracy rate of 95.15%. Furthermore, three variants of C-RNN
were proposed, and experimental results on the iHGS database showed that the ConvBiLSTM
achieved the highest accuracy at 98.10%, followed by ConvGRU at 97.47% and ConvLSTM at
97.40%.

Keywords: Convolutional-RNN; Gesture recognition; Hand gesture signatures; In-air signatures

1. Introduction

Hand signature is a handwritten name or initials that are typically used for identity
verification and authentication purposes in legal documents, banking and finance
transactions, employment agreements, and government services (Hashim, Ahmed, and
Alkhayyat, 2022). Due to its uniqueness, two individuals sharing the same name will show
distinct hand signature. This is due to individual behavioral traits such as pressure applied
to the writing surface, speed, and the angle of handling the writing instrument (Impedovo
and Pirlo, 2007). These factors will influence the overall appearance and style of signature,
which contribute to its uniqueness. The practicality and widespread use of hand signature
has made it to become one of the most commonly applied forms of behavioral biometrics.
However, the traditional method for recognition is through manual checking by humans,
which is susceptible to error during the identification of the signature (Akram, Qasim, and
Amin, 2012).

The advancement of technology has led to the introduction of automatic hand signature
recognition systems, which have mitigated the risk of human error in the identification of
hand signatures (Faundez-Zanuy, 2005). Generally, there are two types of hand signature
recognition systems, namely offline and online (Julian and Ortega-Garcia, 2008; Gilperez et

*Corresponding author’s email: whkhoh@mmu.edu.my, Tel.: +60 6-2523465

doi: 10.14716/ijtech.v15i4.6744

Chuen et al. 1103

al., 2008). The offline method only captures the appearance and shape by scanning the hand
signature. Meanwhile, the online method captures other dynamic properties such as
pressure applied to the writing surface and signature completion time. This system can be
further classified into contact-based and contactless methods (Jain et al., 2020; Malik et al.,
2018). The contact-based method captures the hand signature using a pen and paper, as
well as the latest method, which uses a stylus and tablet technology. The contactless method
does not require direct contact with acquisition devices by in-air signing in front of a
camera sensor.

The contact-based method that uses pen and paper is vulnerable to forgery issues as
individuals need to physically write their signature, exposing the shape and allowing
imitation by others for unauthorized uses. Although the stylus and tablet method can
address this issue by capturing dynamic properties, it is still a contact-based susceptible to
germ and virus contamination as the acquisition devices are often shared among the public.
Recently, the occurrence of the COVID-19 global pandemic has increased concerns about
hygiene related to contact-based biometrics recognition systems, leading to high demands
for contactless systems (Gan, 2022; Romadlon, Lestiana, and Putri, 2022; Supriatna et al.,
2022; Yatmo, Harahap, and Atmodiwirjo, 2021; Carlaw, 2020). Contactless hand signature
recognition methods are already in existence (Khoh et al., 2021; Fang et al., 2017; Sajid and
Cheung, 2015), but their applications in currently in the experimental stage. According to
previous research, commercially available systems still rely on contact-based methods for
applications such as identity verification in financial institutions (Sudharshan and Vismaya,
2022; Karanjkar and Vasambekar, 2016; Cüceloğlu and Oğul, 2014). Shao et al., (2020),
Levy et al., (2018) proposed hand gesture-based signature recognition method using built-
in sensors from mobile devices. Subjects perform in-air signatures when wearing a
smartwatch or holding a smartphone to capture the gestures. However, this method only
captures the device's coordinates over time, lacking spatial information on hand. Azlin et
al. (2022) proposed a hand gesture-based recognition method using a camera sensor to
capture signature. The method mainly focuses on compressing entire image sequences into
a single image for recognition, without providing temporal information.

The Convolutional Recurrent Neural Network (C-RNN) has been proposed to address
the limitations of existing methods, which only use spatial or temporal features of hand
signature. This model is designed to learn and classify the spatial-temporal features of hand
signature by using convolutional layers for spatial feature extraction and dimension
reduction, as well as recurrent layers for temporal feature learning. Moreover, there is
currently only one publicly available in-air signed image-based database. Due to the
scarcity of reports on hand gesture signature, the proposed method is evaluated solely on
the in-air hand gesture signature (iHGS) database (Khoh, Pang, and Yap, 2022). The main
contributions of this research include pre-processing methods for iHGS image sequences,
such as palm area segmentation with the generation of two-dimensional (2D) and three-
dimensional (3D) features. Another contribution is the proposed three integrated
architecture variants, namely Convolutional Long Short-Term Memory (ConvLSTM),
Convolutional Bidirectional Long Short-Term Memory (ConvBiLSTM), and Convolutional
Gated Recurrent Unit (ConvGRU). During the research, extensive experimental analysis was
conducted to determine the optimal hyperparameter values that achieved the highest
recognition accuracy with minimal computation time for the models.

2. Methods

 The database and pre-processing methods were initially introduced in this section,
followed by a detailed explanation of proposed CNN and integrated C-RNN.

1104 Revolutionizing Signature Recognition: A Contactless
Method with Convolutional Recurrent Neural Networks

2.1. In-air hand Gestures Signatures Database (iHGS)
 This database comprised a total of 2980 samples, including 2000 genuine and 980
forged samples. Hand gesture signature acquisition was carried out in a controlled
environment, using a Microsoft Kinect sensor that captured both color and depth images.
The sensor was pre-set to operate at a resolution of 640 x 480 and 30 frames per second.
Furthermore, 100 individuals who participated in database collection were instructed to
stand one meter away from the sensor and position their hand in front, activating the
standby mode, before performing hand gesture signature. Each individual contributed 20
samples of genuine signature. For the collection of forged samples, participants were given
a sufficient amount of time to learn and replicate the signature of other individuals. The
acquisition of forged signature started after the participants showed readiness, with Figure
1 showing a sample of the depth image.

Figure 1 Depth image frame of a subject writing a signature in the air with their hand.

2.2. Pre-processing
 In this research, only the depth image sequences of in-air hand gestures were used to
evaluate the performance of the proposed methods. After segmenting the palm area, 2D and
3D features were generated. Specifically, 2D features store only spatial information, which
is used to train the base CNN. 3D features store both spatial and temporal information,
which are designated for training the integrated C-RNN.

2.2.1. Palm Detection and Segmentation
 Although CNN is designed to learn and extract features without the need for
handcrafted feature extraction algorithms, the process still requires a large number of
training samples to obtain optimal performance. Due to the scarcity of hand gesture
signature samples, the background noises were removed to prevent the models from
misinterpretation. The entire palm area is preserved and considered as the region of
interest (ROI) of a particular sample.
 The palm detection is initially performed using the thresholding method to remove the
noise. A threshold value is set to 180, according to the outcome of the empirical tests to
obtain the most optimum setting. Any pixel value in the image sequences below this
threshold value is set to 0, corresponding to the pixel value of the black color. Although the
palm region serves as the closest object to the sensor at the beginning of hand gesture
signature motions, there are no restrictions on how the subjects can perform hand gesture.
This phenomenon leads to the detection of both the palm and face regions. For instance,
when subjects move their hand to the far left or right, both the face and palm regions
become the closest objects to the sensor. Figure 2 shows instances where both regions are
segmented together in the same frame. To address this issue, the predictive palm
segmentation algorithm proposed by (Khoh, Pang, and Teoh, 2019) is applied, using the
detected palm location in the first frame as a reference to predict the closest palm point in
other frames. Figure 3 shows that only the palm region remains in the frame after applying
the predictive palm segmentation.

Chuen et al. 1105

Figure 2 Incorrect segmentation where both the face and palm region are captured

Figure 3 Correct segmentation where only the palm region is captured after applying the
predictive palm segmentation algorithm

2.2.2. Feature Generation
 In the feature generation stage, both 2D and 3D imagery features are generated from
the segmented image sequences. The Motion History Image (MHI), proposed by (Davis and
Bobick, 1997) is used for generating features for both 2D and 3D hand gesture signature
features. Moreover, the MHI is a static image that condenses spatio-temporal information
from a sequence of frames into a single image (Sincan and Keles, 2022; Lakshmi and
Devendran, 2021; Ahad et al., 2012). In the generation of 2D features, in-air hand gesture
signature – Motion History Image (iHGS-MHI) is used as the designated notation. The
silhouettes of palm motion from the segmented image sequences are compressed into a
single static image. Figure 4 shows the process of generating iHGS-MHI features, where MHI
is produced from the segmented image sequences.

The segmented image sequences are already in a 3D format which can be fed into the
recurrent neural network (RNN). However, the method is not computationally efficient due
to the need to identify the largest frame in the samples and apply zero-padding to
standardize the number of depths for each hand gesture signature. This phenomenon is
capable of causing an increase in computational resources as the model's input dimension
needs to match the largest sample's frame numbers. The zero-padding method can also
cause the model to consider the padded frames as part of the features due to the variation
in the number of frames across the hand gesture signature samples. For instance, some
samples can have fewer than 50 frames, while others are above 100 frames. To address this
issue, a more computationally efficient method for 3D feature generation is introduced to
reduce the number of padding frames.

The depth for each sample is standardized to 10 blocks, containing 10 frames. In the
initial stage of 3D feature generation, hand gesture samples of fewer than 100 frames are
categorized as small, while those exceeding 100 frames are categorized as large. The
segmented image sequences are partitioned into 10 blocks and MHI is generated from each
block, compressing 10 frames into a single image, as shown in Figure 5. In comparison, the
10th block of small samples is an empty block filled using the zero-padding method, while

1106 Revolutionizing Signature Recognition: A Contactless
Method with Convolutional Recurrent Neural Networks

large samples contain more than 10 frames, ranging from frame number 91 to the end of
the sequence. Figure 6 shows a scenario featuring one sample with 43 frames and another
with 183 frames. The small samples have sufficient frames only to the 4th block and the
remaining are padded with zeros, while the large samples exceed 100 frames. The 10th
block stores frame numbers 91 to 183, and the MHI appears larger compared to the
previous 9 blocks due to the compression of more frames. Compared to the previous blocks,
the 10th block in a large sample captures more than 10 frames.

Figure 4 Feature generation of iHGS-MHI

Figure 5 Feature generation of iHGS-MHI-BLOCKS

Chuen et al. 1107

Figure 6 Illustration of HGS-MHI-BLOCKS on small and large samples

2.3. Proposed architecture
 In this section, the architecture of both CNN and RNN are presented, along with the
integration method to build C-RNN.

2.3.1. Convolutional Neural Networks (CNN)

In this research, two variants of CNN are proposed, namely multiscale Convolutional
Neural Networks (MS-CNN) which extract and learn features at multiple scales
simultaneously, and the base CNN operating at a single scale. Each variant has the same
number of layers. The first layer of the models is a convolution layer with a kernel size of
3x3 and 32 filters. The second layer also has a kernel size of 3x3 but with 64 filters.
Meanwhile, the main difference between both models is at the third and fourth layers. In
MS-CNN, these layers consist of parallel convolution layers with 3x3 and 5x5 kernels, each
having 64 filters to extract features at different scales. The feature maps from both
convolutional layers are concatenated, resulting in a total of 128 filters. The third and fourth
layers of the base CNN consist of convolutional layers with 128 filters each. Figure 7 shows
the difference between parallel and typical single-scale convolution layers.

Figure 7 Comparison of parallel and typical convolution layers

The outputs of each convolutional layer are activated using the Rectified Linear Unit
(ReLu) function. Max pooling is applied at the end before the feature maps are passed to
other layers for further feature extraction and dimension reduction. The final layers of
these models consist of fully connected (FC) layers, which learn and map the features
extracted by the previous convolutional layers. Moreover, the first FC layer consists of 1024
neurons, where 50% are dropped before passing to the final layer using the dropout
regularisation method. This layer contains 100 neurons, corresponding to the total number
of classes. Subsequently, the Softmax function is applied for classification purposes, which

1108 Revolutionizing Signature Recognition: A Contactless
Method with Convolutional Recurrent Neural Networks

computes the output of the final FC layer into a probability distribution with values ranging
from 0 to 1, and the sum of all classes equal to 1.

Both MS-CNN and CNN have two variants, which are with and without batch
normalization. Specifically, batch normalization is a regularization method that is used to
accelerate training time and improve model accuracy. This improvement is achieved by
reducing the internal covariate shift, which is the change in the distribution of inputs to
each layer during the training process (Bjorck et al., 2018; Kohler et al., 2018; Santurkar et
al., 2018; Ioffe and Szegedy, 2015). Table 1 presents the detailed information for each
architecture.

Table 1 Proposed CNN Architectures

Layer MS-CNN-A MS-CNN-B CNN-A CNN-B

1 Input 224 x 224 x 1 Input 224 x 224 x 1 Input 224 x 224 x 1 Input 224 x 224 x 1

2 Conv, 32 kernel 3 x 3
BatchNorm + ReLU

Max-Pool 2 x 2

Conv, 32 kernel 3 x 3
ReLU Max-Pool 2 x 2

Conv, 32 kernel 3 x 3
BatchNorm + ReLU

Max-Pool 2x2

Conv, 32 kernel 3 x
3 + ReLU Max-Pool

2 x 2
3 Conv, 64 kernel 3 x 3

BatchNorm + ReLU
Max-Pool 2 x 2

Conv, 64 kernel 3 x 3
ReLU Max-Pool 2 x 2

Conv, 64 kernel 3 x 3
BatchNorm + ReLU

Max-Pool 2 x 2

Conv, 64 kernel 3 x
3 + ReLU Max-Pool

2 x 2
4 Parallel Convolution

layer Conv
3 x 3 (64 filters) & 5 x 5
(64 filters), BatchNorm

+ ReLU depth
concatenation Max-

Pool 2 x 2

Parallel
Convolution layer

Conv 3 x 3 (64 filters)
& 5 x 5 (64 filters),

ReLU
depth concatenation

Max-Pool 2 x 2

Convolution layer
Conv, 128 kernel 3 x
3 BatchNorm + ReLU

Max-Pool 2 x 2

Convolution layer
Conv,128 kernel 3 x

3 ReLU
Max-Pool 2 x 2

5 Parallel Convolution
layer Conv
3 x 3 (64 filters) & 5 x 5
(64 filters), BatchNorm

+ ReLU depth
concatenation Max-

Pool 2 x 2

Parallel
Convolution layer

Conv 3 x 3 (64 filters)
& 5 x 5 (64 filters),

ReLU
depth concatenation

Max-Pool 2 x 2

Convolution layer
Conv, 128 kernel 3 x3

BatchNorm + ReLU
Max-Pool 2 x 2

Convolution layer
Conv,128 kernel 3 x

3 ReLU
Max-Pool 2 x 2

6 FC Layer 1: 1024
Dropout: 0.5 FC
Layer 2: 100 Softmax

FC Layer 1: 1024
Dropout: 0.5

FC Layer 2: 100
Softmax

FC Layer 1: 1024
Dropout: 0.5

FC Layer 2: 100
Softmax

FC Layer 1: 1024
Dropout: 0.5

FC Layer 2: 100
Softmax

2.3.2. Recurrent Neural Networks (RNN)
 RNN is mainly designed for learning time series or sequential data. It can store and
learn from sequential data due to the presence of recurrent connections. However, the base
RNN often encounters vanishing gradient issues when dealing with long-sequence data.
This limitation occurs due to the lack of a gating mechanism that can selectively store,
update, or remove information. Hochreiter and Schmidhuber (1997) proposed the Long
Short-Term Memory (LSTM) architecture to address the limitation of the base RNN.

The LSTM architecture is comprised of four main components, namely memory cells,
input, output, and forget gates. The core component is the memory cell, which is responsible
for maintaining the internal state of the unit. The input gate manages and decides the
amount of new information from the current input to be stored in the memory cell. The
output gate is responsible for deciding which information should be passed to subsequent
units and stored in the hidden state. Meanwhile, forget gate decides which information
should be stored and removed. Another variant of LSTM, known as bidirectional LSTM, has
also been proposed by Graves and Schmidhuber (2005). This variant is a stacked LSTM that

Chuen et al. 1109

receives inputs from both the forward and backward directions, with a similar internal
structure as the base LSTM.

A more recent variant of RNN is the Gated Recurrent Unit (GRU), proposed by Cho et
al. (2014), which has fewer parameters and uses only two gating mechanisms. In this
variant, the update gate decides which information should be kept or removed from the
candidate state, serving as a temporary memory space where new information is stored.
Meanwhile, the reset gate determines the amount of past information to be removed from
the hidden state. Table 2 summarises the information on all RNN architecture variants.

Table 2 RNN Architectures Information

Architecture States Gating Mechanism Sequence
Direction

Base RNN Hidden State - Unidirectional
LSTM Hidden State, Cell State Input, Output, Forget Unidirectional
Bidirectional LSTM Hidden State, Cell State Input, Output, Forget Bidirectional
GRU Hidden State, Candidate State Update, Reset Unidirectional

2.3.3. Convolutional Recurrent Neural Networks (C-RNN)
An integrated architecture is introduced that combines convolutional layers for spatial

feature extraction with RNN for temporal feature learning. The sequence folding and
unfolding layers developed by MathWorks (2022) are used to construct this integrated
architecture. A sequence folding layer is added after the input layer, followed by
convolutional layers, which are used to extract features from each frame from the image
sequences. Subsequently, a sequence unfolding layer is added and convolutional features
extracted from the image sequences are flattened and fed into the RNN layers for temporal
feature learning. The outputs from the RNN layers are passed to a fully connected layer,
where the Softmax function is applied for classification. Figure 8 shows the complete
workflow of C-RNN, while the detailed information regarding the architectures is presented
in Table 3. The three proposed variants of C-RNN include Convolutional Long Short-Term
Memory (ConvLSTM), Convolutional Bidirectional Long Short-Term Memory
(ConvBiLSTM), and Convolutional Gated Recurrent Unit (ConvGRU).

Figure 8 Convolutional Recurrent Neural Network workflow

Table 3 Proposed C-RNN Architectures

Layer ConvLSTM ConvBiLSTM ConvGRU

1 Input 224 x 224 x 10 Input 224 x 224 x 10 Input 224 x 224 x 10
2 Sequence Folding Sequence Folding Sequence Folding
3 Convolutional Layers Convolutional Layers Convolutional Layers
4 Sequence Unfolding, Flatten Sequence Folding, Flatten Sequence Folding, Flatten
5 Long Short-Term Memory

Dropout: 0.2
Bidirectional Long Short-
Term Memory Dropout: 0.2

Gated Recurrent Unit
Dropout: 0.2

6 FC Layer: 100 Softmax FC Layer: 100 Softmax FC Layer: 100 Softmax

1110 Revolutionizing Signature Recognition: A Contactless
Method with Convolutional Recurrent Neural Networks

2.4. Experimental Setup
 In this section, the implementation environments, the initial training of CNN variants,
and the experiment with C-RNN are explained in detail.

2.4.1. Hardware and Software Configuration
 The experiments were conducted in Matlab R2021a on a desktop computer running
Windows 11 64-bit operating system. The computer is equipped with an Intel i5-12400f
CPU, a base clock speed of 2.5 GHz, 16GB of RAM, and an Nvidia RTX 3060 GPU with 12GB
of VRAM and 3584 CUDA cores.

2.4.2. Training Hyperparameters
 All the models are trained with a learning rate of 0.001, 20 epochs, and a mini-batch
size of 32 using the Stochastic Gradient Descent with momentum (SGDM) optimizer.
Moreover, the training process started from scratch five times, with the dataset divided into
an 80:20 ratio. During each trial, 80% of the samples were randomly selected for training
and 20% for testing purposes. Table 4 summarizes the training hyperparameters used in
this research.

Table 4 Training Hyperparameter

Epoch Batch Size Learning Rate Train-Test Ratio Optimizer

20 32 0.001 80:20 SGDM

2.5. Experiment Setting

2.5.1. Experiment on CNN
 The four proposed variants of CNN architectures, including MS-CNN-A, MS-CNN-B,
CNN-A, and CNN-B, are initially trained on the 2D features, namely HGS-MHI. The
architecture with the highest accuracy and the least amount of training time is selected as
the convolutional layer foundation for constructing the C-RNN.

2.5.2. Experiment on C-RNN
 The CNN architecture that obtained the optimal performance from the first experiment
is selected to construct the integrated architecture of C-RNN. The number of hidden units
in the RNN serves as the main hyperparameter value. Experiments are carried out with
hidden units of 128, 256, and 512 to identify the optimal value that obtains the highest
recognition accuracy with minimal computation time. Table 5 shows the experimental
setting for both CNN and C-RNN.

Table 5 Experimental Setting

Architecture Input Dimension Training Features Hidden Units (RNN)

CNN 224x224x1 iHGS-MHI -
C-RNN 224x224x10 iHGS-MHI-BLOCKS 128, 256, 512

2.6. Evaluation Measurement
 The evaluation metrics of accuracy, precision, specificity, recall, and F1-score are used
to evaluate the performance of the proposed architectures. Equation 1 describes the
calculation of accuracy, which is obtained by dividing the sum of True Positives (TP) and
True Negatives (TN) by the total number of test data instances. This serves as the sum of
True Positives (TP), True Negatives (TN), False Negatives (FN), and False Positives (FP),
measuring the ratio of correctly predicted observations to the total observations. Equation
2 defines precision as the ratio of TP to the sum of TP and FP, measuring the proportion of
TP predictions out of all positive predictions made. Meanwhile, Equation 3 defines
specificity as the ratio of TN to the sum of TN and FP, which measures the proportion of

Chuen et al. 1111

actual negatives that are correctly identified. Equation 4 defines recall as the ratio of TP to
the sum of TP and FN, measuring the proportion of actual positives that are correctly
identified. Equation 5 defines the F1-score, which is a weighted average of precision and
recall. The measurements are described as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

 (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

 (2)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

 (3)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

 (4)

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(5)

3. Results and Discussion

 In this section, the experimental results of averaged classification accuracy and model
training computation time are analyzed and discussed in detail.

3.1. CNN Experimental Results
 This section discusses the experimental results of four base variants of CNN to identify
optimal convolutional layers for constructing the integrated architectures of C-RNN. As
shown in Table 6, the experimental results for both variants of CNN and MS-CNN. MS-CNN-
A achieved an accuracy of 95.05%, requiring 1 minute and 56 seconds for computation. MS-
CNN-B recorded an accuracy of 93.90%, showing the need for only 1 minute and 35 seconds
to train. Although batch normalization is generally used as a regularization method to
enhance model accuracy and minimize training time, the first MS-CNN variant with batch
normalization consumed more computation time by 21 seconds. Meanwhile, batch
normalization also helped to increase the model accuracy by 1.15%.

Table 6 Performance Comparison of MS-CNN and CNN

Architecture Classification measurement (Averaged ± SD)

 Accuracy Precision Specificity Recall F1-Score Train Time

MS-CNN-A 95.05 ± 0.86 96.13 ± 0.59 99.95 ± 0.01 95.25 ± 0.88 94.90 ± 0.84 1 min 56 sec
MS-CNN-B 93.90 ± 0.58 95.10 ± 0.45 99.94 ± 0.01 93.90 ± 0.58 93.76 ± 0.63 1 min 35 sec
CNN-A 95.15 ± 0.95 96.07 ± 0.82 99.95 ± 0.01 95.15 ± 0.95 94.96 ± 1.00 1 min 42 sec
CNN-B 94.50 ± 1.13 95.67 ± 0.94 99.94 ± 0.01 94.50 ± 1.13 94.30 ± 1.23 1 min 27 sec

 The MS-CNN variants are expected to have better performance compared to CNN, due
to the presence of parallel convolution layers extracting features at different scales
simultaneously. However, both variants of CNN outperform the MS-CNN, achieving an
accuracy of 95.15%, which is 0.10% higher than MS-CNN-A. CNN-B obtained an accuracy of
94.50%, which is 0.65% lower than the first variant, requiring a training time of 1 minute
and 27 seconds. This significant difference is attributed to the lack of batch normalization,
as observed in the MS-CNN results.
 Figures 9 and 10 show the classification accuracy and computation time for all variants
of MS-CNN and CNN. These initial experiments are carried out to identify the model with
the highest recognition accuracy and the least amount of computational time, resulting in

1112 Revolutionizing Signature Recognition: A Contactless
Method with Convolutional Recurrent Neural Networks

the selection of CNN-A as the convolutional layer for constructing C-RNN. Although CNN-B
is the fastest model, requiring the least amount of computation time to train, it is
underperformed in terms of accuracy. Both variants of MS-CNN also obtained lower
accuracy, leading to the selection of CNN-A as the best architecture, considering that all
proposed architectures had training times within the range of 1 minute.

Figure 9 Accuracy comparison of MS-CNN and CNN

Figure 10 Computation time comparison of MS-CNN and CNN

3.2. C-RNN Experimental Results

 CNN-A with the highest recognition accuracy from the preliminary experiments is
selected as the base for convolutional layers in the integrated architecture of C-RNN. The
experimental results for three C-RNN variants show a different number of hidden units of
128, 256, and 512, respectively. The optimal value for the hidden units is explored and
analyzed to identify the architecture with the highest accuracy with minimal computation
time.
 All three variants of the C-RNN achieved greater accuracy compared to CNN
architectures, as shown in Table 7. The average computation time also increased from 1
minute to 3 minutes, which was expected as the model complexity rose with the integration
of both CNN and RNN architectures. The ConvLSTM, ConvBiLSTM, and ConvGRU models

Chuen et al. 1113

achieved accuracy of 97.20%, 97.40%, and 97.10%, respectively. Regarding computation
time, ConvLSTM lasted for 3 minutes and 21 seconds to train, while ConvBiLSTM which
used stacked LSTM layers to receive inputs from both forward and backward directions,
was expected to require significantly more time. According to experimental results, 3
minutes and 54 seconds were required for training, which was only 33 seconds more than
the previous LSTM model. The fastest model among the three variants was ConvGRU, which
requires 3 minutes and 10 seconds to train. This result is obtained due to the fewer
parameters of the internal structure of GRU compared to LSTM, thereby requiring less
computation time.

Table 7 Average Classification Result (%) on 128 Hidden Units

Architecture Classification measurement (Averaged ± SD)
 Accuracy Precision Specificity Recall F1-Score Train Time

ConvLSTM 97.20 ± 0.82 97.75 ± 0.70 99.97 ± 0.01 97.20 ± 0.82 97.13 ± 0.88 3 min 21 sec
ConvBiLSTM 97.40 ± 1.26 98.00 ± 0.91 99.97 ± 0.01 97.40 ± 1.26 97.33 ± 1.30 3 min 54 sec
ConvGRU 97.10 ± 1.02 97.70 ± 0.81 99.97 ± 0.01 97.10 ± 1.02 97.02 ± 1.06 3 min 10 sec

 Table 8 shows a significant rise in average training time, as the number of hidden units
increases from 128 to 512. Based on the results, the computation time for ConvLSTM and
ConvGRU increases by 32 seconds and 27 seconds, respectively. ConvBiLSTM shows the
most significant increase in training time, rising from 3 minutes and 10 seconds to 4
minutes and 56 seconds, due to the bidirectional nature. Although the number of hidden
units is set to 256, a total of 512 hidden units is used, where 256 are allocated for the
forward pass and 256 for the backward pass. As the computational time increases
significantly, there is only a minor improvement in accuracy. The ConvLSTM, ConvBiLSTM,
and ConvGRU also show accuracy increase of 0.20%, 0.07%, and 0.30%, respectively.

Table 8 Average Classification Result (%) on 256 Hidden Units

Architecture Classification measurement (Averaged ± SD)

 Accuracy Precision Specificity Recall F1-Score Train Time

ConvLSTM 97.40 ± 0.68 97.88 ± 0.63 99.97 ± 0.01 97.40 ± 0.68 97.36 ± 0.73 3 min 53 sec
ConvBiLSTM 97.47 ± 1.32 97.98 ± 1.01 99.97 ± 0.01 97.47 ± 1.32 97.40 ± 1.34 4 min 56 sec
ConvGRU 97.40 ± 0.98 97.90 ± 0.80 99.97 ± 0.01 97.40 ± 0.98 97.33 ± 0.97 3 min 37 sec

 In Table 9, as the number of hidden units increased from 256 to 512, ConvLSTM
accuracy remained the same compared to the previous experiment with 256 units.
However, the average training time increased from 3 minutes and 53 seconds to 5 minutes
and 3 seconds, showing that a high number of hidden units does not benefit ConvLSTM.
ConvGRU showed a modest accuracy increase of 0.05%, requiring an additional 1 minute
and 4 seconds to train. The ConvBiLSTM showed the highest observed improvement in
accuracy, with the number of hidden units increasing to 512, showing a 0.63% high as the
average accuracy rises from 97.47% to 98.10%. This improvement was attributed to the
increased training time, which facilitated the slowest architecture among the C-RNN
variants.

Table 9 Average Classification Result (%) on 512 Hidden Units

Architecture Classification measurement (Averaged ± SD)

 Accuracy Precision Specificity Recall F1-Score Train Time

ConvLSTM 97.40 ± 0.84 97.93 ± 0.74 99.97 ± 0.01 97.40 ± 0.84 97.36 ± 0.85 5 min 03 sec
ConvBiLSTM 98.10 ± 0.86 98.48 ± 0.70 99.98 ± 0.01 98.10 ± 0.86 98.07 ± 0.88 7 min 27 sec
ConvGRU 97.45 ± 1.08 97.93 ± 0.93 99.97 ± 0.01 97.45 ± 1.08 97.38 ± 1.12 4 min 33 sec

1114 Revolutionizing Signature Recognition: A Contactless
Method with Convolutional Recurrent Neural Networks

 Figure 11 shows an accuracy comparison of all C-RNN variants. Based on the results,
ConvBiLSTM with 512 hidden units is the only architecture to achieve the highest accuracy
of 98.10%, while other variants range from 97.10% to 97.47%. As shown in Figure 12,
average training time also rises with the increase in the number of hidden units. The
architectures with 128, 256, and 512 hidden units fall within an accuracy range of 97%,
except for ConvBiLSTM with 512 hidden units. Furthermore, all architectures with 128
hidden units are the most computationally efficient, with an accuracy within the range of
97% and the least amount of training time.

Figure 11 Accuracy comparison of C-RNN

Figure 12 Computation time comparison of C-RNN

4. Conclusions

In conclusion, this research successfully proposed the use of C-RNN for in-air hand
gesture signature (iHGS) recognition, introducing four base CNN architectures. The results
showed that MS-CNN-A and MS-CNN-B captured and extracted features at different scales
parallelly while the CNN-A and CNN-B were operated at a single scale. CNN-A was selected
as the convolutional layer foundation for the integrated architecture, with the highest
accuracy of 95.15%. Subsequently, three additional architectures were proposed, namely
ConvLSTM, ConvBiLSTM, and ConvGRU. The experimental results showed a significant
increase in recognition accuracy by minimizing the loss of information, preserving in a 3D

Chuen et al. 1115

representation, and feeding into the C-RNN models. However, this improvement was
obtained due to increased computation time caused by the architectural integration, with
the ConvBiLSTM obtaining the highest accuracy of 98.10%, while ConvLSTM and ConvGRU
achieved 97.40% and 97.47%, respectively. The average training duration increased from
1 minute to 3 minutes because of the architectural integration in the initial C-RNN
experiments with 128 hidden units due to the increased complexity. The training time
further increased to 4, 5, and 7 minutes, as the hidden units rose to 256 and 512. The
optimal hyperparameter value was 128 hidden units for all variants of C-RNN, with an
accuracy of 97% and an average training time of 3 minutes. However, only minor accuracy
improvement was observed from 128 to 256 and 512, along with higher computational
time.

Acknowledgments

 The authors are grateful to the Ministry of Higher Education (MOHE) for funding under
the Fundamental Research Grant Scheme (FRGS) (FRGS/1/2021/ICT02/MMU/03/3).

References

Ahad, M.A.R., Tan, J.K., Kim, H., Ishikawa, S., 2012. Motion History Image: Its Variants and
Applications. Machine Vision and Applications, Volume 23, pp. 255–281

Akram, M., Qasim, R., Amin, M.A., 2012. A Comparative Study of Signature Recognition
Problem Using Statistical Features and Artificial Neural Networks. In: 2012
International Conference on Informatics, Electronics & Vision (ICIEV), pp. 925–929

Azlin, A.I.A.b., Han, P.Y., How, K.W., Yin, O.S., 2022. Hand Gesture Signature Recognition with
Machine Learning Algorithms. In: International Conference on Computational Science
and Technology, pp. 389-398

Bjorck, N., Gomes, C.P., Selman, B., Weinberger, K.Q., 2018. Understanding Batch
Normalization. Advances in Neural Information Processing Systems, Volume 31, pp. 1–
12

Carlaw, S., 2020. Impact on Biometrics of Covid-19. Biometric Technology Today. Volume
2020(4), pp. 8–9

Cho, K., Merrienboer, B.V., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.,
2014. Learning Phrase Representations using RNN Encoder–Decoder for Statistical
Machine Translation. In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1724–1734

Cüceloğlu, İ., Oğul, H., 2014. Detecting Handwritten Signatures in Scanned Documents
Detecting Handwritten Signatures in Scanned Documents. In: Proceedings of the 19th

Computer Vision Winter Workshop, Volume 2014, pp. 89–94
Davis, J.C., Bobick, A.F., 1997. The Representation and Recognition of Human Movement

Using Temporal Templates. In: Proceedings of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 928–934

Fang, Y., Kang, W., Wu, Q., Tang, L., 2017. A Novel Video-Based System for in-Air Signature
Verification. Computers & Electrical Engineering. Volume 57, pp. 1–14

Faundez-Zanuy, M., 2005. Signature Recognition State-of-The-Art. IEEE Aerospace and
Electronic Systems Magazine, Volume 20 (7), pp. 28–32

Gan, K.B., 2022. FACE SHIELD@UKM: An Initiative by UKM To Protect Our Frontliner
During Covid-19 Pandemic. International Journal on Robotics, Automation and Sciences,
Volume 4, pp. 30–34

1116 Revolutionizing Signature Recognition: A Contactless
Method with Convolutional Recurrent Neural Networks

Gilperez, A., Alonso-Fernandez, F., Pecharroman, S., Fierrez, J., Ortega-Garcia, J., 2008. Off-
line Signature Verification Using Contour Features. In: 11th International Conference
on Frontiers in Handwriting Recognition, pp. 1–6

Graves, A., Schmidhuber, J., 2005. Framewise Phoneme Classification with Bidirectional
LSTM Networks. In: Proceedings 2005 IEEE International Joint Conference on Neural
Networks, Volume 4, pp. 2047–2052

Hashim, Z., Ahmed, H.M., Alkhayyat, A.H., 2022. A Comparative Study among Handwritten
Signature Verification Methods Using Machine Learning Techniques. Scientific
Programming. Volume 1, p. 8170424

Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural Computation,
Volume 9(8), pp. 1735–1780

Impedovo, S., Pirlo, G., 2007. Verification of Handwritten Signatures: an Overview. In:14th

International Conference on Image Analysis and Processing (ICIAP), pp. 191–196
Ioffe, S., Szegedy, C., 2015. Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift. International Conference on Machine Learning, pp.
448–456

Jain, A., Singh, S.K., Singh, K.P., 2020. Handwritten Signature Verification Using Shallow
Convolutional Neural Network. Multimedia Tools and Applications, Volume 79, pp.
19993–20018

Julian, J., Ortega-Garcia, J., 2008. On-Line Signature Verification. Handbook of Biometrics, pp.
189–209

Karanjkar, S.L., Vasambekar, P.N., 2016. Signature Recognition on Bank Cheques Using ANN.
In: IEEE International WIE Conference on Electrical and Computer Engineering
(WIECON-ECE), pp. 44–47

Khoh, W.H., Pang, Y.H. Yap, H.Y., 2022. In-air Hand Gesture Signature Recognition: An iHGS
Database Acquisition Protocol. F1000Research, Volume 11, p. 283

Khoh, W.H., Pang, Y.H., Teoh, A.B.J., 2019. In-air Hand Gesture Signature Recognition System
Based on 3-Dimensional Imagery. Multimedia Tools and Applications, Volume 78(6), pp.
6913–6937

Khoh, W.H., Pang, Y.H., Teoh, A.B.J., Ooi, S.Y., 2021. In-air Hand Gesture Signature Using
Transfer Learning and Its Forgery Attack. Applied Soft Computing, Volume 113, p.
108033

Kohler, J., Daneshmand, H., Lucchi, A., Zhou, M., Neymeyr, K., Hofmann, T., 2018. Towards A
Theoretical Understanding of Batch Normalization. Stat, Volume 2018, pp. 1–33

Lakshmi, K., Devendran, T., 2021. Human Fall Detection Using Motion History Image and
SVM. In: Advanced Informatics for Computing Research: 4th International Conference,
ICAICR 2020, Gurugram, India, December 26–27, 2020, Revised Selected Papers, Part I
4, pp. 466–476

Levy, A., Nassi, B., Elovici, Y., Shmueli, E., 2018. Handwritten Signature Verification Using
Wrist-Worn Devices. In: Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, Volume 2(3), pp. 1–26

Malik, J., Elhayek, A., Ahmed, S., Shafait, F., Malik, M., Stricker, D., 2018. 3DAirSig: A
Framework for Enabling In-Air Signatures Using a Multi-Modal Depth Sensor. Sensors,
Volume 18(11), p. 3872

MathWorks, 2022. Classify Videos Using Deep Learning - MATLAB & Simulink. Available
online at: https://www.mathworks.com/help/deeplearning/ug/classify-videos-
using-deep-learning.html, Accessed on July 17, 2022

Chuen et al. 1117

Romadlon, F., Lestiana, F., Putri, N.A., 2022. An Exploration of Personal Decision as
Mediating Effect between Passenger Concern and Airport Service Information During
COVID-19 Outbreak. International Journal of Technology, Volume 13(3), pp. 664–676

Sajid, H., Cheung, S., 2015. VSig: Hand-Gestured Signature Recognition and Authentication
with Wearable Camera. International Workshop on Information Forensics and Security
(WIFS), pp. 1–6

Santurkar, S., Tsipras, D., Ilyas, A., Madry, A., 2018. How Does Batch Normalization Help
Optimization. In: Advances in Neural Information Processing Systems, Volume 31, pp.
1–11

Shao, Y., Yang, T., Wang, H., Ma, J., 2020. AirSign: Smartphone Authentication by Signing in
the Air. Sensors, Volume 21(1), p. 104

Sincan, O.M., Keles, H.Y., 2022. Using Motion History Images with 3D Convolutional
Networks in Isolated Sign Language Recognition. IEEE Access, Volume 10, pp. 18608–
18618

Sudharshan, D.P., Vismaya, R.N., 2022. Handwritten Signature Verification System using
Deep Learning. In: International Conference on Data Science and Information System
(ICDSIS), pp. 1–5

Supriatna, Zulkarnain, F., Ardiansyah, Rizqihandari, N., Semedi, J.M., Indratmoko, S.,
Rahatiningtyas, N.S., Nurlambang, T., Dimyati, M., 2022. Communicating the High
Susceptible Zone of COVID-19 and its Exposure to Population Number through a Web-
GIS Dashboard for Indonesia Cases. International Journal of Technology, Volume 13(4),
pp. 706–716

Yatmo, Y.A., Harahap, M.M.Y., Atmodiwirjo, P., 2021. Modular Isolation Units for Patients
with Mild-to-Moderate Conditions in Response to Hospital Surges Resulting from the
COVID-19 Pandemic. International Journal of Technology, Volume 12(1), pp. 43–53

