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Abstract. Atrial Fibrillation (AFib) and its associated symptoms are significant problems that 
doctors and several studies have attempted to solve throughout the years. It is diagnosed by 
analyzing a patient’s electrocardiogram (ECG) data. However, continuous efforts have been made to 
develop an algorithm that detects AFib with optimal efficiency and cost-effectiveness. In this study, 
a sequential model was used based on feedforward neural network as this is arguably the simplest 
algorithm developed and requires minimal computing power. The results showed that training the 
algorithm for 1000 epochs yielded the best results. Further studies showed that using a combination 
of 10-fold cross-validation and blindfold validation proved an ideal way to determine the model's 
capabilities in distinguishing patients with AFib from those without. In conclusion, the developed 
model successfully distinguished between AFib and non-AFib patients with a 96.67% sensitivity, 
94.61% specificity, and 95.64% accuracy. 
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1. Introduction 

Arrhythmia is an irregularity in the heartbeat, manifesting as an increase or decrease 
in the heart's speed (MedlinePlus, 2016). The most common type of arrhythmia is atrial 
fibrillation (AFib). Patients with AFib frequently overlook symptoms, unaware that they are 
manifesting signs of potential heart problems. This leads to an estimated half of AFib 
patients being undiagnosed (Atrial Fibrillation Association, 2012). In 2010, it had an 
estimated global age-standardized prevalence of 0.5%, with this expected to double by 
2030 (Patel et al., 2018). Afib has also been associated with an increased risk of numerous 
cardiovascular conditions, such as heart failure, stroke, and sudden cardiac death (SCD) 
(National Health Services, 2021; Ahmed and Zhu, 2020; Rattanawong et al., 2018; Odutayo 
et al., 2016; Pistoia et al., 2016). Therefore, early detection of AFib is necessary as it would 
lead to effective management and improved patient outcomes (Hill et al., 2019).  
 EACTS’ 2020 ESC Guidelines for the diagnosis and management of AFib (Hindricks et 
al., 2020) state that the standard device used for detection is the 12-lead ECG. However, for 
patients above 65 years, a cost-effective alternative is pulse palpation. Taggar et al. (2015)
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reported a high false positive rate using pulse palpation, with a sensitivity and specificity of 
0.92 and 0.82, respectively, a positive likelihood ratio (PLR) of 5.2, and a negative likelihood 
ratio (NLR) of 0.1. This suggests a need to develop an algorithm that can accurately detect 
the presence of AFib while maintaining its cost-effectiveness. 

Several studies have explored machine learning, with most model using Recurrent 
Neural Network (RNN) and R-R intervals to detect AFib. However, RNN is a complex 
algorithm and contrasts with Feedforward neural network, which is the most 
straightforward algorithm devised (Poznyak, Oria, and Poznyak, 2019). In this model, 
information is passed only in a single direction, moving from the input nodes through the 
hidden nodes until it reaches the output nodes. The simplicity of network makes it more 
manageable to operate and reduces the need for robust and expensive devices for 
processing the data. 

1.1. Atrial Fibrillation 
One of the most common cardiac arrhythmias being treated is AFib. Arrhythmia refers 

to a change in the speed of the heartbeat. When a person has AFib, the atria experience 
irregular beating, causing poor blood circulation from the atria to the ventricles. It may 
occur in isolated incidents or be a chronic illness (Cai et al., 2020). The prevalence of AFib 
is increasing, with a 25% lifetime risk over the age of 40. Furthermore, complications 
include hemodynamic instability, cardiomyopathy, heart failure, and embolic events such 
as stroke. 

 

Figure 1 Illustration of the P Wave, QRS complex, and T wave signal of the ECG 

Figure 1 shows an ECG waveform with AFib and a waveform with a normal ECG, both 
taken from the dataset used in this study. The P wave, QRS complex, and T wave constitute 
a normal waveform. In contrast, an AFib waveform shows several inconsistent fibrillatory 
waves (F waves) replacing the P wave, accompanied by R-R irregularities (irregular 
intervals between successive R waves on the ECG). AFib can be diagnosed through a 
patient’s ECG data, with features including [a] irregularly irregular rhythm, [b] absence of 
P-wave, [c] variable ventricular rate, [d] QRS complexes usually less than 120ms, [e] 
fibrillatory waves that may be fine or coarse (amplitude of <0.5 mm or >0.5 mm 
respectively), and [f] fibrillatory waves mimicking P-waves, leading to misdiagnosis (Burns 
and Buttner, 2018). Deep neural network (DNN) have gained popularity for solving 
classification, segmentation, and detection issues. Several deep learning algorithms have 
been used for AFib detection, including the convolutional neural network (CNN), RNN, and 
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autoencoder. With deep learning, R-peak detection and removal of noises alleviate the 
burden of manual labor. 

1.2. AI Algorithms 
Episodes of AFib are often paroxysmal, requiring manual diagnosis. Therefore, real-

time cardiac monitoring with wearable health trackers is required for the early detection 
of arbitrary events (Panindre, Gandhi, and Kumar, 2020). By using instantaneous heart 
rates (IHR) beat-to-beat variations of AFib could be classified using the accuracy, 
sensitivity, specificity, precision, F1 score, recall, and area as criteria for evaluation and 
comparison.  

Table 1 Comparison of performance of different supervised learning algorithms 

Algorithm 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1 Score 

(%) 
AUC 
(%) 

Specificity 
(%) 

Training Duration 
(seconds) 

Logistic 
Regression 

61.92 51.14 3.16 5.95 55.03 98.14 811 

AdaBoost 61.60 49.03 17.47 25.76 63.66 88.80 46,504 
Gaussian  
Naïve Bayes 

62.90 52.13 33.26 40.61 65.96 81.17 235 

kNN 74.99 79.24 46.82 58.86 77.56 92.41 1,456,010 
Decision Tree 73.54 65.26 65.48 65.37 71.99 78.51 52,896 
Random 
Forest 

81.89 79.15 71.30 75.02 90.35 88.42 3,129,625 

SVM - 
Radial Basis 
Function 
Kernel 

72.26 72.07 43.80 54.49 78.61 89.63 1,277,600 

LSTM 67.20 56.49 61.11 58.68 75.39 70.95 9,663 
Bi-LSTM 89.75 90.37 81.84 85.89 96.48 94.62 167,056 

As shown in Table 1, several machine learning algorithms were trained and tested with 
a dataset in PhysioNet using an NVIDIA Tesla V100 GPU of 32 GB memory. According to the 
results, the Gaussian Naïve Bayes algorithm had the shortest training duration, but its 
results were not promising compared to other algorithms. On the contrary, the Bi-LSTM 
algorithm had the best performance among all the nine tested algorithms. Additionally, 
Faust et al. (2018) applied Bi-LSTM with R-R interval signals, achieving an accuracy of 
98.51% and 99.77% after 10-fold cross-validation and blindfold validations.  

A possible reason for the superior performance of RNNs over other network is their 
ability to overcome the critical impediments of using standard machine learning 
algorithms. This includes the presumption that inputs and outputs in model are 
independent of each other (Schmidhuber, 2015). RNNs achieve this by permitting network 
to retain or use state data, colloquially called "memory" which captures all input data. 

Aside from RNNs, CNN are also used to detect AFib because they require no manual 
feature extraction (Murat et al., 2021). Reinforcement learning (RL) methods have been 
applied to address challenges in traditional machine learning tasks, particularly those 
emphasizing classification and the prediction process or sequential processes such as 
budgeted classification and time prediction). In addition, the evolution of deep 
architectures, or DNN from Neural Network (NN), has expanded its applications, including 
but not limited to image classification, audio recognition, machine translation, and natural 
language processing. NN is a sequential decision process that chooses one mapping from a 
group of candidate mappings at each layer of a deep design. On the other hand, the Deep 
Sequential Neural Network (DSNN) model processes input through a series of local rather 
than global transformations. 
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Denoyer and Gallinari (2014) compared two alternative model, including (1) NN or 
primary neural network and (2) DSNN-k or sequential model, where k is the number of 
possible actions. The initial trials were conducted on five University of California Irvine 
(UCI) datasets, which are low-dimensional datasets with around 1,000 training samples. 
These results showed that using more complex architectural designs did not improve the 
performance of models for specific datasets (diabetes, heart). In these cases, a basic linear 
model was adequate for computing results with high accuracy. Therefore, the DSNN 
strategy performed better than the NN method, particularly when the number of children 
per node is small. 

1.3. Metrics 
Diagnostic accuracy measurements include sensitivity, specificity, predictive values, 

likelihood ratios, the area under the ROC curve, Youden's index, and diagnostic odds ratio 
(Pennsylvania State University, 2013). This study focused on sensitivity and specificity, 
which provide necessary measurements for patient screening. Sensitivity or True Positive 
Rate (TPR) provides a measurement of how effectively models could identify positive 
instances, while specificity or True Negative Rate (TNR) measures the proportion of true 
negatives. A model with high specificity shows that it could almost flawlessly identify the 
negative results. Ideally, models should be highly sensitive and specific, but trade-offs occur 
between these measurements as they are inversely proportional (Shreffler and Huecker, 
2023). A highly sensitive model captures most instances of positive results, dismissing 
fewer cases of the disease. In screening applications, model should achieve a higher 
specificity as it reduces false positives and minimizes unnecessary diagnostic procedures 
for patients. 
 
2. Methods 

2.1.  Model Setup 
Figure 2 illustrates the proposed system architecture, consisting of the raw ECG data, 

an input layer with 512 nodes, three hidden layers of 256, 64, and 32 nodes, and a single 
output layer. Following the input layer, a 10% dropout was applied before passing through 
the first hidden layer to prevent overfitting. The size of the input layer was matched with 
the number of data points in a single window. This architecture is based on Feedforward 
neural network, where information passes through the layers once. 

 

Figure 2 Proposed System Architecture 
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The dataset used was the MIT-BIH Afib Database (Goldberger et al., 2000), comprising 
10-hour ECG recordings at 250 samples per second from 23 patients at Beth Israel 
Deaconess Medical Center. It provided rhythm annotations (.atr) for AFib, AFL (Atrial 
Flutter), J (AV junctional rhythm), and N (Normal) to represent all other rhythms. Figure 3 
shows a sample of a 1-minute recording with rhythm annotations, processed with Python 
using the WFDB toolbox. Additionally, manually corrected beat annotation file (.qrsc) was 
used to detect the location of R-peaks. said it was observed that through these files, the 
different annotations could be visualized in the recordings, with N and AFib annotations 
presented in red and green, respectively. 

 

Figure 3 A sample recording of manual annotations and Python reading of raw data. 

The location of a record’s R-peaks was stored in an array. A random index (a random 
R-peak) was then chosen, along with the next three indices to create a window, as shown 
in Figure 4. Each window contained either N or AFib annotations, and windows with 
different annotations were disregarded. Furthermore, the average number of samples 
within a three-RR-cycle window was 544. This was resampled for uniformity to 512, which 
is the nearest integer to the power of 2. 
 A single window consists of three RR cycles with a length of 512 data points. A 
Bandpass Filter with a low and high pass cutoff frequency of 35Hz and 1Hz, respectively, 
was applied to the signals. The amplitude of the signals was then scaled to return values 
between 0 and 1. The signals were then arranged row-wise, with each window written to a 
single row. AFib-annotated signals (Positive) were labelled as “1”, while those annotated 
with N (Negative) were labelled as “0” before saving them separately into a CSV file. The 
program adopted a 25% test and 75% train split. Furthermore, multiple NumPy files (npz) 
were saved from the dataset for model fitting and evaluation. The program, modelled with 
low computing power applications in mind, was based on a Sequential Model with three 
layers, excluding the input layer. The network used an input layer of size 256, two hidden 
layers with sizes 64 and 32, and an output layer of size 1. Model was evaluated using 10-
fold cross-validation and blindfold validation. 
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(a) 

 
(b) 

 
(c) 

Figure 4 Illustration of the (a) Windowed, (b) Filtered, and (c) Normalized Raw Data 
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3. Results and Discussion 

 The proposed model was trained using an NVIDIA RTX 3060 GPU with 12GB memory. 
Each epoch took approximately 0.446 s to train, with the number of epochs set to 1000 
based on previous training results showing a sudden drop in accuracy beyond this point. 

3.1.  Validation Results 
 The confusion matrix and the Receiver Operating Characteristic (ROC) Curve of the 10-
fold cross-validation are shown in Figure 5. The ROC curve measures the model’s ability to 
correctly distinguish classes. The closer the value is to 1, the better it can distinguish 
between classes. A summary of the results can be seen in Table 2. Based on the cross-
validation results, the model returned a 0.9751 ROC curve, signifying that it accurately 
distinguished the two classes. Additionally, the model exhibited higher sensitivity than 
specificity, implying that it can better predict patients with a disease than without. 

 
(a) 

 
(a) 

 
(b)  

(b) 

Figure 5 Confusion Matrix and ROC Curve of the (a) 10-fold and (b) blindfold validation 

Table 2 Summary of 10-Fold Cross-Validation and Blindfold Validation Performance 

Validation 
Type 

TP TN FP FN Sensitivity Specificity Accuracy AUC 

10-Fold  
Cross-
Validation 

106,224 101,138 10,216 5,130 95.39% 90.83% 93.11% 97.51 

Blindfold  
Validation 

107,650 105,357 5,997 3,704 96.67% 94.61% 95.64% 98.89 
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3.2.  Discussion 
 Data is one of the most prominent limiting factors in machine learning. Real-life 
applications of machine learning model require a larger dataset than was used in this study. 
The dataset was also balanced between AFib and non-AFib patients, which is not 
representative of the real-world population. Therefore, the model is expected to have a bias 
toward high sensitivity and false positives. Its performance can be compared to other 
studies that used the same dataset, most of which were also cited in (Faust et al., 2018), but 
with additional studies added. 

Table 3 Performance of another model using the same dataset 

Author Data pre-processing 
Feature extraction 

method 
Analysis 
method 

Results 

Zhou et al., 
(2014)  

Median filter Shannon entropy 
Threshold 
evaluated 
with ROC 

Sensitivity of 96.72%, 
Specificity of 95.07%, 
Accuracy of 96.05% 

Petrenas, 
Marozas, and 
Sörnmo 
(2015) 

8-beat sliding 
window 

Median filter and 
threshold 

 for data labeling 
Threshold 

Sensitivity of 97.1%, 
Specificity of 98.3% 

Henzel et al., 
(2017)  

Beat by beat 
evaluation,  

Windows of varying 
length  

to extract statistical 
features. 

4 statistical 
features and  

the beat itself 

Generalized 
Linear Model  

evaluated 
with ROC 

Accuracy 93%,  
Sensitivity of 90%,  
Specificity of 95% 

Faust et al., 
(2018) 

100 beat window,  
99 beats overlap. 

None 
Recurrent 

neural 
network 

Cross-validation and 
Blindfold validation  
Accuracy: 98.51%, 

99.77% 
Sensitivity: 98.32%, 
99.87% Specificity: 

98.67%, 99.61% 
Positive Predictive 
Accuracy: 98.39%, 

99.72% 

Chen et al., 
(2022) 

Wavelet transform, 
sliding window 

RR-interval 
Feedforward 

Neural 
Network 

Cross-validation: 
Accuracy of 84%,  

Sensitivity of 84.26%, 
Specificity of 93.24%. 

Proposed 
Model 

3 R-R cycle window,  
1-35 Hz Bandpass  
Butterworth Filter, 
Normalized to 0-1. 

Annotations 
provided  

in the dataset 

Feedforward 
Sequential 

Model 

Cross-validation and 
Blindfold validation 
Accuracy: 93.11%, 

95.64%, 
Sensitivity: 95.39%, 
96.67%, Specificity: 

90.83%, 94.61%  

 Table 3 shows that the proposed model used a different method for predicting AFib 
aside from R-R intervals. Although this method achieved scores comparable with other 
studies using R-R intervals, most models still performed better. This could be attributed to 
the heavy focus on developing a simple model and an insufficient complexity in capturing 
the relationship between the input and output variables. A similar study by Chen et al. 
(2022) also used the Feedforward model and reported a cross-validation accuracy of 84%, 
a sensitivity of 84.26%, and a specificity of 93.24%. Comparing the proposed model to Chen 
et al. (2022), it performed better based on the metric scores. In terms of model complexity, 
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the proposed model, with a total of 149,889 parameters, had a training duration of 
approximately 0.443s per epoch using the NVIDIA RTX 3060 GPU. Among the studies listed 
in Table 5, only Zhou et al. (2014) and Faust et al. (2018) provided data regarding 
complexity. Zhou et al. (2014) reported a training duration of 1.445s per 24 hours of data, 
yet it remained unclear whether this value corresponded to the training duration per epoch 
or the entirety of the training. The study also specified the use of an Intel Pentium(R) Dual-
Core E5800 processor. Assuming the training duration was per epoch, it will be completed 
in only 0.443 seconds, making the proposed model faster. However, their model would be 
faster for a duration covering the entire training process.  Faust et al. (2018) presented 
another model using a high-performance NVIDIA Quadro m5000 GPU tailored for industrial 
use with 343,301 parameters and a training duration of 215s per epoch (total of 80 epochs). 
In comparison, the proposed model had fewer parameters and a faster training duration, 
attributed to the unidirectional flow of information within the network. For replication 
purposes, the codes and datasets used in this study can be accessed through the link below: 
https://github.com/JanMichaelSantos/Detection-of-Atrial-Fibrillation-using-
Feedforward-Sequential-Model.git 
 
4. Conclusions  

 In conclusion, AFib is associated with an elevated risk of heart failure, stroke, SCD, and 
other heart-related diseases. Its global age-standardized prevalence is expected to double 
by 2030. This can be addressed through an early diagnostic system by analyzing a patient’s 
ECG recording. Previous studies used various algorithms combined with R-R intervals for 
early detection. However, these necessitated hefty hardware. One objective of this study 
was to develop a cost-effective diagnostic system. Based on related literature, it was 
identified that sequential model could be implemented, using ECG features alongside R-R 
intervals to predict and accurately classify AFib and non-AFib patients. Model underwent 
training for 1000 epochs with a 75:25 train-test ratio and was filtered using a bandpass 
Butterworth with cutoff frequencies of 1-35 Hz. Upon evaluation, the 10-fold cross-
validation and the blindfold validation performance yielded a 95.39-96.67% sensitivity, 
90.83-94.61% specificity, 93.11-95.64% accuracy, and an AUC of 97.51-98.89%, 
respectively. Although other model developed showed higher performance on these 
metrics, they used complex algorithms that increased computation time. On the contrary, 
the proposed model had a simpler algorithm, making it more practical for implementations 
on small wearable devices with low computing power. It is recommended that future 
studies explore increasing the complexity of sequential model and use different datasets to 
gain a more comprehensive understanding of the model’s performance on a broader 
representation. However, in implementing these recommendations, it is vital to consider 
the computing power of wearable devices.  
 
Acknowledgments 

 The authors are extremely grateful to the Department of Manufacturing Engineering 
and Management of the Gokongwei College of Engineering – De La Salle University for 
providing the materials and equipment used in this study and to the LAPARA project of the 
Institute of Biomedical Engineering and Health Technologies (IBEHT), funded by the 
Department of Science and Technology – Philippine Council for Health Research and 
Development (DOST-PCHRD). The authors are also grateful to Engr. Jesse Daniel Santos for 
his valuable support. 
 



Santos et al. 1515 

References 

Ahmed, N., Zhu, Y., 2020. Early Detection of Atrial Fibrillation Based on ECG Signals. 
Bioengineering, 7(1), p. 16 

Atrial Fibrillation Association, 2012. The AF Report Atrial fibrillation: Preventing A Stroke 
Crisis. Atrial Fibrillation Association. Available online at: http://www.preventaf-
strokecrisis.org/files/files/The%20AF%20Report%2014%20April%202012.pdf, 
Accessed on February 15, 2022 

Burns, E., Buttner, R., 2018. Atrial Fibrillation. Life in the Fast Lane. Available online at: 
https://litfl.com/atrial-fibrillation-ecg-library/, Accessed on October 28, 2022 

Cai, W., Chen, Y., Guo, J., Han, B., Shi, Y., Ji, L., Wang, J., Zhang, G., Luo, J., 2020.  Accurate 
Detection of Atrial Fibrillation from 12-Lead ECG Using Deep Neural Network. 
Computers in Biology and Medicine, Volume 116, p. 103378 

Chen, Y., Zhang, C., Liu, C., Wang, Y., Wan, X., 2022. Atrial Fibrillation Detection Using a 
Feedforward Neural Network. Journal of Medical and Biological Engineering, Volume 
42(1), pp. 63–73 

Denoyer, L., Gallinari, P., 2014. Deep Sequential Neural Network. arXiv.org. Available online 
at https://arxiv.org/abs/1410.0510, Accessed on December 07, 2022  

Faust, O., Shenfield, A., Kareem, M., San, T.R., Fujita, H., Acharya, U.R., 2018. Automated 
Detection of Atrial Fibrillation Using Long short-term Memory Network with RR 
Interval Signals. Computers in Biology and Medicine, Volume 102, pp. 327–335 

Goldberger, A.L., Nunes, A., Glass, L., Hausdorff, J.M., Ivanov, P.Ch., Mark, R.G., Mietus, J.E., 
Moody, G.B., Peng, C.-K., Stanley, H.E., 2000. PhysioBank, PhysioToolkit, and PhysioNet: 
Components of A New Research Resource for Complex Physiologic Signals. Circulation, 
Volume 101(23), p. e215 

Henzel, N., Wrobel, J., Horoba, K., 2017. Atrial Fibrillation Episodes Detection Based on 
Classification of Heart Rate Derived Features. In: 2017 MIXDES - 24th International 
Conference Mixed Design of Integrated Circuits and Systems, pp. 571–576  

Hill, N.R., Ayoubkhani, D., McEwan, P., Sugrue, D., Farooqui, U., Lister, S., Lumley, M.,  Bakhai, 
A., Cohen, A.T., O’Neill, M., Clifton, D.A., Gordon, J., 2019. Predicting Atrial Fibrillation in 
Primary Care Using Machine Learning. PLoS One, Volume 14(11), p. e0224582 

Hindricks, G., Potpara, T., Dagres, N., Arbelo, E., Bax, J.J., Blomström-Lundqvist, C., Boriani, 
G., Castella, M., Dan, G.-A., Dilaveris, P.E., Fauchier, L., Filippatos, G., Kalman, J.M., La 
Meir, M., Lane, D.A., Lebeau, J.-P., Lettino, M., Lip, G.Y.H., Pinto, F.J., Thomas, G.N. (2020). 
2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed 
in Collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). 
European Heart Journal, Volume 42(5), pp. 373–498 

MedlinePlus, 2016. Arrhythmia. National Library of Medicine (US).  Available online at 
https://medlineplus.gov/arrhythmia.html, Accessed on February 09, 2022 

Murat, F., Sadak, F., Yildirim, O., Talo, M., Murat, E., Karabatak, M., Demir, Y., Tan, R.-S.  
Acharya, U.R., 2021. Review of Deep Learning-Based Atrial Fibrillation Detection 
Studies. International Journal of Environmental Research and Public Health, Volume 
18(21), p. 11302 

National Health Services, 2021. Causes - Atrial Fibrillation. National Health Services (NHS). 
Available online at https://www.nhs.uk/conditions/atrial-fibrillation/causes/, 
Accessed on February 15, 2022 

Odutayo, A., Wong, C.X., Hsiao, A.J., Hopewell, S., Altman, D.G., Emdin, C.A., 2016. Atrial 
Fibrillation and Risks of Cardiovascular Disease, Renal Disease, and Death: Systematic 
Review and Meta-Analysis. BMJ, Volume 354, p. i4482 



1516  Detection of Atrial Fibrillation using a Feedforward Sequential Model 

Panindre, P., Gandhi, V., Kumar, S., 2020. Comparison of Performance of Artificial 
Intelligence Algorithms for Real-Time Atrial Fibrillation Detection using Instantaneous 
Heart Rate. In: 2020 IEEE 17th International Conference on Smart Communities: 
Improving Quality of Life Using ICT, IoT and AI (HONET), pp. 168–172 

Patel, N., Atti, V., Mitrani, R.D., Viles-Gonzalez, J.F., Goldberger, J.J., 2018. Global Rising 
Trends of Atrial Fibrillation: A Major Public Health Concern. Heart, Volume 104(24), 
pp.1989–1990 

Pennsylvania State University, 2013. 11.3 – Sensitivity, Specificity, Positive Predictive 
Value, and Negative Predictive Value. PennState. Available online at 
https://online.stat.psu.edu/stat507/lesson/11/11.3-0, Accessed on October 27, 2022 

Petrėnas, A., Marozas, V., Sörnmo, L., 2015. Low-Complexity Detection of Atrial Fibrillation 
in Continuous Long-Term Monitoring. Computers in Biology and Medicine, Volume 65, 
pp. 184–191 

Pistoia, F., Sacco, S., Tiseo, C., Degan, D., Ornello, R., Carolei, A., 2016. The Epidemiology of 
Atrial Fibrillation and Stroke. Cardiology Clinics, Volume 34(2), pp. 255–268 

Poznyak, T., Oria, I.C., Poznyak, A.S., 2019. Background on Dynamic Neural Networks. In: 
Ozonation and Biodegradation in Environmental Engineering. Elsevier. pp.57–74 

Rattanawong, P., Upala, S., Riangwiwat, T., Jaruvongvanich, V., Sanguankeo, A., Vutthikraivit, 
W., Chung, E.H., 2018. Atrial Fibrillation is Associated with Sudden Cardiac Death: A 
Systematic Review and Meta-Analysis. Journal of Interventional Cardiac 
Electrophysiology, Volume (2), pp. 91–104 

Schmidhuber, J., 2015. Deep Learning in Neural Networks: An Overview. Neural Networks, 
Volume 61, pp. 85–117 

Shreffler, J., Huecker, M.R., 2023. Diagnostic Testing Accuracy: Sensitivity, Specificity 
Predictive Values and Likelihood Ratios. Nih.gov. Available online at 
https://www.ncbi.nlm.nih.gov/books/NBK557491/, Accessed on December 07, 2022 

Taggar, J., Coleman, T., Lewis, S., Heneghan, C., Jones, M., 2015. Accuracy Of Methods for 
Detecting an Irregular Pulse and Suspected Atrial Fibrillation: A Systematic Review and 
Meta-Analysis. European Journal of Preventive Cardiology, Volume 23(12), pp. 1330–
1338 

Zhou, X., Ding, H., Ung, B., Pickwell-MacPherson, E., Zhang, Y.-T., 2014. Automatic Online 
Detection of Atrial Fibrillation Based on Symbolic Dynamics and Shannon Entropy. 
Biomedical Engineering Online, Volume 13(1), pp. 1–18 

 


