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Abstract. Intelligent Transportation Systems (ITS) are becoming increasingly important as 
traditional traffic management systems struggle to handle the rapid growth of vehicles on the road. 
Accurate traffic prediction is a critical component of ITS, as it can help improve traffic management, 
avoid congested roads, and allocate resources more efficiently for connected vehicles. However, 
modeling traffic in a large and interconnected road network is challenging because of its complex 
spatio-temporal data. While classical statistics and machine learning methods have been used for 
traffic prediction, they have limited ability to handle complex traffic data, leading to unsatisfactory 
accuracy. In recent years, deep learning methods, such as Recurrent Neural Networks (RNNs) and 
Convolutional Neural Networks (CNNs), have shown superior capabilities for traffic prediction. 
However, most CNN-based models are built for Euclidean grid-structured data, while traffic road 
network data are irregular and better formatted as graph-structured data. Graph Convolutional 
Neural Networks (GCNs) have emerged to extend convolution operations to more general graph-
structured data. This paper reviews recent developments in traffic prediction using deep learning, 
focusing on GCNs as a promising technique for handling irregular, graph-structured traffic data. We 
also propose a novel GCN-based method that leverages attention mechanisms to capture both local 
and long-range dependencies in traffic data with Kalman Filter, and we demonstrate its 
effectiveness through experiments on real-world datasets where the model achieved around 5% 
higher accuracy compared to the original model. 
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1. Introduction 

In recent years, with the rapid increase in the number of vehicles on the street, 
traditional traffic management systems cannot keep up leading to many problems related 
to congestion and the reliability of road networks. Researchers have been working on 
integrating technologies from different domains such as connected devices and sensors to 
improve transportation systems and build Intelligent transportation systems (ITS) (Zhang 
et al., 2021; Wu et al., 2020).  

In intelligent transportation systems, traffic prediction is an integral part that helps 
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make traffic management systems more efficient. In road networks, a congestion problem 
in a single road could impact other roads in the network. Hence, accurate traffic prediction 
is essential to traffic management systems. Moreover, traffic prediction can help people 
avoid busy roads, but more notably, it can help achieve more efficient resource allocation 
for connected vehicles. For several years, researchers have used many time series analysis 
methods for traffic prediction such as historical average (HA), auto-regressive integrated 
moving average (ARIMA) and machine learning methods to model large traffic data such as 
k-nearest neighbors (KNN) and support vector machines (SVM) (Williams et al., 2014; 
Mingheng et al., 2013) . However, the large and interconnected road networks make it 
difficult to model road network traffic using traditional prediction models as these models 
require domain-specific features engineering. To address these issues several studies 
focused on utilizing deep learning methods to develop models that can handle larger-scale 
and complex spatio-temporal data of road networks.  

Recurrent neural network (RNN) and its variants, Gated Recurrent Unit (GRU) and long 
short-term memory networks (LSTM), were mainly for natural language processing and 
due to their capabilities to learn from long range temporal data, they were utilized to build 
traffic predictions models(Hussain et al., 2021; Zhao et al., 2017).  

Although traffic data is collected as temporal data, traffic in one location is impacted by 
traffic in neighboring and connected roads making it a challenge to capture spatial 
correlation. Convolutional neural networks (CNN) were developed to capture the spatial 
features and their correlation to grid-structured images (Lopez Pinaya et al., 2020). Several 
studies used CNN in integration with LSTM to be able to capture both spatial and temporal 
traffic data (Zhao et al., 2021). However, CNN-based models are limited to processing 
regular Euclidean grid-structured data such as 2D images or 1D sequences.  

Traffic road network data, on the other hand, are irregular, more complex, and better 
represented as graph-structured data. Although, many researchers applied CNN-based 
models to graph-structured data, it requires transforming the graph into the grid-like 
structure, which may not fully capture the inherent relationships within the graph. The 
need to extend deep neural networks to non-Euclidean domains motivated the work on 
geometric deep learning, leading to the emergence of variants of graph neural networks 
(GNNs) (Zhou et al., 2020). Inspired by the success and computational efficiency of 
convolutional neural networks (CNNs) in grid-structured data, Graph Convolutional Neural 
networks (GCNs) extend the concept of convolution to graphs (Zhao et al., 2015).  

However, GCN requires their entire graph structure for training, which consumes a 
large amount of memory resources and fails to handle the dynamic spatial correlations of 
traffic conditions. To tackle the above challenges, Guo et al. (2019) propose a novel deep 
learning model: Attention-based Spatial Temporal Graph Convolution Network (ASTGCN) 
models to predict traffic data more accurately at different locations while considering many 
internal and external factors.   

In this paper, we proposed a new model that integrates Kalman Filter with ASTGCN to 
improve its accuracy.  The main contributions of this paper are summarized as follows: 

We improved the accuracy of the ASTGCN model by using Kalman Filter to fuse the data 
coming from different blocks. Specifically, the spatial attention block and temporal 
attention block to capture the correlations between them. We tested the proposed model 
on real-world high-way traffic datasets to verify that our improved model archives better 
results compared to the original model and existing baselines. 

The remainder of this paper is organized as follows.  Section 2 presents a literature 
review on traffic flow prediction. Section 3 gives details about the problem definition and 
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the model architecture. Section 4 presents and discusses the experimental results. Finally, 
we conclude with Section 5. 
 
2. Related Work 

Traffic flow prediction is an integral part of ITS applications and enables traffic 
management systems to efficiently control traffic by making more informed decisions. 
Traffic prediction methods have been through several stages of evolution. We can divide 
them into three main categories: statistical analysis methods, traditional machine learning 
methods, and deep learning methods. In statistical methods, the historical average (HA) is 
the simplest model to predict future values using historical data typically based on the 
average or mean of all or subsets of past observations. 

HA offers a simple and fast way to predict future values, but when dealing with complex 
data that has many irregularities and trends it starts to lose accuracy (Smith and Demetsky, 

1997). To overcome the challenges the HA model faced, around 1976 Box and Jenkins (Park 
et al., 2011) proposed the Autoregressive Integrated Moving Average model (ARIMA). In 
(Yao et al., 2019), the authors proposed the use of the ARIMA model for traffic volume 
prediction in urban roads. Though ARIMA models show better accuracy and can handle 
more complex patterns and trends in the data, the nature of traffic data imposed some 
challenges affecting the prediction accuracy, such as seasonal fluctuations, non-linearity 
dependencies, and high-dimensional data. 

To tackle these issues, different variants were introduced. Kohonen ARIMA was 
proposed to handle the non-linear dependencies and high-dimensional data using the 
Kohonen Self-Organizing Map with ARIMA (Connor, Martin, and Atlas, 1994). In a work by 
Williams et al., (2014), Williams, Durvasula, and Brown (1998), they developed and tested 
seasonal ARIMA models and Winters exponential smoothing models on two different 
datasets. In their work, both of their models achieved promising results compared to HA 
models and generic ARIMA models. In another work by (Cho et al., 2014), the authors 
proposed seasonal ARIMA to handle the seasonality patterns in traffic data by incorporating 
additional seasonal components to capture the seasonal fluctuations. As we are dealing 
with traffic data, we can expect to have all kinds of distinct patterns and trends.  

In order to take these patterns and behavior into account, the researchers needed to 
divide traffic data into subsets or segments and fit ARIMA models to each subset. Lee and 
Fambro (1999) investigated the use of subset ARIMA for short-term traffic volume 
prediction, and their results showed that the subset ARIMA model gives more stable and 
accurate results. 

Kalman Filter has been widely used in various applications such as sensor fusion and 
target tracking, given its ability in prediction and measurements. Kalman Filter has been 
applied to traffic prediction to estimate and predict future traffic values based on available 
data(Ojeda, Kibangou, and De-Wit, 2013; Van-Hinsbergen et al., 2012; Okutani and 
Stephanedes, 1984). 

Statistical methods often assume that the traffic data is linear and stationary, which 
limits the model’s ability to capture complex and non-linear relationships in traffic data. To 
tackle these challenges, machine learning-based traffic prediction models have emerged 
and received a lot of attention from researchers. Among the first machine learning models 
used for traffic prediction is the K-Nearest Neighbor algorithm (KNN) (Davis and Nihan, 
1991). In (Davis and Nihan, 1991) the authors conclude that linear time-series methods 
performed better than k-NN, but further research was needed to better understand which 
scenarios k-NN is better than conventional methods.  
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In recent years, some researchers utilized k-NN models for traffic predictions and were 
able to achieve promising results. Zhang et al. (2013) proposed a k-NN model for short-
term traffic flow prediction in urban expressways that achieved a 90% accuracy. In another 
work by Yang et al. (2019), they proposed a k-NN model for traffic flow prediction in road 
ports and used k-Dimension Tree (KD Tree) to reduce the time complexity of neighbor 
searching. Other machine learning includes support vector regression (SVR), and Bayesian 
model. In a study by Wu, Ho, and Lee (2004), the authors applied SVR for travel-time 
prediction using real highway traffic data.  

The SVR model has been applied to traffic prediction in several studies due to its 
generalization ability (Nidhi and Lobiyal, 2022). The Bayesian networks model can take into 
account the causal probabilistic relationship between random variables, which enables the 
modeling of complex systems and capturing dependencies. Sun, Zhang, and Yu (2006) 
proposed a traffic flows prediction model based on a Bayesian network, and traffic flows 
among adjacent road links are modeled as a Bayesian network (Sun, Zhang, and Yu, 2006). 

In recent years, with the rapid development of sensors and road networks, more and 
more data traffic data are generated with increasing complexity. The use of traditional 
traffic prediction models becomes inefficient and limiting, considering the complexity of 
data. It becomes clear that more powerful computing and data processing technologies are 
required. Furthermore, computers become more powerful with highly advanced computing 
capabilities. This enabled the advancement of prediction models, specifically deep learning-
based models. 

These deep learning models showed very good performance in many fields. Therefore, 
several researchers focused on developing predictive models that used a variety of deep 
learning methods. Recurrent Neural Networks (RNN) and its variants were introduced into 
traffic flow prediction. Since RNN-based models were built to model and capture sequences 
of data, they became the first choice for time-series prediction and classification. In 
(Xiangxue, Lunhui, and Kaixun, 2019), the authors proposed a short-term traffic flow 
prediction framework based on the LSTM-RNN model that was trained and tested using an 
urban road network traffic dataset. The model can correctly capture the time trends and 
temporal correlations of the traffic flow in multiple time steps into the future. In another 
work by Du et al. (2017), the authors proposed an LSTM-based prediction model to predict 
24-hour traffic count data. The prediction results of the model are then used for resource 
allocation in Vehicle-to-Vehicle (V2V) communication.  

Other works used LSTM with other algorithms, such as Principal Component Analysis 
(PCA), where PCA was applied to extract the main trend data and then LSTM was applied 
to the residual data, which shows that subtracting the main trend data gives better results 
compared to directly using LSTM (Zhao and Zhang, 2018). Though LSTM shows good 
results, it still cannot fully capture the characteristics of traffic data, where the traffic in one 
location can impact the traffic of several locations. This is referred to as the spatial 
information or spatial dependencies that the generic LSTM models cannot capture. By 
incorporating spatial correlations, it is possible to capture both the temporal and spatial 
correlations and dependencies between data points. 

Due to their ability to learn the spatial features effectively, many research works 
incorporated CNNs with LSTM. This enabled CNN-LSTM models to learn the spatial 
information by applying conventions over the input data before feeding it to LSTM to learn 
the temporal information and the correlations between them in an automatic and 
hierarchical manner. Zhao et al. (2021). proposed a CNN-LSTM-based prediction model 
using spatial-temporal trajectory topology, which achieved 1%~2% accuracy compared to 
normal LSTM. As discussed above, CNN is built to handle grid-structured data, which is not 
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fully compatible with road network data, which are irregular and better represented as 
graph data. (Lu et al., 2020) proposed a graph LSTM (GLSTM) model to capture spatial-
temporal representations in road traffic flow prediction, which can model complex traffic 
flow and outperform LSTM and GRU models.  

LSTM and its variants give promising results, but the accuracy degrades with long 
sequences. In order to solve this problem, graph convolution is used to handle traffic data 
more efficiently. There are two methods of graph convolution spatial methods and spectral 
methods, where spatial methods apply convolution filters on a graph’s nodes and their 
neighbors (Guo et al., 2019). Guo et al. (2021) proposed an optimized graph network with 
RNN for traffic prediction, where the spatial characteristic of the road network is 
represented as a graph. In their paper, Guo et al. (2021) evaluated the models on three real-
world datasets, and the results show that the proposed method outperforms methods such 
as GRU, SVR, and GRU. 

In their work, Yu, Yin, and Zhu (2018) proposed a graph complete convolutional 
structure that effectively captures the spatio-temporal correlations in traffic data. The 
proposed model was able to outperform LSTM-based models as well as the GCGRU model 
proposed by (Guo et al., 2021). However, these models do not consider the dynamic spatial-
temporal correlations of traffic data. To address the shortcomings of graph convolutions or 
other models based on graph convolutions, a graph attention networks (GATs) architecture 
that leverages masked self-attentional layers was introduced (Veličković et al., 2018). Liang 
et al. (2018) proposed a multi-level attention network that leverages graph attention over 
data from traffic sensors. The authors used a multi-level attention-based recurrent neural 
network to predict the readings of geo-sensor over several future hours where a graph 
multi-level attention model can capture the dynamic spatio-temporal dependencies. The 
proposed model outperformed LSTM, Seq2seq, and stDNN (Zhang et al., 2016; Sutskever, 
Vinyals, and Le, 2014). However, it is time-consuming in practice since a separate model 
needs to be trained for each traffic prediction model. 

To address the issues addressed above, Guo et al. (2019) proposed an attention-based 
spatial-temporal graph convolutional networks (ASTGCN) based on the graph structure of 
the traffic network and the dynamic spatio-temporal information of the traffic data. Based 
on the promising results of the ASTGCN model, we were motivated to improve the 
performance of the models by changing the model’s architecture and adding a Kalman Filter 
layer. 
 
3.  Attention Based Spatial-Temporal Graph Convolutional Networks 

3.1.  Problem Definition 
 A traffic network is defined as an undirected graph 𝐺 = (𝑉, 𝐸, 𝐴), where V is a finite set 
of N nodes and E is a set of edges and the connectivity between the nodes is indicated as 
𝐴 ∈ 𝑅𝑁×𝑁 which denotes the adjacency matrix of the graph G. Where each node is a traffic 
detection sensor that generates the traffic flow in a certain road network, the 
measurements detected is denotated as F where they have the same sampling frequency. 
Based on the graph road network definition above, the traffic flow prediction problem can 
be defined as follows:  

• Each node detects and records 𝑓 where  𝑓 ∈ (1, … , 𝐹). 

• 𝑥𝑡
𝑖  donates the values of all the features of node 𝑖 at time 𝑡. 

• 𝑐 donates a feature of node 𝑖. 

• 𝑥𝑡
𝑐,𝑖 donates the value of the c-th feature of node 𝑖 at time 𝑡. 
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Based on the above definitions, we will have 𝑋𝑡 = (𝑥𝑡
1, 𝑥𝑡

2, … , 𝑥𝑡
𝑁)𝑇  ∈ 𝑅𝑁×𝐹 which donates 

the values of all the features of all nodes at time 𝑡 . Then 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝜏)𝑇  ∈ 𝑅𝑁×𝐹×𝜏 

denotes the value of all the features of all the nodes over 𝜏 time slices. Finally, 𝑦𝑡
𝑖 = 𝑥𝑡

𝑓,𝑖
 ∈

𝑅 is set to represent the traffic flow of node 𝑖 at time 𝑡 in the future.  
 Then, the problem the model needs to solve is given 𝑥, which donates the historical 
measurements of all the nodes on the traffic network over past 𝜏 time slices. The prediction 
problem is defined as 𝒀 = (𝒚𝟏, 𝒚𝟐, … , 𝒚𝑵)𝑻  ∈ 𝑅𝑁×𝑇𝑝  of all the nodes on the whole traffic 

network over the next 𝑇𝑝 time slices, where 𝒚𝒊 = (𝑦𝜏+1
𝑖 , 𝑦𝜏+2

𝑖 , … , 𝑦𝜏+𝑇𝑝

𝑖 ) ∈ 𝑅𝑇𝑝  denotes the 

future traffic flow of node 𝑖 from 𝜏 + 1.    

3.2.  Model Architecture 
 Figure 1 displays the overall framework of the proposed model. It comprises three 
independent components, all designed with the same structure to model the recent, daily, 
periodic, and weekly-periodic dependencies of the historical data. 

 

Figure 1 The framework of ASTGCN. SAtt: Spatial Attention; TAtt: Temporal Attention GCN: 
Graph Convolution; Conv: Convolution; FC: Fully connected; ST block: Spatial-Temporal 
block 

 Figure 2 shows how the Kalman Filter is integrated into the original model, where we 
fuse the spatial attention output with the original time-series which ensures we have more 
information preserved throughout the training process. 

 

Figure 2 The integration of Kalman Filter with the model. 
 
4. Results and Discussion 

 Figure 3 shows the traffic sensors distribution from the PEMS dataset; the sensors data 
are collected from the PEMS dataset. The map is created using the adjacency matrix for the 
graph data, which also shows the connections between the sensors based on the road 
network. 
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Figure 3 Traffic sensors distribution map in the PEMS04 dataset. 

 Figure 4 shows the graph representation of the sensor data with its nodes and edge 
connections. The graph shows how dense is the connection between all of the nodes. These 
connections represent the possible impact of the nodes on each other. 

 

Figure 4 Traffic sensors distribution over a graph for both datasets. 

 Figure 5 shows the error matrix values for the original model and the improved model. 
We can notice that the proposed model with Kalman Filter shows smaller error values 
compared to the original model. Which indicates an improvement when using Kalman Filter 
with ASTGCN model. 

 

Figure 5 Model prediction accuracy with and without Kalman Filter. 



1306  Attention Based Spatial-Temporal GCN with Kalman filter for Traffic Flow Prediction 

 Table 1 displays the average performance of traffic prediction for various models. It is 
evident that the original ASTGCN model outperforms the other models, we can notice that 
the ASTGCN original model shows better performance compared to the other models. 
Moreover, we can see that our proposed model shows better performance results 
compared to the other models and the original model. We trained the original model and 
our proposed model using PeMSD4 and PeMSD8 datasets for 40 Epoch.  

Table 1 Average performance comparison of different approaches on PeMSD4 

 PeMSD4 PeMSD8 
Model RMSE MAE RMSE MAE 

HA 54.14 36.76 44.03 29.52 
ARIMA 68.13 32.11 43.30 24.04 

VAR 51.73 33.76 31.21 21.41 
LSTM 45.82 29.45 36.96 23.18 
GRU 45.11 28.65 35.95 22.20 

STGCN 38.29 25.15 27.87 18.88 
GLU-STGCN 38.41 27.28 30.78 20.99 

GeoMAN 37.84 23.64 28.91 17.84 
ASTGCN 35.45 22.55 29.34 19.13 

Our Model 33.56 21.14 29.09 18.59 

 
4. Conclusions 

 In this paper, we addressed the challenge of accurate traffic flow prediction in large 
and interconnected road networks by proposing an attention-based spatial-temporal graph 
convolutional network (ASTGCN) with a Kalman filter. Traditional statistical and machine 
learning methods have limitations in handling the complex spatio-temporal data of traffic 
networks, leading to unsatisfactory accuracy. To overcome these limitations, we leveraged 
graph convolutional neural networks (GCNs), which extend the concept of convolution to 
graph-structured data. Our proposed ASTGCN model integrates attention mechanisms to 
capture both local and long-range dependencies in traffic data with a Kalman filter to fuse 
data from different blocks and improve the model's accuracy. Finally, our research 
demonstrates the potential of attention-based spatial-temporal graph convolutional 
networks with a Kalman filter for traffic flow forecasting. Further research can explore 
additional enhancements and applications of this model, such as real-time traffic 
prediction, adaptive traffic management, and integration with emerging technologies like 
connected and autonomous vehicles. 
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