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Abstract. The Hilti Jaibot, a state-of-the-art construction site drilling robot, has demonstrated 
remarkable productivity gains while also underscoring the need for improved safety and 
monitoring capabilities. This study aims to address this need by harnessing Internet of Things (IoT) 
technologies and predictive maintenance methodologies. The proposed enhancements encompass 
a comprehensive sensor and camera integration to monitor the robot's environment, coupled with 
the development of a Long Short-Term Memory (LSTM) predictive maintenance algorithm to 
preemptively identify operational issues. These improvements enable the Jaibot to autonomously 
detect and mitigate risks, such as obstacles and human activity, while providing real-time safety 
alerts to operators. Incorporating quantitative results from our predictive model, which 
successfully predicts three output variables (X, Y, and Z) using three input variables, we observed 
varying RMSE and MAPE values. Specifically, X exhibited an RMSE of 77.80% and a MAPE of 
242.20%, while Y showed an RMSE of 31.10% and a MAPE of 69.70%, and Z had an RMSE of 34.53% 
and a MAPE of 82.74%. Notably, Y and Z data displayed high MAPE values, potentially attributed to 
data inconsistency. To enhance accuracy in our predictive model, we propose the utilization of more 
complex models and increased data volumes, which may mitigate the observed inconsistencies and 
lead to improved overall model performance. These findings from our quantitative analysis provide 
valuable insights for the integration of predictive maintenance algorithms into the Hilti Jaibot and 
lay the foundation for future advancements in robotic construction, emphasizing the pivotal role of 
IoT technology and predictive maintenance in shaping the industry's trajectory. 
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1. Introduction 

 As the fourth industrial revolution, Industry 4.0 is progressing exponentially, and 
digital transformation and automation have gradually become a common phenomenon 
around us. Digitization, automation, and integration enhance productivity and improve the 
design and quality of the construction (Rabbani and Foo, 2022; Chong et al., 2022; Yet, Lau, 
Thang 2022; PwC, 2016). However, the adoption of emerging technologies and automation 
within the construction industry is fairly slow relative to other industries.  This is because 
of the inability to embrace technological advances relative to other industries, such as 
manufacturing and automotive. (Ma, Mao, and Liu, 2022) found that the complexity and 
decentralization of construction activities have resulted in the construction industry 
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lagging behind compared to streamlined industries. Not only that, but the construction 
industry is also experiencing a skilled labor shortage of engineers, consultants, and 
supervisors, which result in project delays and eventually leads to a decrement in 
productivity and an increment in cost on the construction site (Jonny, Kriswanto, and 
Toshio, 2021). 

In accordance with Hilti, the link between digitalization and job site has been 
accomplished as they bring digital solutions on-site and solve installation challenges by 
introducing the Hilti Jaibot, a semi-autonomous drilling robot for overhead installation with 
the aids of Building Information Model (BIM). The solution has helped contractors adapt to 
the changing phase of modern construction and furthermore brought value in terms of 
performance, innovation, and health and safety. According to research, Hilti Jaibot has 
improved the overall drilling accuracy by 50% and schedule reduction of 20% (Brosque 
and Fischer, 2022). This marks a significant step for the construction industry in addressing 
major challenges, including a shortage of skilled labor, stagnant productivity, and health 
and safety issues.  

While the Hilti Jaibot is currently a cutting-edge construction robot, it's important to 
acknowledge that emerging technologies can surpass it if we neglect to integrate new 
innovations. Meeting the growing global demand for digital solutions with enhanced 
functionality and accessibility is essential to avoid obsolescence. The introduction of IoT 
technologies like Edge Computing, Big Data, and Digital Twin can boost productivity by 
enhancing the existing product. By leveraging IoT, we can optimize data and integrate 
machine learning and machine vision to enhance Jaibot's capabilities. 

 
2. Related Works 

 The presence of the semi-autonomous Hilti Jaibot has addressed safety concerns and 
stagnant labor productivity issues in construction activities (Lee et al., 2022). However, the 
Jaibot itself has not been implemented with IoT to provide assistance with overhead 
installation on the site. Without IoT support, the ability to move data over a network 
without the need for human or human interaction with the computer is not available. Since 
there is no involvement of IoT, the real-time information is unable to be ingested into the 
cloud for further processing, such as progress monitoring, computation of follow-up action, 
predictive maintenance, etc. (Thea, Lau, and Lai, 2022; Shen, Lukose, and Young, 2021). In 
accordance with the statement above, the supervisor or project manager may find it 
difficult to manage and monitor the progress and performance of the Jaibot on the 
construction site. Based on research, with inefficient and inaccurate progress monitoring, 
time and cost overruns may accounted for in construction projects (Omar, Mahdjoubi, 
Kheder, 2018). In the long run, the excessive loss of time and money may arise as a serious 
issue due to a lack of IoT technology implementation and result in the shutdown of a project 
in worst case scenario. 
 Other than that, the influence of Covid-19 on construction activities has resulted in the 
practice of remote working to limit the spread of disease. According to (Chin et al., 2022; 
Fabiani et al., 2021), the most effective policy to address the well-known need for worker 
distancing is to perform remote work. This makes the monitoring of Jaibot even harder 
compared to pre-pandemic times, where robots and equipment could be accessed by 
workers physically. The lack of remote monitoring aspect has reduced the productivity of 
the construction activities due to the social distancing policy on the site. 
 Over and above, due to its semi-autonomous operating system, the handling of an 
operator is essential to move the Jaibot from one point to another without any assistance 
from sensors. This indicates that there is a possibility that the Jaibot will crash into someone 



Chan and Lau 1311 

and result in minor casualties while moving on-site. From 2009 to 2019, there were around 
400 robot-related accident cases reported in Korea (Lee, Shin, and Lim, 2021). Additionally, 
based on research found, (Villani et al., 2018) write that: “Safety issues are the primary 
main challenge that must be tackled by any approach implementing collaboration between 
humans and robots.”  Worker safety is directly linked to site productivity since health and 
safety issues can impact the workforce. Consequently, prioritizing workplace robot safety 
in construction sites is crucial to prevent incidents that could pose risks to project progress. 
 
3. Research Problem 

 The shortcoming of the Jaibot has presented to us as the connection between the cloud 
and Jaibot is insignificant due to the lack of IoT. This results in data loss, which prevents the 
processing of real-time information for better use cases such as data analytics, data 
optimization, data monitoring, etc., that may improve the efficiency and productivity of the 
robot. Implementation and integration of IoT into the Jaibot help to promote the 
intelligence of the robot for better performance, which accounted for one of the Hilti IoT 
long-term visions, “Smartization,” to make the robot smarter in short. According to 
(Carvalho and Soares, 2019), progress monitoring is essential in construction management 
to reduce reworks and errors. The statement made above has shown the necessity of a 
progress monitoring feature on the Jaibot itself. Occurrences of overruns onsite in terms of 
money and time can be resolved by collecting, analyzing, and optimizing real-time data 
from the Jaibot. Additionally, the utilization of data has promoted the development of 
predictive maintenance or remote monitoring for improving the robot performance in 
terms of productivity and efficiency. 
 Besides that, the unique, dynamic, and complex nature of construction projects is likely 
to increase worker exposure to hazardous workplaces (Paneru and Jeelani, 2021). Not to 
mention the addition of a robot onsite that would result in an increment of health and safety 
issues due to high force robotic arm. To address the issue, physical or sensor-based barriers 
are frequently used in robotic automation systems to prevent any potentially dangerous 
situations when humans and robots interact. (Paneru and Jeelani, 2021) also states that the 
potential approaches of machine vision is presented to improve the health and safety 
monitoring practices. Machine vision technology can be applied to the development of 
obstacle detection, which brings the ability to detect obstacles or humans around the robot. 
This can greatly reduce the health and safety issues while interact with the robot onsite as 
the robot is able to determine the presence around it. 
 
4. Methodology 

 For software configuration, Amazon Web Services (AWS) is used for software 
integration as it provides various services ranging from cloud servers to IoT platform 
services. With the aid of AWS, one of the services, IoT Greengrass provides the edge 
computing implementation to the Raspberry Pi; thus, the Raspberry Pi is able to 
communicate with the cloud while having the benefit of local processing while offline. The 
collected data from the sensors will be fed into the AWS IoT Core and S3 bucket in different 
protocols for different uploading methods. Then these data will be fed to the AWS IoT 
SiteWise using microservices called AWS Lambda to route the data to selected cloud 
services. IoT SiteWise is able to collect, organize and analyze data from the Raspberry Pi 
itself. Furthermore, AWS IoT Twinmaker is integrated into the system, where the digital 
twin is developed by importing the 3D model of the robot and the construction site. With 
the integration of IoT Greengrass, IoT Core, IoT SiteWise, and IoT Twinmaker, the digital 
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twin of the Raspberry Pi (mimicking Jaibot) can be represented in the Grafana dashboard, 
along with the internal data such as video stream, detected distance, robot status, and other 
time-based data. The involvement of Machine Learning has provided the predictive 
maintenance feature and forecast the time-based data for the robot use cases. 

 

Figure 1 System Block Diagram 

There will be three major systems surrounding the overall project which are: 
• Remote data collection system 
• Predictive maintenance system 
• Obstacle detection & and avoidance system. 

 Digital twin technology creates virtual models of physical objects, like our robot. Unlike 
simulations, digital twins are real-time interactive environments. Sensors on the physical 
object gather data and transmit it to the digital twin, enabling real-time optimization, 
performance monitoring, problem identification, and solutions testing without real-world 
risks. 
 In predictive maintenance, we utilize LSTM for feature extraction from Big Data 
comprising multi-sensor parameters. Deep learning on high-dimensional information aids 
Remaining Useful Life (RUL) prediction. Here are the LSTM model equations shown in 
equation 1-6: 

 𝑓𝑡 = 𝜆{𝑊𝑓 ∙ [𝑦𝑡−1, 𝑥𝑡] + 𝑏𝑓} (1) 

 𝐶�̃� = 𝑡𝑎𝑛ℎ{𝑊𝑐 ∙ [𝑦𝑡−1, 𝑥𝑡] + 𝑏𝑐} (2) 
 𝑖𝑡 = 𝜆{𝑊𝑖 ∙ [𝑦𝑡−1, 𝑥𝑡] + 𝑏𝑖} (3) 
 𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶�̃� (4) 
 𝑂𝑡 = 𝜆{𝑊𝑜 ∙ [𝑦𝑡−1, 𝑥𝑡] + 𝑏𝑜} (5) 
 𝑦𝑡 = 𝑂𝑡tanh(𝐶𝑡) (6) 
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where 𝑓𝑡  = forget gate, 𝑖𝑡 = input gate, 𝑂𝑡 = output gate, 𝐶𝑡 = long-term memory, 𝑦𝑡 = short-
term memory, 𝑥𝑡 and 𝑥𝑡

,  = input and output at time t, λ, and tanh = activation functions, 𝐶�̃� 
= selection of long-term memory at time t, W = weight, and b = deviation 
 In theory, the data is preprocessed before the training process by using normalization 
processing to reduce noise and prediction error. After the training of data, the mapped HI 
is conducive to the evaluation of the health status. Furthermore, a degradation curve within 
the service life is produced, and the RUL is predicted. To calculate the evaluation indexes of 
the trained model, RSME, MAPE, and 𝑅2  is used where the smaller the RSME value, the 
better the performance; the closer the 𝑅2 is to 1, the better the data fits and outcomes. The 
formula of RSME, MAPE and 𝑅2 is shown in equation 7, 8 and 9 respectively. 

 

𝑅𝑀𝑆𝐸 =√
1

𝑛
∑(𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡)2
𝑛

𝑖=1

 (7) 

 
𝑀𝐴𝑃𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛

(|𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡|)

𝑦𝑎𝑐𝑡𝑢𝑎𝑙
 (8) 

 
𝑅2 = 1 −

∑(𝑌𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡)
2

∑(𝑌𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑌𝑚𝑒𝑎𝑛)2
 (9) 

  
 The implementation of the ultrasonic sensor is associated with the feature of detecting 
and avoiding obstacles. In theory, similar to radar, the fundamental working principle of 
ultrasonic sensors is to emit high-frequency sound waves with an emitter and receive the 
reflected sound waves with a receiver. Based on the time required for the sound waves to 
be reflected back, the distance can be calculated using equation 10, where T is the time 
required, and C is the speed of sound. 

 
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

1

2
𝑇 × 𝐶 (10) 

 The speed of sound, typically 343m/s at 20°C, varies with temperature and humidity. 
Ultrasonic sensors enable the robot to detect obstacles, even transparent ones like clear 
plastic. AWS IoT Twinmaker creates digital twins of real-world systems, enhancing 
operations. Using existing data and 3D models, the Jaibot and the construction building are 
input into the IoT Twinmaker scene in this project (see Figure 2). 

 

Figure 2 AWS IoT Twinmaker Scene & 3D Model Jaibot 

 Figure 2 illustrates the 3D environment of the developed digital twin of a Jaibot and the 
site scene. The 3D model of the Jaibot and the environment is inserted in AWS Twinmaker, 
where the 3D environment is generated accordingly. The 3D models, along with the lighting, 
can be transformed into different positions, rotations, and scales according to the use cases 
in the scene for representing the real Jaibot in a remote construction site. 
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 The LSTM predictive maintenance model is trained using MATLAB (Figure 3). Four out 
of five vibration datasets (X, Y, Z) are used to train, test, and validate the model, aiming to 
monitor drill bit abnormalities during long working periods. Input data is pre-processed, 
split into sequences, and model architecture is configured with editable parameters. 
Performance is evaluated using RMSE and MAPE values, and the predicted results are 
compared against the actual results. Tuning involves adjusting hyperparameters to prevent 
overfitting while maintaining a balance between data and model architecture. 

 
Figure 3 LSTM Predictive Maintenance Model 
 
5. Testing and Evaluation 

 The first test is experimented with the method of data uploading in order to indicate 
the time required to upload the IoT data to the cloud. According to the block diagram, there 
are two different methods of sending the data to the cloud, which are implementing MQTT 
and HTTPS protocols for JSON files and CSV files. In this test, the time for uploading the data 
to the cloud for each method is collected and tabulated into the table below by using the 
code of the response.elapsed.total_seconds(). 

Table 1 Efficiency Test of Different Uploading Method 

Attempts MQTT protocol - JSON file (second) HTTPS protocol - CSV file (second) 

1 1 1.2381 
2 1 1.2154 
3 1 1.6699 
4 1 1.2112 
5 1 1.1709 

Average 1 second 1.3011 seconds 

 According to the results shown in Table 1, the MQTT protocol takes less time to upload 
data to the cloud than the HTTPS protocol. However, it should be mentioned that the HTTPS 
protocol has a higher efficiency than the MQTT protocol. This is because the MQTT protocol 
can only upload a single batch of data to the cloud at a time, whereas the HTTPS protocol 
can send a single or multiple batches of data to the cloud. Moreover, since the use case of 
the robot is designed to operate in a remote environment, the HTTPS protocol would be a 
greater approach for data uploading to the cloud after an internet connection is available. 
 The second test experimented on the data uploading speed on different sizes of the CSV 
file through HTTPS protocol. Since the use case of the robot is mainly operated in a remote 
area where the connection is unstable, therefore the data is most probably initially stored 
locally inside the robot until the robot has a stable internet connection. The uploading 
speed of the data is essential to the digital twin of the robot in a virtual environment where 
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the users want to manage and optimize real-time data. Thus, this testing is conducted to 
identify the size of the data affecting the uploading speed. 
 Table 2 displays the experimental results for data uploads utilizing the HTTPS protocol 
for varied data sizes ranging from KBs to MBs. Despite the large disparity in data volumes, 
the upload speed for both instances remained under 2 seconds on average. This implies that 
while data size has an impact on the upload speed, the impact is not significant enough to 
affect the speed in terms of seconds. 

Table 2 Speed Test of Different Data Size 

Attempts Small-sized data (second) Large sized data (second) 

1 1.4540 2.0931 
2 1.1757 1.7493 
3 1.3733 1.8037 
4 1.2669 1.8467 
5 1.2225 1.8408 

Average 1.2985 seconds 1.8667 seconds 

 The third testing is conducted on testing the video streaming features where the 
process would experience some delay due to various factors such as video resolution, video 
format, type of encoder, and more. In the system implementation, the video is streaming 
with the H.264 (AVC) encoder, as it is a video compression standard used in digital video 
content. Likewise, the H.265 (HEVC) encoder works the same way as H.264 but is newer 
and more advanced in several ways. Thus, in this testing, these two encoders will be 
compared in terms of bandwidths, streaming time delay, frame rate, and allocated storage 
byte size. 
 Table 3 reveals differences between H.264 and H.265 encoders. H.265 excels in 
bandwidth and storage efficiency, while H.264 suits real-time video streaming. For this 
project, H.265 is preferred for remote operations with limited bandwidth and storage. 
Testing four focuses on LSTM model accuracy for system failure prevention. Fine-tuning 
training options aim to minimize RMSE and MAPE values, ensuring high accuracy. Table 4 
shows that increasing LSTM layer size and epochs generally improves prediction 
performance for smaller data sizes. Performance varies among output variables, with X 
being the most challenging to predict. Results indicate the LSTM model's suitability varies 
based on data and tasks. In the final test (Testing 5), obstacle detection and avoidance 
system reaction time are assessed in stopping movement within threshold values. 

Table 3 Testing Between H.264 and H.265 Encoder 

Parameters H.264 H.265 

Bandwidths (kbps) 236.14 120.11 
Time delay (s) 9.2 9.8 

Frame rate (fps) 14.2473 14.4481 
Allocated storage byte size (kb) 136.07 90.77 

 In five tests, the system achieved an average reaction time of 0.146 seconds and 
covered an average distance of 5.22 cm. These results demonstrate the system's swift 
response to detected obstacles, ensuring quick recognition and avoidance. The short 
stopping distance enhances safety by preventing collisions and potential damage. Overall, 
the system proves its effectiveness in recognizing and reacting to obstacles, enhancing 
secure robotic navigation. 
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Table 4 Model Accuracy Test 

 After the data is imported, the data will be displayed in the dashboard, where it is 
shown in Figure 4. The left side of the dashboard shows the parameters of date and time, 
average CPU temperature, and CPU speed. In addition, the values from the ultrasonic 
sensors, along with an obstacle alarm, are also displayed on the other side of the dashboard. 
Video stream from KVS and 3D scenes from IoT Twinmaker are also imported into the 
dashboard, thus; the user is able to view the camera feed from the robot and the digital twin 
of the robot in virtual environment. 

Table 5 Obstacle Detection & Avoidance Precision Test 

Attempts Reaction time (second) Travel distance after the trigger of ultrasonic sensor (cm) 

1 0.13 5.0 
2 0.15 5.3 
3 0.15 5.3 
4 0.16 5.2 
5 0.16 5.3 

Average 0.146 5.22 

Data 
Size 

LSTM 
Layer 

Epochs 
RMSE (%) MAPE (%) 

X Y Z X Y Z 

100 

100 
100 108.99 31.46 34.85 305.14 38.32 75.03 
200 118.06 32.65 37.79 438.26 44.23 100.44 
300 158.60 36.03 37.90 631.28 52.44 83.60 

200 
100 90.30 31.46 33.89 229.82 40.36 70.12 
200 136.00 33.69 37.96 486.48 44.45 75.27 
300 138.80 36.54 38.77 450.49 54.11 103.90 

300 
100 106.12 32.75 37.00 322.14 43.74 80.07 
200 124.38 32.42 40.73 381.41 41.67 86.61 
300 146.11 40.19 42.01 551.99 52.16 87.59 

200 

100 
100 81.52 30.07 33.43 261.42 67.84 82.18 
200 84.46 31.31 34.26 258.78 56.69 82.39 
300 81.99 29.25 34.68 280.65 75.67 87.39 

200 
100 81.38 31.35 34.40 266.80 67.88 80.56 
200 80.66 34.28 34.77 273.22 97.70 86.36 
300 86.53 30.81 37.76 298.83 82.35 89.73 

300 
100 81.90 31.32 34.26 243.87 62.38 79.10 
200 83.47 30.18 33.8 290.32 63.83 81.27 
300 103.01 33.70 39.09 400.85 84.13 96.63 

500 

100 
100 88.38 37.29 36.15 246.94 52.29 154.90 
200 87.12 36.92 36.54 244.42 50.33 144.89 
300 89.36 37.20 38.31 264.40 54.93 147.65 

200 
100 86.86 38.11 35.48 239.66 53.84 144.31 
200 86.87 37.12 38.26 247.33 51.73 161.45 
300 90.74 37.42 38.41 273.70 58.02 129.42 

300 
100 86.48 37.67 36.33 239.58 52.55 141.03 
200 86.22 36.91 37.65 249.87 53.06 152.47 
300 88.36 37.04 37.54 259.24 51.79 140.31 

1000 

100 
100 83.22 34.61 33.74 426.07 68.09 172.18 
200 81.30 34.39 34.72 404.03 64.07 158.82 
300 81.57 34.30 33.80 385.22 57.86 139.80 

200 
100 81.88 35.46 33.83 414.41 64.39 163.48 
200 81.72 35.14 34.54 405.75 60.09 145.73 
300 81.90 35.07 34.54 399.05 58.83 134.06 

300 
100 82.32 35.40 34.93 421.13 62.30 175.77 
200 82.13 35.68 33.70 387.94 59.19 134.69 
300 80.42 35.21 33.04 369.45 53.18 129.31 



Chan and Lau 1317 

 The LSTM model successfully predicts three output variables (X, Y, and Z) using three 
input variables. Despite achieving successful predictions in Figure 5, varying RMSE and 
MAPE values are observed. The model is configured with 500 data size, 200 LSTM layers, 
and 200 epochs, resulting in different accuracy levels: X (RMSE 77.80%, MAPE 242.20%), 
Y (RMSE 31.10%, MAPE 69.70%), and Z (RMSE 34.53%, MAPE 82.74%). Notably, Y and Z 
data exhibit high MAPE values, possibly due to their data's inconsistency. To enhance 
accuracy, using more complex models with increased data may mitigate this issue, boosting 
overall model performance. 

 

Figure 4 Grafana Dashboard Console 

 

Figure 5 Plot of Actual and Forecast Data 
  

6. Conclusion and Future Works 

 In summary, this project aimed to enhance Jaibot's capabilities through machine 
learning, machine vision, and IoT, with three key objectives: implementing predictive 
maintenance, developing obstacle detection with ultrasonic technology, and rigorously 
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evaluating system reliability, encompassing real-world performance factors such as speed, 
accuracy, and durability. Beyond these achievements, the project holds broader 
significance, as integrating IoT into Jaibot creates opportunities in logistics, agriculture, and 
healthcare, with future directions potentially involving advanced AI algorithms and 
renewable energy sources to expand operational capabilities. The challenges identified in 
this project serve as inspiration for further innovation in robotics and IoT. In conclusion, 
our project not only met its objectives but also demonstrated the transformative potential 
of IoT in autonomous robotics, positioning Jaibot's enhancements as a catalyst for progress, 
promising a safer and more efficient future in robotics and beyond. 
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