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Abstract. Crow search algorithm for binary optimization (BinCSA) is currently used in some ideal 
models of the uncapacitated facility location problem (UFLP), but studies on its use in real-world 
supply chain cases remain limited. Therefore, this study aimed to address the gap by introducing a 
hybrid method that combined the BinCSA with an exact method to solve a CLSC problem, including 
location allocation, transportation, and supplier selection challenges. The initial sections of the 
study included theoretical foundations and experimental results of the BinCSA. Subsequently, how 
the BinCSA works in the proposed hybrid method was discussed, and the computational results 
were showed to evaluate the performance of the proposed method. 
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1. Introduction 

The forward supply chain is a network connecting facilities and distribution 
mechanisms to manage the transformation of raw materials into finished products and 
deliver them to end customers. In contrast, the reverse supply chain focuses on the return 
flow of materials from customers to suppliers, with the aim of maximizing profits from 
returned products or minimizing the total costs of return processes (Kannan et al., 2010). 
By emphasizing the backward flow, the reverse supply chain offers significant 
opportunities for recycling more materials and promoting environmental friendliness 
throughout supply chain activities.  

The Closed-loop Supply Chain (CLSC) includes both the forward and reverse supply 
chain. The forward supply chain facilitates the movement of material flow from upstream 
suppliers to downstream customers, while the reverse supply chain manages the return 
flow from downstream customers back to upstream suppliers for potential recycling and 
reuse. A holistic manifestation of this concept is the CLSC, which requires a comprehensive 
assessment of its architectural blueprint. Unlike solely dissecting the forward and reverse 
supply chain, the CLSC model demands a holistic perspective, evaluating not only the 
performance of the forward supply chain but also the reverse. The overall performance is 
considered an entirety, avoiding a simplistic split into two distinct dimensions. 

A significant increase in scholarly efforts has been on facility location models,
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addressing questions about the number and allocation of facilities, locations, and the 
processing of products, including recycling centers in the CLSC network (Zhen, Huang, and 
Wang, 2019). The significance of sustainability in CLSC network design is sometimes 
overlooked while existing models often prioritize total cost minimization or total profit 
maximization. In this study landscape, facility location models for the CLSC network have 
been defined by some scholars, reflecting a dedicated effort to optimize decision variables 
in both forward and reverse channels (Amin and Zhang, 2012). In similar studies, total cost 
minimization or total profit maximization were regarded as fundamental objective 
functions. Moreover, the relevance of sustainability was easily ignored in CLSC network 
design despite numerous calls for its importance by international organizations, societies, 
and governments in recent decades (Pati, Vrat, and Kumar 2008). Although sustainability 
in supply chain has been recently mentioned in the study, the number of published papers 
was still limited (Azadi et al., 2015; Brandenburg et al., 2014; Seuring, 2013).  

In addressing these challenges, this study introduced Crow Search Algorithm (CSA), a 
population-based optimization algorithm inspired by the behavior of crow, as introduced 
by Askarzadeh (2016). Previous studies showed the superior efficiency of CSA when 
compared to established algorithms such as Genetic Algorithm (GA), Harmony Search (HS), 
and Particle Swarm Optimization (PSO) (Askarzadeh, 2016). Due to the promising 
capabilities of CSA and the limited literature on sustainability in supply chain, this study 
proposed a CLSC network model for a realistic problem including location-allocation, 
transportation, and supplier selection. A novel hybrid method was used to address this 
problem which integrated an exact method with CSA for solving the proposed CLSC 
mathematical model. 

 
2. Literature Review 

 The concept of a sustainable supply chain includes managing material flows, 
information, and funds, as well as collaboration between enterprises along supply chain 
while addressing the three aspects of sustainable development, namely environmental, 
social, and economic simultaneously (Meixell and Luoma, 2015; Eskandarpour et al., 2015; 
Brandenburg et al., 2014). Adopting sustainability as a strategic tool can produce various 
benefits such as improving environmental impacts, enhancing brand image, generating 
revenue, customer service, and reducing production costs (Qiang et al., 2013).  
 With advancements in recycling and remanufacturing technologies, scholars are 
increasingly focusing on integrating forward and reverse logistics as a CLSC network (Xie et 
al., 2017). The CLSC, a subtype of sustainable supply chain aims to optimize recycling and 
refurbishing processes for end-of-life products (Das and Posinasetti, 2015). A general CLSC 
has a manufacturer serving for reverse logistics processes. The returned products and 
goods are recycled (Ashayeri, Ma, and Sotirov, 2015), and resold in the primary or 
secondary market after important processing (Turrisi, Bruccoleri, and Cannella 2013). A 
typical CLSC consists of both forward and reverse supply chain channels including 
processes like product return, recycling/recovery, remanufacturing, and resale (He, 2015).   
 CLSC network design treats forward and reverse supply chain networks as a cohesive 
unit, avoiding local optimality issues associated with separate modelling (Soleimani, 
Esfahani, and Govindan, 2014). Sustainable CLSC can be modelled based on its network but 
additional complexities, and increasing computational difficulty are introduced 
(Eskandarpour et al., 2015). Therefore, capable solution methods are crucial in solving 
mathematical models. 
 Meta-heuristic algorithm, such as swarm-based algorithm, have been applied to various 
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optimization problems (Utama, Yurifah, and Garside, 2023; Nitnara and Tragangoon, 2023; 
Zukhruf et al., 2020). This study focused on a single-objective MILP model which aimed to 
minimize total costs in solving CLSC, location-allocation, transportation, and supplier 
selection problem. The proposed hybrid method integrated the Binary Crow Search 
Algorithm (BinCSA) with an exact method for efficient problem-solving. 
 
3. Methodology 

 This study proposed a single-objective Mixed-Integer Linear Programming (MILP) 
model to address the CLSC problem. The model was solved using a hybrid method that 
combined CSA and an exact method. Specifically, CSA for binary optimization (BinCSA) was 
adopted to solve the location-allocation problem, which included selecting the location of 
distribution centers in a scenario modeled after the Incapacitated Facility Location Problem 
(UFLP). The mathematical model was subsequently solved using the CPLEX solver. 

3.1. Problem Description 
 The CLSC problem depicted in Figure 1, incorporated both the forward and reverse 

supply chain. The forward supply chain included four distinct echelons, namely ‘supplier’, 
‘manufacturers’, ‘distribution centers’, and ‘customers’. This mirrors a conventional 
forward supply chain, where manufacturers source components from suppliers, and 
finished products are distributed to customers through distribution centers. 
 The reverse supply chain consists of ‘recycling centers’, ‘disposal centers’, and 
‘manufacturers’. The recycling centers collect used products from customers, inspect and 
disassemble, and segregate the components into ‘usable’ and ‘disposal parts’. Furthermore, 
the ‘usable parts’ undergo recycling and refurbishment, while ‘disposal parts’ are sent to 
'disposal centers’. The recycled components are then forwarded to the ‘manufacturer’, 
combined with new parts procured from the ‘supplier' and used in the manufacturing 
process. 
 The location of the ‘supplier’, ‘plants’, and ‘customers’ were predetermined while the 
‘distribution centers’ and ‘recycling centers’ remained undisclosed. This study operated 
within a discrete space, limiting choices for these locations to predefined candidates. 
(Indonesia). 

 

Figure 1 The proposed structure of the proposed CLSC model 
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 This study introduced a single-objective MILP model for the CLSC. The objective 
function aimed to minimize the logistics costs, which included fixed, transportation, and 
others. Therefore, fixed costs were defined as the opening costs of each facility, primarily 
contingent on the quantity of opened facility. The transportation costs were influenced by 
the transportation expenses between customers’ sites and the opened facilities. Other costs 
included the purchasing costs from suppliers and the recycling costs associated with used 
products. 

3.2. Mathematical Model Description and Explanation 
This section presented the mathematical model for the CLSC, outlined in Tables 2, 3, 

and 4. Table 2 shows the model indices, 3 provides information on model parameters, and 
Table 4 enumerates the model variables. These components collectively formed the 
foundation for understanding the complexities and intricacies of the CLSC mathematical 
model presented in this study. 

Table 1 The indices of the CLSC mathematical model 

Index Description 

i Plant set (i  I) 
j Potential distribution centers (DC) set (j  J) 
k Customers set (k  K) 
l Potential recycling centers (RC) set (l  L) 
s Supplier set (s  S) 
n Parts set (n  N) 

Table 2 The parameters of the CLSC mathematical model 

Parameter Description 

𝑊𝑖   The capacity of plant i  I 
𝑑𝑘  The demand of customer k  K 
𝑂𝑛𝑠   The purchasing costs of part n  N from supplier s  S 
𝑣𝑛  Unit recycling costs for part n  N 
𝐹𝑗   The fixed costs for opening DC j  J 
𝑓𝑙  The fixed costs for opening RC l  L 
𝑇𝑖𝑗

1   The logistics costs to transport per unit product from plant i  I to DC j  J 

𝑇𝑗𝑘
2   The logistics costs to transport all products from DC j J to customer k  K 

𝑇𝑘𝑙
3   The logistics costs to transport all used products from customer k  K to RC l  L 

𝑇𝑙𝑖
4  The logistics costs to transport per unit recycled material from RC l  L to plant i  I 

𝑇𝑠𝑖
5   The logistics costs to transport per unit part from supplier s  S to plant i  I using 

𝑝𝑖   The minimal number of products transported from plant i  I to a DC 
𝑤𝑛𝑖  The minimal number of recycled parts n  N transported from RC l  L to a plant 
𝐴1  The average percentage of used products that can be recycled (collected from a 

customer) 
𝐴2  The average percentage of used products that can be recycled and transformed into 

raw material 
𝐹𝑠  The minimum purchase quantity from supplier s  S 
𝐴𝑠  The maximum purchase quantity from supplier s  S 
𝑎𝑛𝑠   Internal resource consumption of supplier s  S to produce one unit of part n  N 
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Table 3 The decision variables of the CLSC mathematical model 

Variables Description 

𝑋𝑖𝑗
1   The number of products transported from plant i  I to DC j  J 

𝑋𝑛𝑠𝑖
5   The number of part n  N transported from supplier s  S to plant i  I 

𝑌𝑗   Equal to 1, when DC j  J opens, 0, otherwise 
𝑦𝑙  Equal to 1, when RC l  L opens, 0, otherwise 
𝑈𝑖𝑗

1   Equal to 1, when products are transported from plant i  I to DC j  J, 0, otherwise 

𝑈𝑗𝑘
2   Equal to 1, when customer k  K is served by DC j  J, 0, otherwise 

𝑈𝑘𝑙
3   Equal to 1, when used products of customer k  K are transported to RC l  L, 0, 

otherwise 
𝑈𝑙𝑖

4  Equal to 1, when recycled materials are transported from RC l  L to plant i  I, 0, 
otherwise 

𝑋𝑙𝑖
4  The amount of equivalent to product’s recycled materials transported from RC l  L to 

plant i  I 
𝑈𝑛𝑠𝑖

5   Equal to 1, when part n N transferred from supplier s  S to plant i  I using vehicle v 
 𝑉5, 0, otherwise 

𝑢𝑛𝑠  Binary variable for supplier s  S to transfer part n  N 

The mathematical model of this CLSC can be formulated as in equation (1). Its objective 
is to minimize the sum of the opening costs 𝑍𝑜𝑐 , which is the equation (2) the transportation 
costs 𝑍𝑡𝑐  is the equation (3), and other costs 𝑍𝑜 is equation (4). 

𝑍𝑐 =  𝑍𝑜𝑐 +  𝑍𝑡𝑐 +  𝑍𝑜                                             (1) 
   

𝑍𝑜𝑐 =  ∑ 𝐹𝑗𝑌𝑗 +  ∑ 𝐹𝑙𝑌𝑙

𝐿

𝑙=1

 

𝐽

𝑗=1

 

  

𝑍𝑡𝑐 =  ∑ ∑ 𝑈1
𝑖𝑗𝑋1

𝑖𝑗𝑇1
𝑖𝑗

𝐽

𝑗=1

𝐼

𝑖=1

+  ∑ ∑ 𝑈2
𝑗𝑘𝑇2

𝑗𝑘

𝐾

𝑘=1

𝐽

𝑗=1

+  ∑ ∑ 𝑈3
𝑘𝑙𝑇3

𝑘𝑙

𝐿

𝑙=1

𝐾

𝑘=1

+  ∑ ∑ ∑ 𝑈4
𝑙𝑖𝑋4

𝑙𝑖𝑜𝑛𝑇4
𝑙𝑖

𝑁

𝑛=1

𝐼

𝑖=1

𝐿

𝑙=1

+  ∑ ∑ ∑ 𝑈5
𝑛𝑠𝑖𝑋5

𝑛𝑠𝑖𝑇5
𝑛𝑠𝑖

𝐼

𝑖=1

𝑆

𝑠=1

𝑁

𝑛=1

 

   

𝑍𝑜𝑐  =  ∑ ∑ ∑ 𝑂𝑛𝑠𝑋5
𝑛𝑠𝑖

𝐼

𝑖=1

𝑆

𝑠=1

𝑁

𝑛=1

+  ∑ ∑ ∑ 𝑣𝑛𝑋4
𝑙𝑖𝑜𝑛

𝐼

𝑖=1

𝐿

𝑙=1

𝑁

𝑛=1

 

 
Subject to: 

∑ 𝑋𝑛𝑠𝑖
5

 𝑠  𝑆
+  ∑ 𝑋𝑙𝑖

4  𝑜𝑛 
 𝑙  𝐿

≥  ∑ 𝑜𝑛
 𝑗  𝐽

 𝑋𝑖𝑗
1 , 𝑛  𝑁 , 𝑖  𝐼 

    

∑ 𝑋𝑖𝑗
1

 𝑗  𝐽

≤  𝑊𝑖  ,𝑖  𝐼 

 
𝑈𝑗𝑘

2 −  𝑌𝑗  ≤  0 ,𝑗  𝐽, 𝑘  𝐾 

                                                                                                  
𝑈𝑘𝑙

3 −  𝑦𝑙  ≤  0 ,𝑘  𝐾, 𝑙  𝐿 
   

(3) 

(2) 

(4) 

(5) 

(6) 

(7) 

(8) 
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𝑋𝑖𝑗
1 ≥  𝑝𝑖  𝑈𝑖𝑗

1 ,𝑖  𝐼, 𝑗  𝐽 

                                                                     
𝑋𝑖𝑗

1 ≤ 𝑀 𝑈𝑖𝑗
1 ,𝑖  𝐼, 𝑗  𝐽 

                                                                    

∑ 𝑈𝑗𝑘
2

 𝑗 𝐽

≤ 1,𝑘  𝐾 

                                                                                     

∑ 𝑈𝑘𝑙
3 = 1,

𝑙   𝐿

 𝑘  𝐾 

    

∑ (𝑈𝑘𝑙
3

 𝑘 𝐾

𝑑𝑘𝑡  𝑜𝑛 𝐴1𝐴2) ≥ ∑ 𝑋𝑙𝑖
4

 𝑖  𝐼

 𝑜𝑛 ,𝑙  𝐿, 𝑛  N, 𝑡 T 

                                                                   

∑ 𝑋𝑙𝑖
4

 𝑙  𝐿

 𝑜𝑛 ≤  ∑ 𝑜𝑛 𝑋𝑖𝑗
1

 𝑗  𝐽

,𝑖  I, 𝑛  N 

                                                           
𝑋𝑙𝑖

4  𝑜𝑛  ≥  𝑤𝑛𝑖  𝑈𝑛𝑙𝑖
4 ,𝑙  𝐿, 𝑖  𝐼, 𝑛  N 

                                                 
𝑋𝑙𝑖

4 ≤  𝑀 𝑈𝑛𝑙𝑖
4 ,𝑙  𝐿, 𝑖  𝐼 

                                                                     
𝑈𝑛𝑠𝑖

5 𝐹 ≤  𝑈𝑛𝑠𝑖
5 𝐹 ≤  𝑈𝑛𝑠𝑖

5 𝐴𝑠,𝑖  𝐼, 𝑛  𝑁, 𝑠  𝑆 
                                                                        

𝑋𝑖𝑗
1 ≥  0,𝑛  𝑁, 𝑖  𝐼, 𝑗  𝐽 

                                                                  
𝑋𝑙𝑖

4 ≥ 0,𝑛  𝑁, 𝑙  𝐿, 𝑖  𝐼 
                                                                                

𝑋𝑛𝑠𝑖
5 ≥  0,𝑛  𝑁, 𝑠  𝑆, 𝑖  𝐼 

                                                                         
𝑌𝑗 , 𝑦𝑙 , 𝑈𝑖𝑗

1 , 𝑈𝑗𝑘
2 , 𝑈𝑘𝑙

3 , 𝑈𝑙𝑖
4, 𝑈𝑛𝑠𝑖

5   {0, 1} 

                                                                                             
 M is a very large positive number  

 The objective function (1) targets economic impact aimed at minimizing the sum of 
total costs. It included fixed costs (equation 2), transportation costs (equation 3), and other 
costs (equation 4). Formulation (2) showed the sum of all fixed costs, which covered the 
opening costs of distribution and recycling centers, as well as the purchasing costs of parts 
from suppliers. Formulation (3) represented the sum of logistic costs, accounting for 
transportation costs between suppliers, plant distribution centers, customers, and 
recycling centers. Formulation (4) showed total costs, which comprised purchasing raw 
materials and recycling used products. 
 For the explanation of constraints, constraint (5) endured the number of acquired parts 
from suppliers and recycling centers that met production based on the demands of 
customers. Constraint (6) limited plant production to its maximum capacity the plant 
capacity constraints). (7) and (8) guaranteed each customer was served by a distribution 
and recycling center. (9) and (10) limited the number of products shipped to a distribution 
center. (11) ensured a customer was served by only one open distribution center. (12) 
ensured used products from a customer were collected by one open recycling center. (13) 
limited the number of recycled parts. (14) ensured not all parts were old in 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 
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remanufacturing. Constraints (15) and (16) restricted the number of recycled parts 
delivered to a plant. (17) set the minimum and maximum purchasing quantity of parts from 
a single supplier. Constraints (18), (19), (20), and (21) were binary and non-negativity 
restrictions on decision variables. Constraint (22) represented a large positive number M. 

3.3.  Inspiration of CSA 
 CSA is a population-based optimization algorithm designed for continuous 
optimization (Sonuç, 2021). Inspired by the intelligent behavior of crows, it mimics 
characteristics of living in flocks, remembering hidden food location, following others to 
steal food, by following other animals to discover their secret location and protecting their 
stash from theft (Askarzadeh, 2016) Recent studies focused on the behavior and brain 
function of crow. CSA showed significant success in addressing these challenges when 
applied to various optimization problems. This included but was not limited to studies of 
Gupta et al. (2018) on the healthcare sector, Sonuç (2021) on facility location problem, and 
Panah et al. (2021) on the industrial application.  Recent reviews on applications of CSA 
refer to Meraihi et al. (2021). This study showed the potential of CSA as the foundational 
method to tackle the specific optimization problem under investigation and marked the 
pioneering attempt to use CSA for solving this particular problem, thereby presenting a 
novel and innovative method in the field. 

3.4.  Implementation of CSA for Optimization Problem 
 The number of crows is denoted as N, the total number of dimensions as D, AP refers to 
the awareness probability and FL refers to the flight length of crow traveling. The maximum 
number of CSA iterations is noted as t_max. For each iteration, the notation x^(i,t) is used 
to denote the spatial position of crow i at iteration t, where i = 1, 2, …, N and t = 1, 2, ..., t_max. 
m^(i,t) signifies the most successful position that crows have achieved so far and 
symbolizes the position of the crow’s stash. The adjustment of the crow's position is 
realized through one of two distinct strategies, each contingent upon the value of AP, which 
determines the specific case to be used. 
 Within the first scenario, crow i adopts a strategy of shadowing crow j, with the 
intention of surreptitiously pilfering sustenance from the cache of crow j. Importantly, crow 
j doesn’t notice that crow i is tracking in this case, thereby, the position of crow i is updated 
based on the equation (23): 

 𝑥𝑖,𝑡 =  𝑥𝑖,𝑡 + 𝑟 ∗ 𝐹𝐿 ∗ (𝑚𝑗,𝑡 −  𝑥𝑖,𝑡)

                                               

(23) 

 In the alternative scenario, denoted as the second scenario, it is presumed that crow j 
possesses awareness of crow i’s pursuit. In response, crow j will give up on going to its stash, 
opting instead to relocate to an alternative spatial position to protect its food. For this case, 
the new position of crow i is expounded upon as the equation (24): 

𝑖𝑓 𝑟 ≥ 𝐴𝑃: 𝑥𝑖,𝑡 =  𝑥𝑖,𝑡 + 𝑟 ∗ 𝐹𝐿 ∗ (𝑚𝑗,𝑡 − 𝑥𝑖,𝑡),

                                              

(24) 

                      otherwise: Select a random position as 𝑥𝑖,𝑡  
 The notation r is a random numerical value drawn from the continuous interval (0,1) 
with uniform distribution. The parameter AP is bounded within the interval (0,1) and 
establishes a balance between exploration and exploitation. Importantly, the magnitude of 
AP imparts an influence upon search dynamics, when the value of AP is equal to zero, CSA 
becomes a local search method, and when AP is set to be one, the search process is 
performed as a global search process. The pseudo-code of CSA appears in Figure 2. 
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Algorithm: Pseudo-code for CSA 
 Input: Initial values for parameters N, AP, FL, 𝑡𝑚𝑎𝑥 , D 

Output: Optimal crow position 

1 Generate the initial position of crow x randomly 
2 Evaluate the position of each crow x in search space 
3 Initialize crow’s memory  
4 while t < 𝑡𝑚𝑎𝑥  do 
5     for i = 1:N do 
6       Choose a random crow j to follow 
7       Generate a random value 𝑟𝑖  in the range (0,1) 
8 if 𝑟𝑖 ≥ 𝐴𝑃 then 
9             𝑥𝑖,𝑡+1 =  𝑥𝑖,𝑡 +  𝑟𝑖 ∗ 𝐹𝐿 ∗ (𝑚𝑗,𝑡 −  𝑥𝑖,𝑡) 
10         else 
11             𝑥𝑖,𝑡+1 = A random position in search space 
12       Check if solutions are in search space 
13 
14 

      Evaluate the fitness of each crow 
      Update memory of crow based on the objective function 

Figure 2 Pseudo-code for CSA 

3.5.  CSA for Binary Optimization (BinCSA) 
 The initialization phase of BinCSA included generating random binary numbers using 
a Bernoulli process. A random number in the range of 0 to 1 was generated, and when it 
was less than 0.5, it was binarized to 0, otherwise, it was binarized to 1. This process 
illiterated repeatedly for each of the D variables till the initialization stage was complete. 
This method produced the first feasible solution for the Uncapacitated Facility Location 
Problem (ULFP), with the solution size equal to a total number of possible facility locations. 
Feasible solutions were represented as 1 for the potential facility location to be opened and 
0 otherwise. The initial fitness values were calculated using the objective function based on 
the opening and transportation costs. In the case of discrete location, BinCSA determined 
the distribution center location through a series of steps outlined in Figure 3. 

 

Figure 3 Flowchart of the BinCSA 
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3.6.  A Two-stage Method to Solve the Model 
 The conceptual framework for the development of the proposed mathematical model 
was previously illustrated in Figure 1 and had equations (1) through (22). It was planned 
to be solved with a hybrid method of two stages which integrated both the exact method 
and the heuristic algorithm. The BinCSA was used at the initial stage to optimize facility 
location for both distribution centers and recycling centers, subject to uncapacitated 
constraints. Certain variables important to facility location problem were determined and 
treated as fixed parameters in the simplified version of the mathematical model after the 
first stage was completed., The simplified model became more amenable to resolution 
through the exact method. In the subsequent stage, the CPLEX solver was used to obtain 
solution for the mathematical model. 
 
4.  Results and Discussion 

4.1.  Numerical Experiment 
A benchmark dataset obtained from both Irawan et al. (2022) and ORLIB was used to 

evaluate the performance of the proposed model in this study instead of relying on primary 
data to evaluate the effectiveness of the proposed model. The dataset included monetary 
values in US dollars and distances measured in kilometers. The evaluation included three 
main elements performed such as analysis of parameter settings for BinCSA, presentation 
of solutions to the uncapacitated location problem for distribution centers, and a discussion 
of solutions obtained from the MILP CLSC model. 

BinCSA was executed on ten datasets obtained from ORLIB. These datasets comprise 
four sets of data with 25 potential distribution centers and 50 customers in each set, four 
sets of data with 50 potential distribution centers and 50 customers in each set, and two 
sets of data with 100 potential distribution centers and 1,000 customers in each set. Each 
dataset was executed twenty times, and the results of these iterations are presented in 
Table 5. 

4.2. Parameters Tuning and Results 

Modifying the parameters of a metaheuristic algorithm had a direct impact on the 
quality of the outcomes. Therefore, fine-tuning them posed a considerable challenge for 
scholars because it was a complex process that required conducting numerous 
computational experiments to determine the optimal settings specific to a given problem. 
In the BinCSA experiment, each parameter was independently assessed without the 
influence of other parameters. Optimal configuration could not be assuredly guaranteed 
even though several repeated attempts to fine-tune the parameters were made in such 
cases. 

The practical implementation of the BinCSA identified three key parameters that 
significantly impacted its performance: population scale (N), awareness probability (AP), 
and the maximum number of iterations (t_max). Computational time and solution quality 
were crucially impacted by these parameters. Preliminary experiments suggested that the 
BinCSA performed relatively well when N = 400 and AP = 0.1. Therefore, for this 
experiment, N was set at 400 and AP as 0.1, with t_max being the only variable. The results 
given in Table 4 showed that increasing t_max could improve the solution quality. For 
datasets that did not reach the optimal solution, they have close gaps. However, in smaller 
datasets with optimal results, increasing t_max does not affect the values of the results but 
increases computational time. Determining the most appropriate t_max for each dataset 
was essential in achieving better performance within reasonable computational time.  
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In smaller-scale scenarios, exemplified by ‘cap101’ and ‘cap102’, where problem size 
was based on a ‘25*50’ matrix, it was viable to adjust the value of ‘t_max’ to a smaller range. 
This aimed to enhance the overall performance of result accuracy and computational 
efficiency. Conversely, for larger scenarios like ‘capa’ and ‘capb’, characterized by larger 
problem dimensions of ‘100*1000’, fine-tuning the ‘t_max’ parameter across a broader 
range accommodated search for optimal solutions and maintained computational 
efficiency. laminates.  

Table 4 Results of 10 instances with t_max = 8,000, t_max = 12,000, and t_max = 30,000 

N=400 AP=0.1  
t_max= 

8,000 
 

t_max 

=12,000 

 t_max 

=30,000 

 

 
Problem 
size 

ORLIB cost Costs (CSA) 
CPU 
time 

Costs (CSA) 
CPU 
time 

Costs (CSA) CPU 
time 

cap101 25 * 50 796,648.44 796,648.438 1.192 796,648.438 1.728 796,648.438 4.372 

cap102 25 * 50 854,704.20 854,704.2 1.128 854,704.2 1.692 854,704.2 4.182 

cap103 25 * 50 893,782.11 893,782.113 1.078 893,782.113 1.634 893,782.113 3.81 

cap104 25 * 50 928,941.75 928,941.75 1.074 928,941.75 1.576 928,941.75 3.71 

cap131 50 * 50 793,439.56 801,071.19 2.0676 793,473.61 3.033 793,439.562 6.649 

cap132 50 * 50 851,495.33 856,992.81 1.992 853,782.81 2.882 851,495.325 6.377 

cap133 50 * 50 893,076.71 896,083.67 2.008 893,782.11 2.851 893,076.713 6.392 

cap134 50 * 50 893,076.71 930,562.36 2.027 928,941.75 2.815 928,941.75 6.095 

capa 
100 * 
1000 

17,156,454.48 28,143,242.1 50.989 19,737,461.8 72.794 17,156,454.48 168.991 

capb 
100 * 
1000 

12,979,071.58 16,373,178.4 51.35 13,965,251.1 73.128 12,979,071.58 169.549 

4.3.  The Results of the MILP CLSC Model 
After results were obtained from BinCSA, modifications were made to equations from 

distribution centers to customers and customers to recycling centers in the CLSC model. 
These equations were deleted, and their values were modified based on BinCSA results. 
Parameters and constraints related to these equations were also removed. The binary 
results of the opened facility were modified from binary decision variables to known 
parameters. This study took the dataset ‘cap101’ as an example to minimize the total costs 
of the proposed CLSC mathematical model. Avoiding the opening of both distribution and 
recycling centers synchronously in the same potential location was the rule of facility 
opening. 

The MILP model, post-modification, comprised 4,137 constraints and 102 variables. 
The experiment was conducted on a personal computer with an Intel® Core™ i7-8665U 
CPU @1.90GHz 2.11GHz processor with 16GB of RAM. The model was optimally solved 
using the IBM ILOG CPLEX optimization studio version 12.11. The CPU time to obtain the 
CPLEX result was 0.52 seconds. The minimized total costs that covered both the forward 
and reverse supply chain was $95,514,379.54 for one period. In this scenario, producing 
one unit of product needed 2 units of part 1, 1 unit of part 2, and 3 units of part 3. A supplier 
selection problem was solved. According to the results, the plant did not purchase any part 
from supplier 3; the plant purchased part 1 for 115,636 units, part 2 for 57,818 units, part 
3 for 100,000 units from supplier 1; the plant purchased part 3 for 73,454 units from 
supplier 2. 
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5. Conclusions 

 In conclusion, this study successfully applied BinCSA to address the facility location 
problem in the proposed MILP model for the CLSC. A hybrid method, combining the exact 
method and BinCSA, effectively solved the proposed model. However, limitations included 
BinCSA solving impractical ULFP and challenges in tuning parameters at the initial stage. 
Future studies can improve parameters tuning through adaptive learning methodologies, 
extending BinCSA to capacitated facility location problem, using simulation-optimization 
methods, and incorporating environmental objectives in bi-objective CLSC model. Many 
existing experiences were using a hybrid method to address the CLSC-related problem, 
which included the amalgamation of two or more distinct meta-heuristics or exact methods 
but the body of studies applying CSA in combination with other methodologies were scarce. 
Therefore, it is promising to explore more opportunities to integrate CSA with other meta-
heuristics and exact methods to address problems related to CLSC. One of those future 
study opportunities is currently being studied to correspond with cutting-edge 
advancements in supply chain study and development.   
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