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Abstract. Sick Building Syndrome (SBS) is the health and comfort issues experienced by people 
during the time indoor. As urban dwellers typically spend 90% of the time indoor, Indoor Air Quality 
(IAQ) becomes essential. Consequently, ensuring appropriate air exchange in building is essential, 
with Heating, Ventilation, and Air-Conditioning (HVAC) system playing a crucial ole in maintaining 
indoor comfort. Therefore, this study aimed to develop a predictive machine learning (ML) model 
using Industry 4.0 technological advancements to optimize HVAC system design that meets IAQ 
parameters in Indonesia healthy building (HB). An extensive literature review was carried out to 
identify IAQ parameters specific to Indonesia HB. Furthermore, four ML models were developed 
using the RapidMiner Studio application, validated with the Mean Absolute Error (MAE), and 
confusion matrix methods. The results showed that the cooling load and the chiller-type prediction 
models had a relative error of 1.11% and 3.33%. Meanwhile, Air Handling Unit (AHU) type and filter 
area predictive model had a relative error of 10% and 1.22%, respectively. These errors showed the 
accuracy of ML model in predicting HVAC system of HB. 
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1. Introduction 

Sick Building Syndrome (SBS) is used to describe the sudden and severe discomfort or 
illness experienced by occupants after spending time in building (Babaoglu, Milletli-Sezgin, 
and Yag, 2020). Symptoms such as headaches, eye, nose, or throat irritation, dry or itchy 
skin, and nausea are reported, typically relieved upon leaving with unidentified causes. A 
1984 World Health Organization Committee reported that approximately 30% of new and 
renovated buildings globally could elicit excessive Indoor Air Quality (IAQ). 

IAQ is essential as humans spend 90% of the time indoor (US EPA, 2017), which is 
mostly affected by occupants, Heating, Ventilation, and Air-Conditioning (HVAC) system, 
pollutants pathways, and sources of contaminants. The perception of air quality includes 
temperature, humidity, odor, air movement, ventilation, bioaerosols, and volatile organic 
hydrocarbons (VOCs) contaminations. However, poor IAQ leading to respiratory issues, 
allergies, and cancer, requires improvement to safeguard human health, reduce work-
related health issues, and minimize economic losses due to illness (Whulanza and Kusrini, 
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2023; Mentese et al., 2020).  
Healthy building (HB) has become a promising solution to address various 

environmental and health-related concerns, minimizing adverse impacts on the health of 
occupants and the surrounding environment. Among the critical indoor environmental 
issues demanding attention, IAQ is important in preventing negative effects on the health 
and well-being of occupants (Sari et al., 2022). Additionally, elements such as thermal 
quality, lighting, acoustics, privacy, security, and functional compatibility must be carefully 
considered during the design, construction, and operation. HB concept is not well-
developed in Indonesia, as evident from the absence of specific standards and certifications, 
compared to the more established idea of green building promoted by Green Building 
Council Indonesia (GBCI). This concept has gained substantial growth in wealthier nations 
including China, Europe, and the United States, evidenced by the prominence of 
certifications such as WELL Building Standard, Fitwel, RESET, and LEED Indoor Air Quality 
Rating System, in ensuring building positively contribute to the health and well-being of 
occupants (Lin et al., 2022). 

All occupied buildings require an external air supply, which may need heating or 
cooling before distribution to the occupied spaces depending on outdoor conditions. 
Concurrently, as outside air is drawn into building, indoor air is exhausted or passively 
discharged, effectively removing airborne contaminants. HVAC system, including heating, 
cooling, outdoor air filtration, and humidity control, play a crucial role in maintaining the 
comfort of occupants. However, poorly designed HVAC system in building has become a 
significant source of poor IAQ. 

In recent years, the development of digital technology has significantly impacted 
various industries, including building sector. Artificial Intelligence (AI) and Machine 
Learning (ML) models have also shown great potential for application in building 
construction industry (Hong et al., 2020). Based on previous studies, ML can be effectively 
used in all stages of a construction project, including the design phase to optimize building 
performance (Triadji et al., 2023). The implementation of the model was also discussed, 
such as ML prediction to optimize the operation of HVAC system by controlling the 
temperature setpoints (Li, 2020). HVAC load forecasting for energy conservation was 
predicted (Zheng et al., 2021), including the development of anomaly detectors (Borda et 
al., 2023). A limited report has been documented regarding ML use in HVAC system of HB. 
Consequently, this study aimed to explore ML application to build a predictive model that 
optimizes HVAC system design, ensuring the fulfillment of IAQ parameters in the context of 
HB. 

 
2. Methods 

This study aimed to identify IAQ parameters for HB in Indonesia and develop ML 
predictive models to assist the design process of HVAC system, optimizing compliance with 
IAQ parameters of HB. A literature review was conducted to identify relevant IAQ 
parameters for HB in Indonesia. This includes examining HVAC system features and design 
stages to determine components affecting IAQ. Subsequently, IAQ parameters data and HB 
were collected to achieve the first objective. The results were validated through interviews 
with experts in HVAC system and ML, gathering valuable insights and recommendations. 

Several categories of individuals were included to ensure the credibility of the 
interview results. These included 1) HB professionals with a minimum of 15 years of 
experience and a master's degree, 2) Building HVAC professionals with at least 15 years of 
experience and a bachelor's degree in a related discipline, and 3) ML experts with a 
minimum of 15 years of experience and a bachelor's degree in relevant areas. 



1440  Developing Machine Learning Model to Predict HVAC System of Healthy Building: A Case 
Study in Indonesia 

For the second RO, RapidMiner Studio was used for ML model development. This open-
source data mining tool is known for the versatility and wide range of applications. It can 
be used as a standalone framework for data analysis or seamlessly integrated into other 
software for data mining (Dawangi and Budiyanto, 2021; László and Ghous, 2020). 
Furthermore, the user-friendly interface and high visualization capabilities facilitate data 
interaction and insight generation without extensive coding. In this study, the Auto Model 
function in RapidMiner was used to address prediction, clustering, and outlier detection, 
effectively handling classification and regression tasks. 

Model development commenced with the collection of input and output data. Key 
building information was obtained to inform HVAC system planning, including floor area, 
window area, door area, occupancy, room height, etc. These data enabled precise 
calculation of IAQ-influencing HVAC components such as cooling load and filter area 
requirements. The chiller and air handling unit (AHU) selection was based on cooling 
capacity per building floor. Data were sourced from two sets, namely real building data in 
Greater Jakarta area and synthetic building data obtained using HB indicators, comprising 
22 and 78 entries, respectively. Synthetic data integrated into the model involving climatic 
and building data ensured comprehensive and accurate building characteristics for robust 
HVAC system planning. Table 1 summarizes building data for cooling load calculations. 

Table 1 Collected data for cooling load calculation 

No. Building Data  Description 

1 The floor area of the air-conditioned space Collected data 
2 Height of the air-conditioned space Collected data 
3 Window area Set at a minimum of 10% of the floor as per SNI 03-

6572-2001 4 Door area 
5 Wall area Collected data 
6 Roof/ceiling area Collected data 
7 Number of occupants Each person has a minimum of 7.5 m2 of space as per 

Ministry of Health Regulation No. 28/2019 
8 Electrical power used by other equipment Energy Consumption Intensity standard for the very 

efficient category with a power usage of less than 8.5 
kWh/m2/month following Regulation of the Minister 
of Energy and Mineral Resources No. 13/2012 

Cooling Load Temperature Difference (CLTD) method was used to calculate floor-
specific cooling loads, determining HVAC components influencing IAQ as ML model output. 
The method included inputting climate data (location, outdoor and indoor temperatures, 
outdoor and indoor humidity, elevation, and latitude) and building data (windows, doors, 
walls, and ceilings) for heat gain calculations. Heat gain was calculated using U-value (U) 
and Shading Coefficient (SC), representing the material heat transfer rate and the thermal 
performance of single glass units in building, respectively. U-value of the triple glass with 
Opaque Roller Shade was 0.72 BTUh/ft², and SC was 0.36. Subsequently, Glass Load Factor 
(GLF) selection was evaluated based on window orientation and material. The formula for 
calculating heat based on window area (A) in each orientation is expressed in Equation 1: 

𝑞 = 𝐴 𝑥 𝐺𝐿𝐹 (1) 

Where:  q  = heat addition from solar radiation through the glass (MBTu/h) 
A = glass surface area (ft2) 
GLF = Glass Load Factor (MBTu/h/ft2) 

Heat gain from doors and walls was calculated using triple glass doors with U-value of 
1.87 BTUh/ft² and plaster brick walls with U-value of 0.08 BTUh/ft². Heat gain from walls 
was determined using the formula in Equation 2: 



Sari et al. 1441 

𝑞 = 𝑈 𝑥 𝐴 𝑥 𝐶𝐿𝑇𝐷 (2) 

Where: q  = heat addition from solar radiation through the door wall (MBTu/h) 
U = heat transfer coefficient (MBTu/(h·ft2·°F) 
A = wall surface area (ft2) 

CLTD = wall coolant load temperature difference (°F) 

Heat gain from infiltration, occupants, and electrical devices was calculated using the 
formula in Equation 3: 

𝑞 = 1,23. 𝑄. ∆𝑡 (3) 

Where: q  = sensible heat addition from infiltrated air (MBTu/h) 
Q = ventilation in liters per second and infiltration (ft3/s)  
∆𝑡 = difference between the outside and indoor air temperature 

Q is calculated by the formula in Equation 4: 

𝑄 =
𝑉. 𝐴𝐶𝐻

3600
 (4) 

Where: V = Conditioned room volume (ft3) 
ACH = Number of air changes in a room in 1 hour 

Heat gain from humans is calculated by multiplying the number of occupants by the 
rate of heat gain, which is set at 475 Btu/hour according to SNI 03-6572-2001 for moderate 
activity office work, and the formula used is shown in Equation 5:  

𝑞 = 𝑁. (ℎ𝑒𝑎𝑡 𝑔𝑎𝑖𝑛 𝑟𝑎𝑡𝑒) (5) 

Where: N = Number of occupants 
As the model output, the minimum filter area is crucial for preserving indoor pressure 

stability and air quality. It is determined by considering the ventilation rate of the room. 
Based on ASHRAE recommendation, the maximum filter ventilation rate is 150 ft/min for a 
1-inch thick HEPA filter (MERV13). The formula is expressed in Equation 6: 

𝐴 = 𝑄. 𝑄𝑓. 60 (6) 

Where: A = Minimum filter area (ft2) 
Q = Room ventilation rate (ft2/s) 
F = Filter ventilation rate (ft/min) 

RapidMiner, used for developing ML model, streamlines the process through Auto Model 
feature, automating various stages: 
1) Data import: The initial stage is to import relevant data into RapidMiner.  
2) Data cleansing: This includes tasks such as managing missing values, data 

normalization, feature selection, data partitioning for training and testing to ensure 
suitability for modeling. 

3) Auto Model Configuration: Users specify the target variable and performance metric. 
4) Model Selection: Auto Model explores various ML algorithms such as regression, 

classification, and clustering to identify the best model for the target variable and 
performance metric. 

5) Model Training: Auto Model optimizes model parameters and hyperparameters. 
6) Model Evaluation: After training, Auto Model assesses the performance of each model 

on the validation dataset, ranking based on the specified performance metric  
7) Model Deployment: The best-performing model is selected for deployment, allowing 

prediction for new unseen data.  

After developing the model to predict output values based on input data, the accuracy 
was assessed using Mean Absolute Error (MAE) and the confusion matrix to calculate 
performance. MAE was used to compute absolute errors for all predictions and calculate 
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the mean. This process was carried out by evaluating the mean of the dataset, subtracting 
it from each data point, summing the results, and dividing by the total number of datasets 
(Lubis et al., 2021). Moreover, MAE has been widely used as a metric in regression tasks for 
quantifying the average discrepancy between the predicted and actual values, with various 
advantages related to robustness to outliers and scale consistency (Hodson, 2022), and the 
MAE formula is expressed in Formula 7: 

𝑀𝐴𝐸 =
1

𝑛
∑ 𝑥𝑖 − 𝑥 (7) 

Where: 𝑥𝑖 = the actual value 
𝑥 = the predicted value 
𝑛 = the total number of values 

The confusion matrix visually represents the performance of the predictive model, 
detailing correct and incorrect predictions (Berawi et al., 2021). Precision and Recall are 
key indicators for accuracy assessment. Precision measures accurate predictions among all 
predicted data, while Recall assesses successful predictions relative to actual data. These 
indicators offer insights into the classification performance and ability to make accurate 
class predictions. The workflow for achieving the objectives of this study is presented in 
Figure 1. 

 
Figure 1 Study Workflow 
 
3. Results and Discussion 

3.1.  Identifying IAQ Parameters for Healthy Building (HB) in Indonesia 
A literature review conducted on related documents showed that there were various indicators 
used to measure IAQ of HB. Moreover, IAQ indicator in HB consisted of seven pollutants, namely 
Particulate Matter (PM10), PM2.5, Radon, Ozone, Volatile Organic Compound (VOC), Nitrogen 
Oxides (NO), and Carbon Monoxide (CO), negatively impacting human health (Allen et al., 2017). 
The data of threshold values for these indicators, representing optimal air quality, were collected 
and validated through in-depth interviews with experts in the field of HB. Subsequently, the 
addition of several parameters was recommended including CO2, temperature, and humidity as 
significant IAQ parameters. CO2 was considered due to its presence in inhabited spaces from human 
respiration and recognition as an indoor pollutant in standards such as ASHRAE, along with PM10, 
PM2.5, and NO2. Table 2 summarizes IAQ parameters for HB, integrating expert insights. 
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Table 2 IAQ parameters for HB in Indonesia 

Indicators Threshold References 

CO2 1000 ppm (8h) ASHRAE/EPA 

PM10 50 μg/m3 (24h) WELL/LEED 

PM2.5 35 μg/m3 (24h) WELL; EPA; PMK No. 1077 

NO2 
100 ppb (1h) 
53 ppb (1y) 

ASHRAE/EPA 

Radon 4 pCi/L WELL/LEED; ASHRAE/EPA; OSHA 

Ozon 0,07 ppm (8h) WELL/LEED; ASHRAE/EPA 

VOC 500 μg/m3 WELL/LEED 

CO 9 ppm (8h) WELL/LEED; ASHRAE/EPA; PMK No. 1077 

Optimal IAQ in HVAC system can be achieved through ventilation and filtration. 
Ventilation, either natural or mechanical, supplies and removes air, while filters are key in 
removing particulates. Consequently, the impact of filters on room pressure is essential 
during the selection. In commercial and office buildings, a MERV13 filter is effective during 
the filtration of particles sized between 0.3-1.0 microns (NIOSH, 2003). 

Temperature and humidity also play a significant effecting in determining IAQ. Indoor 
temperature affects air movement and pollutant dilution, with high temperatures 
potentially increasing VOC concentrations (Liu, 2018). Humidity significantly affects 
particulate matter, with higher levels leading to the settling of heavier particles, while lower 
humidity keeps particles airborne (Zhang et al., 2017).  

Based on a literature study and in-depth interviews with experts, chiller and Air 
Handling Unit (AHU) are key components affecting temperature and humidity. Chiller is 
responsible for cooling the rooms for comfortable temperatures, while AHU maintains 
humidity levels. Furthermore, the evaporator in AHU adds moisture to conditioned air, 
regulating indoor humidity. Well-coordinated chiller and AHU operation is essential for 
optimal temperature and humidity control for building of occupants. 

3.2.  Developing Machine Learning Models 
3.2.1. Data Preprocessing 

The result of the first Research Objective (RO) led to the development of predictive ML 
model for four key outputs, namely 1) Cooling load, 2) Chiller type, 3) AHU type, and 4) 
Minimum filter area. Initial preparation of building data facilitated air conditioning load 
calculation for each floor, enabling the selection of appropriate chiller and AHU types. 
focusing on a commonly used chiller brand in Indonesia based on cooling load capacity, as 
shown in Table 3. 

The ventilation rate of the room determines the minimum filter area. According to 
ASHRAE recommendation, the maximum filter ventilation rate is 150 ft/min for a 1-inch 
filter thickness. After preprocessing the data, the modeling process included three stages, 
namely Importing, Auto Model, and Deployment. RapidMiner user-friendly interface and 
automation features streamline the creation and deployment of ML model efficiently. 
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Table 3 Cooling load capacity of several Chiller and AHU types 

Chiller  AHU 
No. Type Capacity (kW)  No. Type Capacity (kW) 

1 EWAQ040 43.4  1 AHUR16 47.5 
2 EWAQ050 51.8  2 AHUR20 59 
3 EWAQ064 64.5  3 AHUR32 95.1 
4 EWAQ075 74.7  4 AHUR40 110.2 
5 EWAQ085 84.2  5 AHUR48 140.2 
6 EWAQ100 96.7  6 AHUR60 177.4 
7 EWAQ120 117  7 AHUR80 236.1 

8 EWAQ140 139     
9 EWAQ155 154     

10 EWAQ180 178     

3.2.2. Machine Learning (ML) Model Development 
This section presents the development of predictive ML model, including 1) Cooling 

load, 2) Chiller type, 3) AHU type, and 4) Minimum filter area predictions. After the training 
data was accessed and the predictors were selected through task selection, the required 
attributes were imported to build the first prediction model for Cooling load. RapidMiner 
played a crucial role by providing attribute quality indicators based on correlation, ID-ness, 
stability, and missing values that significantly impacted model performance. However, poor 
data quality could lead to overfitting, limiting predictions to a narrow data range, or 
underfitting due to scattered data quality, impeding accurate predictions. 

ML algorithms considered in developing the first model included the Generalized 
Linear Model (GLM), Deep Learning (DL), Decision Trees (DT), Random Forest (RF), 
Gradient Boosted Trees (GBT), and Support Vector Machine (CVM). As presented in Figure 
2, model with the highest accuracy was identified through algorithm comparisons, 
assessing errors, standard deviations, and prediction times. For the first model, GLM 
outperformed others with a minimal relative error of 1.1%, while DT had the quickest 
prediction time. 

 

Figure 2 Prediction result of ML for cooling load 

The second model followed the same procedures that were previously used. 
Algorithms considered included Naïve Bayes (NB), GLM, Logistic Regression (LR), Fast 
Large Margin (FLM), DL, DT, RF, GBT, and SVM. Naïve Bayes showed the best performance 
with a 3.3% relative error, while DL showed the fastest runtime of 5 seconds. Furthermore, 
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Naïve Bayes proved the most accurate for the third predictive model for AHU types, with a 
10% classification error. Regarding the fourth model for minimum filter area, floor area and 
ceiling height were used as inputs. Among models developed with algorithms including LR, 
FLM, DL, DT, RF, GBT, and SVM, GLM showed excellent performance with a 1.2% relative 
error and the fastest runtime. GLM was selected as the most suitable algorithm for models 
1 and 4 due to the accuracy in predicting numerical values in these models. Furthermore, 
Naïve Bayes, a classification algorithm, yielded the best results for Models 2 and 3, as the 
output was in the form of classes.  

3.2.3. Machine Learning (ML) Model Evaluation 
The assessment of the regression model accuracy included relative error and MAE, 

providing insights into the prediction error magnitude. For example, in Model 1, MAE was 
0.893, and 381.760 in Model 4. The accuracy for Models 2 and 3 was measured using the 
confusion matrix due to the classification nature. The confusion matrix showed that Model 
2 achieved 100% accuracy in 9 out of 10 chiller types, with a 3.33% classification error. 
Model 3 achieved 100% accuracy in 4 among 7 AHU types, resulting in a 10% classification 
error. Table 4 summarizes the accuracy results of all developed models. 

Table 4 The accuracy results for ML models  

Model Algorithm Relative/Classification Error MAE 

1: Cooling Load Generalized Linear Model 1.11% 0.893 
2: Chiller Type Naïve Bayes  3.33% - 
2: AHU Type Naïve Bayes  10% - 
4: Filter Area Generalized Linear Model 1.22% 381.760 

The developed ML model was deployed to show the predictive capacity on new data. A 
particular building was used as the case study with several specifications, accommodating 
175 occupants. These included a total area of 1850 m2, ceiling height 3.1 meters, and ceiling 
area matching the total area. Window sizes are specified (north-facing: 15.5 m², east-facing: 
16 m², south-facing: 16.5 m², west-facing: 15.7 m²), door sizes (north-facing: 6.5 m², east-
facing: 2.1 m², south-facing: 6 m², west-facing: 7.8 m²), and wall areas (north side: 97 m², 
east side: 96.2 m², south side: 95.6 m², and west side: 94 m²). 

The cooling load prediction from Model 1 was 102.297 kW, which was Models 2 and 3 
to determine chiller type (EWAQ120) and AHU type (AHUR48), respectively. Additionally, 
Model 4 predicted a minimum filter area of 4.084 m². As shown in Figures 3, 4, and 5, the 
implementation of these predictions can effectively optimize IAQ in Indonesian building, 
following HB concept. 

 

Figure 3 Model deployment: Cooling load prediction with ML Model 1 
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Figure 4 Model deployment: (a) Chiller and (b) AHU type prediction with ML Models 2&3 

 

Figure 5 Model deployment: Filter Area prediction with ML Model 4 

 
4. Conclusions 

 In conclusion, this study used ML to enhance HVAC system design, focusing on 
improving IAQ to achieve HB concept. The two main objectives included identifying IAQ 
parameters for Indonesian HB and developing ML model for HVAC system planning. Based 
on the results, ML model successfully predicted the cooling load, chiller type, AHU type, and 
filter area based on climate and building data. GLM algorithm was recommended to predict 
cooling load and minimum filter area, while Naïve Bayes performed best in forecasting 
chiller and AHU types. The implementation of these predictions could effectively optimize 
IAQ, contributing to the reduction of SBS incidence. This study did not specifically quantify 
the percentage by which the incidence was reduced. Consequently, future study was 
recommended to examine the reduction in SBS incidence resulting from the improved IAQ. 

 
 

 

(a) 

(b) 
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