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Abstract. Multiple systems have been developed to identify drivers’ drowsiness. Among all, the 
vehicle-based driver drowsiness detection system relies on lane lines to determine the lateral 
position of the vehicle for drowsiness detection. However, the lane lines may fade out, affecting its 
reliability. To resolve this issue, a vehicle localization algorithm based on the Inertial Measurement 
Unit (IMU), Global Navigation Satellite System (GNSS), and Onboard Diagnostics (OBD2) sensors is 
introduced. Initially, the kinematic bicycle model estimates the vehicle motion by using inputs from 
the OBD2 and IMU. Subsequently, the GNSS measurement is used to update the vehicle motion by 
applying the extended Kalman filter. To evaluate the algorithm’s performance, the tests were 
conducted at the residential area in Bukit Beruang, Melaka and Multimedia University Melaka 
Campus. The results showed that the proposed technique achieved a total root-mean-square error 
of 3.892 m. The extended Kalman filter also successfully reduced the drift error by 40 – 60%. 
Nevertheless, the extended Kalman filter suffers from the linearization error. It is recommended to 
employ the error-state extended Kalman filter to minimize the error. Besides, the kinematic bicycle 
model only generates accurate predictions at low vehicle speeds due to the assumption of zero tire 
slip angles. The dynamic bicycle model can be utilized to handle high-speed driving scenarios. It is 
also advised to integrate the LiDAR sensor since it offers supplementary position measurements, 
particularly in GNSS-denied environments. Lastly, the proposed technique is expected to enhance 
the reliability of the vehicle-based system and reduce the risk of accidents. 
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1. Introduction 

Road accidents in Malaysia have grown from 462420 cases in 2012 to 567520 cases in 
2019 (Ministry of Transport Malaysia, 2022). It is believed that tiredness causes 20% of all 
traffic accidents (The Star, 2022). The factors that contribute to the driver’s drowsiness 
encompass the circadian rhythm, sleep homeostasis, and time on task (Zainy et al., 2023; 
Zuraida, Wijayanto, and Iridiastadi, 2022). The ability to deal with stress also plays an 
important role in drowsiness development. Driving as work might be stressful for some bus 
drivers, accelerating their level of drowsiness (Zuraida and Abbas, 2020). Therefore, 
researchers have explored various approaches to assess driver drowsiness, including 
monitoring drivers' physiological signals, facial expressions, and driving behaviors. 

 
*Corresponding author’s email: ppem@mmu.edu.my, Tel.: +60-62523241; Fax: +60-62316552 
doi: 10.14716/ijtech.v14i6.6649 



1238  Vehicle Localization Based On IMU, OBD2, and GNSS Sensor Fusion Using Extended Kalman 
Filter 

Out of these 3 categories of Driver Drowsiness Detection (DDD) systems, the vehicle-
based measure monitors the Steering Wheel Angle (SWA), acceleration, or Standard 
Deviation of the Lateral Position (SDLP) to detect any abnormal driver’s conditions. A 
drowsy driver may demonstrate the characteristics of sluggish steering, slow change in 
acceleration, and frequently switching lanes while driving (Shahverdy et al., 2020; 
Vinckenbosch et al., 2020). Besides, the vehicle-based measure also has several limitations. 
First of all, it is difficult for the system to extract precise drowsiness signals (Pratama, 
Ardiyanto, and Adji, 2017). For example, the Lane Departure Warning System detects lane 
lines by incorporating a forward-looking camera behind the vehicle windshield. It cannot 
determine whether the vehicle has deviated from the lane if the lane lines marked on the 
road have faded out. Besides, the quality of the images can be easily affected by tree shadow 
and uneven illumination (Chen et al., 2020). To resolve the issue of low reliability of the 
vehicle-based DDD system, a method that can monitor the position of the vehicle in the lane 
without depending on the existing road infrastructure and the surrounding environment is 
desirable. 

Hence, different vehicle localization approaches have been explored. They are based 
on Global Navigation Satellite Systems (GNSS), Inertial Measurement Units (IMU), distance 
sensors, and vision sensors. Firstly, IMU dead reckoning is the method of determining the 
vehicle position by using velocity and orientation data from previously known locations 
(Toy, Durdu, and Yusefi, 2022). Common dead reckoning methods include the Kinematic 
Bicycle Model (KBM) and Dynamic Bicycle Model (DBM) (Ng et al., 2020). However, this 
category of technique can only output accurate vehicle motion during a short period of time. 
The drift problem became noticeable as time increases (Gu, Hsu, and Kamijo, 2015). 
Besides, the vehicle position can also be located by using GNSS. GNSS is a network of 
satellites that broadcast their locations and timing data from space to GNSS receivers. The 
receivers then use this information to calculate their position based on trilateration. 
Nevertheless, this technique suffers from multi-path interference (Meng, Wang, and Liu, 
2017). The GNSS-based localization may also not always be available, especially when the 
vehicle travels through the tunnel. Moreover, the vision-based localization incrementally 
estimates the position of the vehicle by examining the differences between consecutive 
frames captured by the camera. Generally, it can be categorized into appearance-based and 
feature-based methods (Sardana, Karar, and Poddar, 2023; Aqel et al., 2016). Nonetheless, 
vision-based localization may fail when it encounters extreme weather, strong illumination, 
vehicle vibration, and fast vehicle motion. Many studies have reported the benefits of using 
the Light Detection and Ranging (LiDAR) sensor in positioning because of its robustness in 
total darkness and bad weather (rain, fog, and snow). For a moving vehicle, each point in 
the LiDAR scan is taken from a slightly different place. When the LiDAR scan rate is high 
compared to the speed of the vehicle, the Iterative Closest Point (ICP) algorithm can be used 
to estimate vehicle motion (Zhang and Singh, 2014). The ICP algorithm works by 
minimizing the difference between 2 clouds of points. However, if the vehicle is moving at 
an appreciable fraction of the rotational speed of the LiDAR, motion distortion becomes an 
issue, causing duplicate objects to appear in the LiDAR scan (Yang et al., 2022). 

In this paper, a novel vehicle localization algorithm that relies on the combination of 
IMU, GNSS, and Onboard Diagnostics (OBD2) sensors is introduced. This algorithm is 
intended to extract the SDLP from the vehicle in the forthcoming DDD system for assessing 
the driver's drowsiness. The proposed technique is superior to other existing techniques 
because it utilizes easily available sensors - e.g., built-in vehicle and smartphone sensors for 
vehicle localization. Besides, the proposed technique integrates multiple sensors that are 
independent of one another in localizing the vehicle. If one of the sensors has failed during 
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the operation, the other sensors can still be used to determine the lateral position of the 
vehicle. Therefore, it significantly enhances the reliability of the system. 
 
2. Methods 

 The flowchart of the vehicle localization algorithm is illustrated in Figure 1. Initially, the 
KBM is used to estimate the vehicle motion. Two inputs are required which are the vehicle 
speed and the yaw rate. To acquire the vehicle speed, it is necessary to connect the 
Controller Area Network (CAN) bus data logger to the OBD2 connector of the vehicle. 
Additionally, the yaw rate can be obtained by placing the IMU at the Center of Gravity (COG) 
of the vehicle. Next, whenever the GNSS data is available, it will be used to update the 
estimated position and orientation of the vehicle by utilizing the Extended Kalman Filter 
(EKF). The GNSS data is obtained by using the GNSS receiver of the Android smartphone. If 
the GNSS data is lost when the vehicle is driving inside the tunnel, the vehicle localization 
will be solely dependent on the KBM. 

 

Figure 1 The flowchart of the vehicle localization algorithm 

2.1. Experimental Setup 
 The vehicle localization algorithm was developed in open source language Python with 

all supported libraries (PySerial, Socket, and Python-CAN). The instrumented vehicle used 
in this experiment is Perodua Axia (SE) 2014. It has a wheelbase of 2455 mm and a 
trackwidth of 1410 mm. To extract the vehicle speed, the Korlan USB2CAN adapter was 
utilized to connect the computer to the CAN bus via the OBD2 connector. The CAN ID 0x0b0 
contains information about the reading of the speedometer. It is given as the first byte of 
the CAN message. To decode the CAN data into the actual vehicle speed, both the CAN data 
and GNSS speed values were recorded at various speeds ranging from 10 to 70 km/hr, 
relative to the speedometer. This is shown in Table 1. 

Table 1 The recorded CAN data and GNSS speed values at different speedometer readings 
from 10 – 70 km/hr  

Speedometer Reading 
(km/hr) 

CAN data 
GNSS Speed Value 

(km/hr) 

10 7 10 
20 14 19 
30 21 29 
40 28 38 
50 35 48 
60 42 57 
70 49 67 
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 From Table 1, it can be observed that the CAN data can be converted to the 
speedometer reading via a constant factor of 1.429. Moreover, there is a 5% difference 
between the speedometer reading and the GNSS speed value. This is because most 
automotive manufacturers will calibrate their speedometers to allow for 5% - 10% higher 
readings due to the requirement of traffic safety. Thus, 1.429 is divided by 1.05 to obtain 
the final conversion factor of 1.361. The value from the CAN bus was multiplied by this 
factor to retrieve the actual vehicle speed. 
 Besides, the IMU was installed at the COG of the vehicle (behind the handbrake), 
assuming the COG is located at the center of the wheelbase and the center of the trackwidth. 
Additionally, IMU uses MPU-6050 (3-axis accelerometer and 3-axis gyroscope) to extract 
the yaw rate of the vehicle. Once the gyroscope data was received by Arduino Uno from 
MPU-6050, it was sent to the computer through the Bluetooth Serial Port Protocol (SPP) 
module HC-05. Moreover, an Android smartphone (Huawei P30) served as the GNSS 
receiver for measuring the vehicle's present latitude, longitude, and altitude. The Python 
code was executed on the Android platform using QPython 3L, a Python-integrated 
development environment. Once the vehicle position was acquired, it was sent to the 
computer through the wireless network. Finally, the vehicle speed, yaw rate, and GNSS data 
were collected at different sampling frequencies. For example, the Korlan USB2CAN 
adapter collects the vehicle speed from the CAN bus at 50 Hz (every 0.02 s) while the IMU 
reports the angular velocity at 10 Hz (every 0.1 s). Besides, the GNSS receiver retrieves the 
position of the vehicle at 1/3 Hz (every 3 s). Therefore, the resampling was performed to 
synchronize the time series observations. In this project, down-sampling was applied to 
resample the data into a 0.2 s window. The values of the data points that fell into each 0.2 s 
window were averaged to generate a single aggregated value. 

2.2.  Kinematic Bicycle Model (KBM) 
 The bicycle model of the vehicle is depicted in Figure 2. 

 

Figure 2 Kinematic Bicycle Model (Kong et al., 2015) 

 In the bicycle model, both left and right wheels at the front and rear axles of the vehicle 
can be represented as a single wheel at points A and B respectively. The symbols 𝛿𝑓 and 𝛿𝑟 , 

respectively, denote the steering angles for the front and rear wheels. The rear steering 
angle can be changed to zero because the model was developed under the assumption of 
front-wheel steering. Furthermore, point C is where the COG of the vehicle is situated. 𝑙𝑓 

and 𝑙𝑟, respectively, are distances between points A and B and the COG of the car. Assuming 
the vehicle is having planar motion, the vehicle motion can be described by 3 state 
variables: 𝑥, 𝑦, and 𝜓. (𝑥, 𝑦) represents the coordinate of the vehicle in a global (inertial) 
reference frame while 𝜓 defines the orientation of the vehicle (also known as heading angle 
or yaw angle). The model requires 2 inputs to fully describe the vehicle motion. The first 
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input is the velocity at the COG of the vehicle which is denoted as 𝑣 in Figure 2. The velocity 
makes an angle 𝛽 with the longitudinal axis of the vehicle. This angle is known as the vehicle 

slip angle. Moreover, the second input of the model is the yaw rate �̇�. The yaw rate is also 
equivalent to the angular velocity measured by the IMU about the vertical axis at the COG 
of the vehicle 𝜔𝑧. The vehicle position and orientation (𝑥, 𝑦, and 𝜓) can be calculated by 
using Equations (1), (2), and (3) based on the explicit Euler method. ∆𝑡 is referred to as the 
time step size. 

 𝜓𝑖 = 𝜓𝑖−1 + ∆𝑡�̇�𝑖−1 (1) 
 𝑥𝑖 = 𝑥𝑖−1 + ∆𝑡�̇�𝑖−1 (2) 
 𝑦𝑖 = 𝑦𝑖−1 + ∆𝑡�̇�𝑖−1 (3) 

The rate of change in 𝑥, 𝑦, and 𝜓 (�̇�, �̇�, and �̇�) can be calculated by using Equations (4), (5), 
(6), and (7). 

 �̇�𝑖−1 = 𝜔𝑧𝑖−1
 (4) 

 𝛽𝑖−1 = sin−1
�̇�𝑖−1𝑙𝑟

𝑣𝑖−1
 (5) 

 �̇�𝑖−1 = 𝑣𝑖−1 cos(𝛽𝑖−1 + 𝜓𝑖−1) (6) 
 �̇�𝑖−1 = 𝑣𝑖−1 sin(𝛽𝑖−1 + 𝜓𝑖−1) (7) 

2.3. Extended Kalman Filter (EKF) 
 EKF is a powerful prediction algorithm that is used to provide estimates of some 
unknown variables based on a series of measurements observed over time. It is selected in 
this study because it is not computationally intensive and simple to implement. It consists 
of 2 stages: prediction and update. In the prediction stage, the EKF predicts the next state 
estimate �̌�𝑖 by using the previous updated state estimate �̂�𝑖−1. Once the measurement is 
observed, it is used to update the current state estimate, outputting �̂�𝑖. The EKF algorithm 
is summarized from Equations (8) until (12) where 𝐼 is the identity matrix: 

Prediction stage: 

Predicted state estimate �̌�𝑖 = 𝑓𝑖−1(�̂�𝑖−1, 𝑈𝑖−1, 0) (8) 

Predicted error covariance �̌�𝑖 = 𝐹𝑖−1�̂�𝑖−1𝐹𝑖−1
𝑇 + 𝐿𝑖−1𝑄𝑖−1𝐿𝑖−1

𝑇  (9) 

Update stage: 

Kalman Gain 𝐾𝑖 = �̌�𝑖𝐻𝑖
𝑇(𝐻𝑖�̌�𝑖𝐻𝑖

𝑇 +𝑀𝑖𝑅𝑖𝑀𝑖
𝑇)

−1
 (10) 

Updated state estimate �̂�𝑖 = �̌�𝑖 + 𝐾𝑖 (𝑦𝑖 − ℎ𝑖(�̌�𝑖, 0)) (11) 

Updated error covariance �̂�𝑖 = (𝐼 − 𝐾𝑖𝐻𝑖)�̌�𝑖 (12) 

From the above equations, the motion model is represented by 𝑓𝑖−1(𝑋𝑖−1, 𝑈𝑖−1,𝑊𝑖−1). 
The term 𝑈𝑖−1 is referred to as the input vector whereas 𝑊𝑖−1  is denoted as the process 
noise which has a (zero mean) normal distribution with a constant covariance 𝑄𝑖−1. Process 
noise is used to describe the uncertainty of the motion model. The equations from (1) to (7) 
can be rearranged into the matrix form, producing the vehicle state vector 𝑋𝑖. The vehicle 
state vector, input vector, process noise covariance matrix, and motion model are given in 
Equations (13), (14), (15), and (16). The terms 𝜎𝑣

2 and 𝜎𝜔
2  in Equation (15) are known as 

the variance of the velocity and yaw rate respectively. 

 𝑋𝑖 = [

𝑥𝑖
𝑦𝑖
𝜓𝑖

] (13) 

 𝑈𝑖−1 = [
𝑣𝑖−1
𝜔𝑧𝑖−1

] (14) 
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 𝑄𝑖−1 = [
𝜎𝑣
2 0

0 𝜎𝜔
2] (15) 

 𝑋𝑖 = 𝑋𝑖−1 + ∆𝑡 [
cos(𝛽𝑖−1 + 𝜓𝑖−1) 0

sin(𝛽𝑖−1 + 𝜓𝑖−1) 0
0 1

] ([
𝑣𝑖−1
𝜔𝑧𝑖−1

] +𝑊𝑖−1) (16) 

On the other hand, the term 𝑦𝑖  in Equation (11) represents the vehicle position 
measured by GNSS using the Android smartphone. The measurement model is represented 
as ℎ𝑖(𝑋𝑖, 𝑉𝑖). The term 𝑉𝑖 is known as the position measurement noise of GNSS which has a 
(zero mean) normal distribution with a constant covariance 𝑅𝑖. The measurement model, 
together with the measurement noise covariance matrix are given in Equations (17) and 
(18). The terms 𝜎𝑥

2 and 𝜎𝑦
2 in Equation (18) are known as the variance of 𝑥 and 𝑦 position 

measurement acquired by using the GNSS. 

 𝑦𝑖 = 𝑦𝐺𝑁𝑆𝑆 = [
1 0 0
0 1 0

]𝑋𝑖 + 𝑉𝑖 (17) 

 𝑅𝑖 = [
𝜎𝑥
2 0

0 𝜎𝑦
2] (18) 

From Equation (9), the terms 𝐹𝑖−1 and 𝐿𝑖−1 are known as the motion model Jacobians. 
They can be calculated via Equations (19) and (20): 

 𝐹𝑖−1 =
𝜕𝑓

𝜕𝑋𝑖−1
|
�̂�𝑖−1,𝑈𝑖−1,0

= [
1 0 −∆𝑡𝑣𝑖−1 sin(𝛽𝑖−1 + 𝜓𝑖−1)

0 1 ∆𝑡𝑣𝑖−1 cos(𝛽𝑖−1 + 𝜓𝑖−1)
0 0 1

] (19) 

 𝐿𝑖−1 =
𝜕𝑓

𝜕𝑊𝑖−1
|
�̂�𝑖−1,𝑈𝑖−1,0

= [
∆𝑡 cos(𝛽𝑖−1 + 𝜓𝑖−1) 0

∆𝑡 sin(𝛽𝑖−1 + 𝜓𝑖−1) 0
0 ∆𝑡

] (20) 

Besides, from Equation (10), 𝐻𝑖 and 𝑀𝑖  are called the measurement model Jacobians. They 
can be computed by applying Equations (21) and (22): 

 𝐻𝑖 =
𝜕ℎ

𝜕𝑋𝑖
|
�̌�𝑖,0

= [
1 0 0
0 1 0

] (21) 

 𝑀𝑖 =
𝜕ℎ

𝜕𝑉𝑖
|
�̌�𝑖,0

= [
1 0
0 1

] (22) 

 
3.  Results and Discussion 

The data logging of 𝑥 and 𝑦 positions of the vehicle was conducted at 2 locations: the 
residential area in Bukit Beruang, Melaka (location A) and Multimedia University Melaka 
Campus (location B). The root-mean-square error (RMSE) of the position of the vehicle was 
calculated for both KBM and EKF by treating the position of the vehicle received from the 
GNSS as the ground truth. The results are shown in Table 2. Additionally, the paths mapped 
by the KBM and EKF as well as the actual paths traveled by the vehicle, collected from the 
GNSS are visualized on Google Maps. These are shown in Figure 3 for locations A and B.  

Table 2 The Root-Mean-Square Error (RMSE) of the position of the vehicle for both KBM 

and EKF 

Vehicle Localization 
Techniques 

Root-Mean-Square Error (RMSE) 
Location A Location B 

𝑥 (m) 𝑦 (m) 𝑥 (m) 𝑦 (m) 

KBM 11.898 8.918 8.052 4.856 
EKF 4.469 2.889 2.584 2.911 
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Figure 3 The paths mapped by the KBM, EKF, and GNSS: (a) location A; (b) location B 

Firstly, from Figure 3a, it is noticeable that the path estimated by the KBM (blue line) 
in location A has drifted away from the actual path after the vehicle passes through the 
sharp 90o corner. A similar issue also occurs in location B when the vehicle passes through 
the entrance of MMU and the roundabout, as illustrated in Figure 3b. The drift error in both 
locations can be caused by the numerical approximation (Explicit Euler method) when 
calculating the position and orientation of the vehicle. Secondly, the EKF successfully 
decreases the drift error incurred by the KBM by updating the predicted position and 
orientation with the GNSS data. Table 2 illustrates that the EKF has significantly reduced 
the RMSE of the KBM by approximately 40% to 60%. In order to assess the performance of 
the proposed algorithm in comparison to other existing techniques, the total RMSE was 
computed by using Equation (23): 

 𝑅𝑀𝑆𝐸𝑡𝑜𝑡𝑎𝑙 = √𝑅𝑀𝑆𝐸𝑥2 + 𝑅𝑀𝑆𝐸𝑦2 (23) 

The comparison between the existing techniques and the proposed technique in terms of 
total RMSE is shown in Table 3. The sensor data, motion models, and prediction algorithms 
used by each technique are also illustrated. 

Table 3 The comparison between the existing techniques and the proposed technique 

Authors 
Method 𝑅𝑀𝑆𝐸𝑡𝑜𝑡𝑎𝑙  

(m) Sensors Motion Model Prediction Algorithm 

(Dai et al., 2023) 
OBD2 + IMU + 
GNSS + LiDAR 

IMU Kinematic Model 
Error State Extended 
Kalman Filter 

0.232 

(Yanase et al., 2022) 
GNSS + IMU + 
LiDAR + Radar 

IMU Kinematic Model Confidence Estimation 0.180 

(Gao et al., 2022) 
OBD2 + IMU + 
GNSS 

Dynamic Bicycle Model + 
3D Kinematic Model 

Error State Extended 
Kalman Filter 

0.400 

(Ng et al., 2020) 
Android 
Sensors 

Kinematic Bicycle Model None 2.183 

(Min et al., 2019) 
OBD2 + IMU + 
GNSS + Camera 

Kinematic Bicycle Model 
+ Dynamic Bicycle Model 

Interacting Multiple 
Model Filter 

1.229 

(Suwandi, Pinastiko 
and Roestam, 2019) 

OBD2 + IMU + 
GNSS 

IMU Kinematic Model Graded Kalman Filter 13.988 

Proposed Method 
OBD2 + IMU + 
GNSS 

Kinematic Bicycle Model 
Extended Kalman 
Filter 

3.892 

Note that the existing studies do not provide a universal definition for the classification 
of the accuracy of the vehicle localization algorithm. Therefore, to compare the proposed 
method with the existing techniques, positioning accuracy is classified into 3 distinct levels 
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based on Williams et al. (2012). They are which-road (< 5 m), which-lane (< 1.5 m), and 
where-on-the-lane (< 1 m) accuracy. From Table 3, it can be seen that the proposed method 
only achieves which-road accuracy in vehicle localization compared to other authors. This 
can be due to several reasons. First of all, the EKF linearizes the non-linear motion and 
measurement models to estimate the mean and covariance of the state. For highly non-
linear systems, the linearization error can be very large. Thus, some authors have utilized 
the Error State Extended Kalman Filter (ES-EKF) to estimate the error state instead of the 
full vehicle state because the error behaves much closer to a linear behavior compared to 
the vehicle state. To clarify this, consider a non-linear motion model 𝑓(𝑋(𝑡)) as shown in 
Equation (24), where �̇�(𝑡) represents the rate of change of the state vector 𝑋(𝑡). Note that 
the input and process noise are ignored for simplicity. 

 �̇�(𝑡) = 𝑓(𝑋(𝑡)) (24) 

If a small variation 𝛿𝑋(𝑡) is introduced to 𝑋(𝑡), Equation (24) becomes: 

 �̇�(𝑡) + 𝛿�̇�(𝑡) = 𝑓(𝑋(𝑡) + 𝛿𝑋(𝑡)) (25) 

By applying Taylor series expansion to Equation (25) and discretizing it with the Euler 
method, the resulting equation becomes: 

 𝛿𝑋(𝑡 + ∆𝑡) = (𝐼 +
𝜕𝑓(𝑋(𝑡))

𝜕𝑋(𝑡)
∆𝑡) 𝛿𝑋(𝑡) (26) 

From Equation (26), it can be seen that the partial derivative of 𝑓(𝑋(𝑡)) is independent of 

the error state vector 𝛿𝑋(𝑡) . As a result, it produces a linear model that allows for the 
propagation of the error state (Madyastha et al., 2011). 

Moreover, it can be observed from Table 3 that combining both the KBM and DBM into 
the motion model can generate a more accurate prediction of vehicle motion. This is 
because both models are used to handle different driving conditions. When the vehicle is 
moving at low speeds, the KBM produces accurate estimates by assuming no slip occurs 
between the ground and the wheels. During the high-speed motion, the DBM takes into 
consideration of the tire slip angle and assumes that the tire slip angle is proportional to 
the lateral force acting on the tire. Besides, some authors have applied the IMU kinematic 
model since it can output credible estimation results without depending on the driving 
conditions of the vehicle. Lastly, the proposed method only relies on the GNSS data for 
measurement updates. By incorporating the vision-, radar-, or LiDAR sensors, they can 
provide additional position measurement when the GNSS data is not available (inside the 
tunnel). For example, in the work done by Dai et al. (2023), they estimated the vehicle 
motion by combining both LiDAR and real-time kinematic GNSS. Initially, the Normal 
Distributions Transform (NDT) algorithm was used to register the point clouds. After that, 
the GNSS data was used as the constraint to correct the cumulative error of the point cloud 
map. Loop closure detection was also utilized to correct the error by identifying previously 
visited locations.  
 
4. Conclusions 

 This paper presented a vehicle localization algorithm that relies on the combination of 
IMU, GNSS, and OBD2 sensors. It will be utilized on the DDD system in future to extract the 
SDLP from the vehicle and subsequently evaluate the driver's drowsiness. Initially, the KBM 
predicts the position and orientation of the vehicle by using the vehicle speed and yaw rate 
received from the OBD2 and IMU respectively. Next, the EKF updates the predicted position 
and orientation with the GNSS data. From the tests conducted at 2 distinct locations, it was 
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found that the proposed technique attained a total RMSE of 3.892 m. Besides, the proposed 
technique greatly alleviated the drift error owing to the numerical approximation in the 
KBM by 40 – 60%. Nonetheless, the EKF suffers from the linearization error. Since the error 
behaves much closer to the linear behavior, ES-EKF could be used to produce a more 
accurate state estimate. Moreover, the KBM is only able to produce accurate predictions at 
low vehicle speeds because of the assumption of zero tire slip angles. Hence, it is suggested 
to incorporate the DBM into the motion model to handle the high-speed driving scenario. 
Finally, the proposed technique only relies on the GNSS data for measurement updates. It 
is recommended to include the LiDAR sensor to provide additional position measurements, 
especially in GNSS-denied environments. 
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