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Abstract. Bone damage is one of the main causes of disability in humans, and tissue engineering 
technology by applying biomaterial-based scaffold has been developed as an effective solution. This 
can be achieved using various natural and synthetic polymers combined with carbon-based and 
metal-oxide materials. Therefore, this study aimed to develop bone scaffold using collagen, alginate, 
and poly(vinyl alcohol), with the addition of multi-walled carbon nanotube, reduced graphene 
oxide, titanium dioxide, and zinc oxide materials. Scaffold was fabricated with the freeze-drying 
method and characterized physicochemically by observing the morphology through scanning 
electron microscopy (SEM), identification of functional groups by Fourier transform infrared 
spectroscopy (FTIR), compressive mechanical properties, porosity, and degradation rate. The 
results showed that each group of scaffold had a compact structure, with a small pore size and less 
than 50% porosity. The functional groups of each material were detected, and the compressive 
strength matched the trabecular bone, approximately 6 MPa. However, the scaffold lacked 
appropriate porosity and a fast degradation rate exceeding 35% in 7 days.  
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1. Introduction 

Osteoarthritis is one of the most common public health problems, affecting 
approximately 10% of the global population older than 60 years (Yahaya et al., 2021). The 
number of cases worldwide increased from 247.51 million in 1990 to 527.81 million in 
2019, with prevalence rising by 113.25%. Concurrently, there has been a rapid rise in age- 
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standardized years living with disability due to osteoarthritis by 114.5% from 1990 to 2019 
(Long et al., 2022).  

Tissue engineering, a multifaceted process aimed at replacing damaged organs, entails 
restoring various biological functions (Amiryaghoubi et al., 2022). In this context, 
biomaterial-based scaffold has been developed to support cell adhesion, growth, and 
determine compatibility with the body (Zhang et al., 2023). An ideal scaffold for tissue 
engineering applications should have optimal chemical and structural characteristics along 
with good mechanical properties (Jafari et al., 2017). In addition, scaffold is expected to 
have good microstructure, such as high porosity with appropriate pore size and 
permeability, to support cartilage regeneration (Wasyłeczko, Sikorska, and Chwojnowski, 
2020; Bružauskaitė et al., 2016). 

Various naturally-derived polymers have been used as bone tissue scaffold, and 
synthetic polymers can also be incorporated alongside natural ones to improve 
hydrophilicity, cell adhesion, and biodegradability (Jafari et al., 2017). Collagen is a major 
component of the extracellular matrix (ECM) and one of the most frequently used 
biomaterials in protein-based scaffold for bone tissue engineering (Zhang et al., 2018). 
Alginate is a natural polysaccharide with wider availability, good biocompatibility, and ease 
of gelation (Hu and Lo, 2021). The addition to the scaffold is an easy and effective way to 
increase porosity and suitability for use as a matrix (Chandika et al., 2015). However, 
collagen and alginate have limitations in the mechanical stability, showing the need to add 
other polymers with higher mechanical capacity (Shirehjini et al., 2022). Poly(vinyl alcohol) 
(PVA) is a synthetic polymer with good biocompatibility, biodegradability, high 
hydrophilicity, and mechanical resistance as a scaffold material (Rochardjo et al., 2021).  

Carbon-based materials are advantageous by providing electrical conductivity, 
mechanical reinforcement, and high surface area (Massoumi et al., 2021). Previous studies 
showed that multi-walled carbon nanotube (MWCNT) scaffold had good characteristics for 
adhesion, proliferation, and osteogenesis differentiation (Xu et al., 2019). Meanwhile, 
graphene-based materials and the derivatives, such as graphene oxide (GO) and reduced 
graphene oxide (rGO), which possess high surface area and electrical conductivity (Hardi 
and Rahman, 2020), have also been investigated to enhance cell attachment and 
differentiation (Sanati et al., 2022).  

Metal oxide nanoparticles are more widely used due to the better quality and less 
toxicity compared to carbon materials (Shalaby, Anwar, and Saeed, 2022). One common 
example is Zinc oxide (ZnO) nanoparticles with good antibacterial and biocompatibility 
properties (Christy Basha, and Kumari, 2022). Others, such as titanium dioxide (TiO2), are 
also high-conductivity materials with chemical stability and low toxicity (Khalil et al., 2019). 
As stated in a previous study, TiO2 is capable of facilitating osteoblast cell adhesion while 
enhancing the antibacterial ability of the scaffold (Cao et al., 2018). Therefore, this study 
aimed to develop bone scaffold using collagen (Col), alginate (Alg), and PVA, with the 
addition of MWCNT, rGO, TiO2, and ZnO materials, to aid the cartilage regeneration process.  

 
2. Methods 

2.1. Materials 
King cobia collagen was extracted using the deep eutectic solvent method adapted from 

Batista et al. (2022). MWCNT 95% [Sigma Aldrich] was functionalized by adapting Shrestha 
et al. (2017), and reduced graphene oxide was reduced using graphene oxide (≥ 50% of 
carbon) [Sigma Aldrich] based on Habte and Ayele (2019). TiO2 was synthesized with 
titanium trichloride 15% [Sigma Aldrich] according to Fayyadh et al. (2019), and zinc oxide 
was prepared using zinc acetate dihydrate 99.5% [Sigma Aldrich] in line with Haque et al. 
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(2020). Sodium hydroxide 99% to neutralize pH and ethanol 99% were purchased from 
Merck. Meanwhile, sodium alginate powder, poly(vinyl alcohol) 98% hydrolyzed, acetic 
acid (glacial) 100%, and phosphate-buffered saline were all purchased from Sigma Aldrich.  

2.2. Fabrication of Scaffold 
The development of scaffold commenced with the preparation of collagen, sodium 

alginate, and PVA solutions. Collagen material was dissolved in 0.5 M acetic acid to obtain a 
2 wt% solution, which was further added with 2 M NaOH to adjust the pH to neutral. 
Alginate material was dissolved in distilled water with stirring at 40oC for 2 hours to obtain 
1 wt% solution. Meanwhile, PVA material was dissolved in distilled water with stirring at 
80oC for 2 hours to obtain a 5 wt% solution. The collagen solution was mixed with the 
alginate and stirred for 2 hours to produce a homogeneous solution. Subsequently, PVA 
solution was mixed with Col/Alg mixture and stirred for 2 hours. 

Each Col/Alg/PVA container was added with 0.5 wt% MWCNT, 0.1 wt% rGO, 1 wt% 
ZnO, and 1 wt% TiO2 separately according to the container. Stirring was carried out for 2 
hours with sonication for 1 hour. Each container was then transferred to a 48-well tissue 
culture plate. The four scaffold groups were frozen in a freezer at -80oC for 24 hours and 
freeze-dried for 48 hours.  

2.3.  Scaffold Characterization 
2.3.1. Scanning Electron Microscopy (SEM) Characterization 

The morphology of the scaffold was observed through SEM (Zeiss, EVO-MA10) with an 
acceleration voltage of 15 kV. Specimens were coated before observing scaffold surface. 

2.3.2. Fourier Transform Infrared Spectroscopy (FTIR) Characterization 
The functional groups in the sample material were characterized using FTIR (Thermo 

Scientific Nicolet iS10). 

2.3.3. Mechanical Compressive Test 
A compressive test was conducted to determine the durability parameters of the 

scaffold. This was conducted through Instron's Universal Testing Machine (UTM) using the 
ASTM D143 standard with a compressive force rate of 10 mm/minute until it reached a 
change in the shape of the scaffolding to be destroyed. Scaffold used for the compressive 
test had a diameter of 10 mm and a height of 5 mm in each group. It was then placed in a 
horizontal position in the middle between the pressure plate and the compressive force was 
applied in a downward pressure direction to determine the strength limit of scaffold.  

2.3.4. Porosity 
The porosity test, aimed at observing the porosity of scaffold surface, was conducted 

by the liquid displacement method. Scaffold was cut into pieces, with the volume 
determined first by measuring the diameter (D) and height (H). The dry sample was 
weighed (Wd) and immersed in 10 mL ethanol at room temperature for 5 minutes. 
Filtration was conducted with filter paper to remove excess ethanol, then the wet weight 
(Wp) was immediately weighed. The porosity was calculated using Equation (1), where ρ 
is the density of ethanol (ρ = 0.789 g/cm3) (Jing et al., 2017). 

 

      
Porosity (%) =

𝑤𝑝−𝑤𝑑

𝜌𝜋(
𝐷

2
)
2
𝐻
× 100

 (1)
 

2.3.5. Degradation Rate 
The degradation test was conducted to determine scaffold ability when dissolved in the 

body. The test was conducted by dissolving the weighed dry scaffold in 10 mL PBS (pH 7.4), 
which was designed to mimic the body environment when cells would be grown, with 
intervals of H+1, H+5, and H+7. The dissolved product was incubated at 37oC and filtered 
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using filter paper to remove excess PBS. Scaffold was oven-dried at 70°C for 40 minutes 
until the water content disappeared, and the final weight (Wt) was weighed. The percentage 
degradation rate was calculated using Equation (2) (Gholizadeh et al., 2017). 

 

       
Degradation rate (%) =

𝑤𝑑−𝑤𝑡

𝑤𝑑
× 100

 (2)
 

2.4.  Statistical and Graphical Analysis 
Statistical analysis was performed to compare test values for each physicochemical 

characteristic. All quantitative experimental data were represented as mean ± standard 
deviation with 3 repetitions for each test.  
 
3.  Results and Discussion 

3.1.  Scaffold Characterization 
3.1.1. SEM Characterization 
 SEM characterization was performed on each group of Col/Alg/PVA scaffold with the 
addition of MWCNT, rGO, TiO2, and ZnO to determine and compare the morphology as well 
as topography. This was conducted to provide valuable information regarding the potential 
for cell interactions with scaffold structure.  
 Figure 1(a) shows SEM image morphology of Col/Alg/PVA/MWCNT scaffold to have a 
rough surface with fairly wide gaps (marked with red arrows). Thickening of the pore walls 
could reduce porosity, lowering the area available for cell growth. As shown in Figure 1(b), 
SEM image morphology of Col/Alg/PVA/rGO scaffold had a dense and interconnected 
structure but possessed tiny pores. This was in accordance with Kavya et al. (2013), stating 
that the high density caused a reduction in porosity but contributed to high mechanical 
strength (Kavya et al., 2013). Figure 1(c) shows that SEM image morphology of 
Col/Alg/PVA/TiO2 scaffold has a rough but interconnected structure. There were fibers 
from collagen fused with other materials, including TiO2 particles (marked with red 
arrows). Figure 1(d) shows SEM image morphology of Col/Alg/PVA/ZnO scaffold to have a 
dense but interconnected structure. Scaffold also had fairly wide gaps (marked with red 
arrows) but did not show interconnected pores.  

 

Figure 1 SEM results of Col/Alg/PVA scaffold with the addition of (a) MWCNT, (b) rGO, (c) 
TiO2, and (d) ZnO 
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 Based on SEM characterization results, the pore sizes of the four scaffold groups did 
not meet the required minimum pore size. Although the pore size was generally small, it 
could indirectly benefit cell growth, by increasing their retention. This was proven in the 
study by Kosowska et al. (2020), showing that smaller pores could increase cell 
proliferation and cellular interactions. According to Morejón et al. (2019), a micropore size 
of approximately <10 µm created a larger surface area that stimulated greater ion exchange 
and bone protein adsorption. 

3.1.2. FTIR Characterization of Scaffold 
 FTIR characterization was performed on each group of Col/Alg/PVA scaffold with the 
addition of MWCNT, rGO, TiO2, and ZnO to determine the content of functional groups 
resulting from the mixture of materials. The collagen absorption peaks comprised 3306 
cm−1 (N-H group stretching vibrations), 1632 cm−1 (amide I bond), 1546 cm−1 (amide II 
bond), and 1236 cm−1 (amide III bond). Sodium alginate peaks included 3402 cm−1 
(hydroxyl (O-H) bonds), 2926 cm−1 (CH2 groups), 1607 cm−1 and 1410 cm−1 (asymmetric 
and symmetric –COO stretches), 1607 cm−1 (C=O carboxyl bonds), and 1031 cm−1 
(antisymmetric C-O-C stretches) (Sobhanian et al., 2019). Meanwhile, the peak spectrum of 
PVA showed a broad absorption band at 3000–3600 cm−1 attributed to hydroxyl group 
symmetrical stretching, and 1090 cm−1 representing the carboxyl vibration (–CO–) of PVA 
(Cao et al., 2018). 
 Figure 2 shows FTIR results on all scaffold groups with each having carboxyl, hydroxyl, 
and amide groups. The presence of hydroxyl (−OH) and carboxyl (−COOH) groups enhanced 
the formation of many hydrogen bonds with water molecules (Dibazar et al., 2022). 
Furthermore, the acquisition of amide groups on scaffold played a significant role in organic 
chemical activity and cell biology associated with the structure of proteins, enzymes, 
polypeptides, and other biological molecules (Jia et al., 2013). 

 

Figure 2 FTIR graph of Col/Alg/PVA scaffold with added MWCNT, rGO, TiO2, and ZnO 
materials 

3.1.3. Mechanical Compressive Test of Scaffold 
 Mechanical testing of scaffold was conducted to determine the compressive strength 
and compare with the mechanical characteristics of bone, as shown in Figure 3. 
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Figure 3 Mean and standard deviation of compressive test results of Col/Alg/PVA scaffold 
with the addition of MWCNT, rGO, TiO2, and ZnO materials 

 One of the characteristics of an ideal scaffold for tissue engineering is having a 
mechanical strength similar to native bone tissue. The compressive strength for each 
scaffold group was about 6 MPa, meeting the mechanical criteria for trabecular bone (0,1–
16 MPa) but not for cortical bone (130–200 MPa) (Gerhardt and Boccaccini, 2010). The 
mechanical properties tended to decrease exponentially with increasing porosity (Abbasi 
et al., 2020). The compressive test results were relatively large with small porosity. This 
implied that the addition of MWCNT, rGO, TiO2, and ZnO materials did not affect mechanical 
strength of Col/Alg/PVA scaffold. 

3.1.4. Scaffold Porosity 
 The porosity test was conducted to determine the nature of scaffold to support cell 
proliferation and migration. The results in Figure 4 showed that the addition of MWCNT, 
rGO, TiO2, and ZnO materials did not significantly affect the porosity of Col/Alg/PVA 
scaffold. The porosity of the four scaffold groups was relatively small and fell below the 
desired specifications. Porosity results with a 50–90% percentage range are considered 
optimal (Mishra et al., 2019). However, several studies found an important role of low 
porosity. In Liu et al. (2018), it was found that lower pore size was associated with the 
formation of osteoid or fibrous tissue.  

 
Figure 4 Mean and standard deviation of porosity test results of Col/Alg/PVA scaffold with 
added MWCNT, rGO, TiO2, and ZnO materials 
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3.1.5. Scaffold Degradation Rate 
 The degradation rate of good scaffold for tissue engineering should match the rate of 
new tissue formation to meet the necessary conditions (Alizadeh et al., 2013). The results 
(Figure 5) showed a fairly stable weight loss as the duration of the test increased. Scaffold 
with a favorable degradation rate should be compatible with the maturation and 
regeneration time of new tissue after in vivo transplantation (Wissing et al., 2017). Several 
factors, including pore homogeneity, morphology, and pore size, can cause high 
degradation rates. Furthermore, scaffold with better mechanical properties also have 
slower degradation rates (Diogo et al., 2018). Based on the results, the addition of rGO 
material reduced the degradation rate with fairly good strength. All four groups had a high 
degradation rate for 7 days, showing that the scaffold did not meet the desired 
specifications in the degradation test parameters. 

 
Figure 5 Mean and standard deviation of degradation rate test results of Col/Alg/PVA 
scaffold with the addition of MWCNT, rGO, TiO2, and ZnO materials 
 
4. Conclusions 

In conclusion, SEM results showed that scaffold had a dense and bonded structure but 
lacked the appropriate pore size and porosity. All four groups had a high swelling 
percentage with a high degradation rate. There was no significant difference between each 
group in terms of mechanical characterization and porosity test. This implied that the 
addition of MWCNT, rGO, TiO2, and ZnO materials did not affect the physicochemical 
characteristics of Col/Alg/PVA scaffold. Therefore, fabricated scaffold cannot be used as a 
candidate for bone tissue engineering, and further development is needed regarding the 
composition and concentration of the materials added. 
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