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Abstract: This study aimed to synthesize magnetite mesoporous silica nanoparticles using local iron 

sand obtained from natural resources as magnetite core. The process was carried out in four stages, 

namely synthesis of magnetite nanoparticles, coating with silica, surfactant templating, silica 

incorporation, and surfactant removal. The particles were characterized by Scanning Electron 

Microscopy-Energy Dispersive X-ray spectroscopy (SEM-EDX), X-ray Diffraction (XRD), Particle Size 

Analyzer (PSA), Vibrating Sample Magnetometer (VSM), Fourier Transform Infrared (FTIR), and 

Brunauer-Emmett-Teller (BET). The results showed that magnetite mesoporous silica nanoparticles 

with a 2 g concentration of CTAB contained Fe3O4 and SiO2 compounds, without the chemical bonds 

related to CTAB. This material showed a smaller particle size distribution of 698.0 nm and a larger 

saturation magnetization value of 4.76 emu/g, with paramagnetic properties. Furthermore, the surface 

area, average pore diameter, and volume were 912.950 m2/g, 3.0706 nm (mesoporous), and 0.83 cm3/g, 

respectively. These magnetite mesoporous silica nanoparticles showed potential for application as 

hyperthermia agents and drug carriers to specific locations. 

Keywords: Drug carrier; Iron sand; Magnetite nanoparticles; Mesoporous silica; Surfactant removal 

1. Introduction 

The concept of nanotechnology is frequently applied to modern developments, offering 
designed nanomaterials with significant potential to enhance product specifications (Marques et 
al., 2021). Despite the widespread application, there is no precise definition of nanomaterials in the 
literature, leading to varied understanding (Baig et al., 2021). Based on the metric system, the 
nanoscale is a range of value below 1 micrometer (1µm) (European Commission, 2010). In drug 
delivery applications, nanomaterials serve as carriers to organs, tissue, and cells in the body 
through blood circulation, allowing direct effect on targeted disease sites. These materials have a 
unique capability to accumulate in tumor tissues through the enhanced permeability and retention 
(EPR) effects (Wibowo et al., 2021). Additionally, nanomaterials can be used as hyperthermia agents 
such as magnetite (Fe3O4) nanoparticles.  
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Recently, magnetite nanoparticles have shown potential for diverse applications due to their 
distinctive properties, including small size, superparamagnetic, low toxicity, and high 
biocompatibility (Perdani et al., 2020). The unique characteristic of magnetite nanoparticles is the 
ability to bind with drugs or other biomolecular agents, transfer to the body, and accumulate in 
targeted cells by magnetic field induction. This therapy produces localized heating in the targeted 
cell site without overheating the surrounding healthy tissue (Norouzi et al., 2017). However, 
magnetite nanoparticles have a high surface energy, causing smaller particles to aggregate which 
can lead to decreased magnetic power and dispersibility. This shows the need for further 
functionalization and modifications with certain materials such as silica, polymers, carbon, or other 
metal oxide sorbents (Shen et al., 2018). A practical use of these modified magnetite nanoparticles 
is in drug delivery applications such as doxorubicin (DOX). Moreover, DOX is a versatile 
chemotherapy medication extensively used in the treatment of leukemia and various solid tumors, 
including cancer of the liver, breast, ovarian, and others (Kalyanaraman, 2020).  

Silica is a fundamental primary substance that has been used in semiconductors, ceramics, and 
polymers, including in diverse sectors such as rubber production and pharmaceuticals 
(Dhaneswara et al., 2020). For pharmaceuticals or biomedical applications, mesoporous silica is a 
new generation of inorganic materials characterized by ordered porous structure, tuneable particle 
size, with large pore volume (2-50 nm) and surface area (Baig et al., 2021). The synthesis of 
mesoporous materials can be carried out by soft templating method using surfactants as soft 
templates (Baig et al., 2021). During this process, organic surfactant molecules play an important 
role as structure-directing agents (templates) in producing porosity within the blocks (Cheng et al., 
1995). Surfactants in the matrix must be removed to obtain materials with mesoporous structure, 
large surface area, and pore volume (Cauda et al., 2011). The removal process can be performed by 
various methods, such as calcination, which has very high surfactant removal efficiency (Ghaedi 
and Zhao, 2022).  

In Indonesia, Glagah Beach, Kulon Progo, Special Region of Yogyakarta, is an area with potential 
iron sand resources, offering significant opportunities for the synthesis of advanced materials. 
Despite its preference as a site due to the abundance of iron sand, the potential of Glagah Beach has 
been optimally realized (Swastika et al., 2021; Putri et al., 2020). Swastika et al. (2021) successfully 
synthesized Glagah Beach iron sand using the coprecipitation method with variations in HCl 
concentration (Swastika et al., 2021). Prasetyowati et al., (2021) also synthesized and characterized 
magnetite nanoparticles based on Glagah Beach iron sand using the coprecipitation method at 
various concentrations of NH4OH precipitating solution. Furthermore, Putri et al., (2020) explored 
the influence of sonication time and size of this iron sand in the preparation process to produce 
magnetite nanoparticles by ultrasonic radiation method. Prasetyowati et al., (2019) investigated the 
effect of dissolving iron sand extract in HCl solution on lattice parameters and magnetic properties 
of magnetite nanoparticles. Moreover, other iron sand resources from Tulungagung Beach, East 
Java, Indonesia, have been investigated for the synthesis of magnetite/silica nanocomposite (Taufiq 
et al., 2020). The application of magnetite/silica nanocomposite as a useful material has been 
conducted by some researchers (Elmaria et al., 2024; Maulana et al., 2024; 2023; Elmaria and Jenie, 
2021; Fitri et al., 2019).  

Several investigations have been carried out on magnetite mesoporous silica nanoparticles as a 
drug carrier. However, the investigations only focused on the synthesis of magnetite nanoparticles 
based on iron sand from Glagah Beach to explore the characteristics of the particles produced. This 
shows the need to develop a method for producing magnetite mesoporous silica nanoparticles, 
which can act as a multifunctional platform for hyperthermia agents and drug carriers in future 
medical applications. Therefore, this study aimed to synthesize magnetite mesoporous silica 
nanoparticles using local iron sand with cetyltrimethylammonium bromide (CTAB) as a surfactant 
source. By investigating the effect of cationic surfactants on silica nanoparticles, Singh et al. (2011) 
found that CTAB produced the smallest particle size. The results provided valuable information 
regarding particle characteristics of each stage of the synthesis process. 
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2. Methods 

2.1. Materials 
Iron sand was obtained from Glagah Beach, Kulon Progo, Special Region of Yogyakarta 

(S7°54'45.8" E110°3'59.5"). Hydrochloric acid (HCl, 37%), ammonium hydroxide (NH4OH, 25%), 
ethanol absolute (C2H5OH, 99%), cetyltrimethylammonium bromide (CTAB, 99%), and tetraethyl 
orthosilicate (TEOS) were purchased from Merck, Germany. All chemicals were used without 
processing and distilled water was applied during the synthesis process. 

2.2. Synthesis of magnetite nanoparticles (Fe3O4) 
Iron sand obtained from Glagah Beach was sieved first with a sieve size of 140 mesh. 

Subsequently, 10 g of sample was dispersed into 54 mL of 37% HCl for 2 hours using a sonicator at 
room temperature. The suspension was filtered using filter paper and the filtrate was dripped with 
25% NH4OH solution gradually until a black precipitate formed, which was separated, washed, 
and dried.  

2.3. Coating of magnetite nanoparticles with silica (Fe3O4@SiO2) 
A total of 0.4 g of Fe3O4 particles were dissolved into 80 mL ethanol, 20 mL distilled water, and 

2.5 mL 25% NH4OH solution, followed by dispersion using a sonicator for 1 hour. Subsequently, 
0.8 mL of TEOS was slowly added to the mixture, stirred for 6 hours, and the suspension was 
separated, washed, and dried. 

2.4. Surfactant templating and silica incorporation onto magnetite/silica composite 
(Fe3O4@SiO2@CTAB/SiO2) 

The method of surfactant templating and silica incorporation onto magnetic/silica 
nanocomposite was conducted based on Kurniasari (2023). A total of 0.4 g of Fe3O4@SiO2 particles 
were dissolved into 250 mL of ethanol and 5 mL of 25% NH4OH solution, dispersed for 30 minutes, 
and referred to as solution X. CTAB concentration variations of 1 and 2 g were dissolved in 350 mL 
distilled water and stirred for 30 minutes, namely solution Y. Subsequently, solution X and Y were 
mixed, stirred for 4 hours at room temperature, and added with 4 mL of TEOS at varying stirring 
times of 20 and 120 minutes, respectively. The solution was maintained at a constant temperature 
of 35°C, while the suspension obtained was separated, washed, and dried.  

2.5. Surfactant removal (Fe3O4@SiO2@SiO2) 
A total of 1 g of Fe3O4@SiO2@CTAB/SiO2 particles were calcined using a furnace at 350°C for 3 

hours. The sample matrix conducted in this study and illustration of each stage for magnetite 
mesoporous silica nanoparticles preparation are presented in Table 1 and Figure 1. 

 
Table 1 Research sample matrix 

Particles 
CTAB 

concentration 
(grams) 

Silica formation 
reaction time 

(minutes) 
Sample 

Fe3O4                 -                     - A 
Fe3O4@SiO2                 -                     - B 
Fe3O4@SiO2@SiO2 1 20 C 
Fe3O4@SiO2@SiO2 1 120 D 
Fe3O4@SiO2@SiO2 2 120 E 

 
Figure 1 Illustration of each stage for magnetite mesoporous silica nanoparticles preparation 
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2.6. Characterization 
In this study, X-ray Diffraction (XRD) Rigaku Type Smartlab X-ray Difratometer 40kVa was used 

to analyze the crystallinity (Lin et al., 2014). Scanning Electron Microscopy (SEM) was used as a 
standard method for direct imaging and dimensional measurement of micro and nano structures 
(Torres-Rivero et al., 2021). Energy Dispersive X-ray spectroscopy (EDX) was used for elemental 
analysis and chemical characterization of samples (Patra and Baek, 2014). Specifically, the type of 
SEM-EDX instrument used was JEOL JSM-6510LA. Particle Size Analyzer (PSA) Horiba SZ-100 was 
used to measure particle size distribution, while Fourier Transform Infrared (FTIR) Shimadzu 
A224158 spectroscopy was applied to identify functional groups presented in the form of spectra 
(Patra and Baek, 2014). The Brunauer-Emmett-Teller (BET) Quantachrome NovaWin Instruments 
v11.03 analysis was used to identify surface area, pore size, and volume of materials (Jaroniec et al., 
1998). Vibrating Sample Magnetometer (VSM) VSM250 is a characterization method to determine 
the magnetic properties of a sample (Kirupakar et al., 2016).  

3. Results and Discussion 

3.1.  SEM Analysis 
Iron sand, which had been transformed into a magnetite nanoparticle, was characterized using 

SEM analysis to observe the size and morphology. Based on Figure 2, magnetite nanoparticles 
showed a tendency to agglomerate due to the magnetic interaction (Moorthy et al., 2017). 

  

Figure 2 SEM analysis results on magnetite nanoparticles 
 

3.2. EDX Analysis 
Based on the elemental composition presented in Table 2, impurities such as Al, Si, and Ca in 

sample A showed significant reduction compared to iron sand. Meanwhile, Fe content increased 
from 67.81% to 76.58% in sample A due to the co-precipitation process that can produce magnetite 
nanoparticles with higher Fe content and fewer impurities. These results showed that local iron 
sand from Glagah Beach could be used as magnetite nanoparticles. 

 
Table 2 Composition of iron sand and magnetite nanoparticles 

Element 
Mass, % 

Iron Sand Sample A 

C 3.06 3.87 
O 26.8 18.53 
Al 0.69 0.53 
Si 0.76 0.11 
Ca 0.88 0.38 
Fe  67.81 76.58 

Total 100 100 
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3.3. XRD Analysis 
The phase, crystallite size, crystal shape, and elemental composition of the samples were 

characterized using XRD analysis. In Figure 3, for sample A, the diffraction peaks 2θ = 30°, 35°, 43°, 
53°, 57°, and 63° were observed, serving as characteristic of Fe3O4 according to JCPDS 19-0629, with 
index miller [220], [311], [400], [422], [511], and [440] planes (Moorthy et al., 2017). In sample B, the 
diffraction peak 2θ = 22°-27° was observed, showing the presence of silica with an amorphous phase 
(Taufiq et al., 2020). Magnetite diffraction peaks were also found in sample B, indicating that silica 
successfully coated the Fe3O4 magnetite core. In samples D and E, a broadening of the silica 
diffraction peak was identified, which was related to the presence of large pores in the material 
(Purwaningsih et al., 2019). This showed that there were large pores formed in the silica due to the 
effect of the surfactant templating process using CTAB, requiring further quantification by BET 
analysis. 

 

Figure 3 XRD analysis of synthesized particles at each stage 
 
The crystallite size of magnetite nanoparticles was calculated using the Debye-Scherrer equation: 

𝐷 =
𝑘 𝜆

𝛽 𝑐𝑜𝑠𝜃
       (1) 

where D is the crystallite size (nm), k is the shape parameter (for magnetite which is 0.89), λ is 
the wavelength of X-ray (0.154 rad), β is the full width at half maximum of the peak (FWHM), and 
θ is the diffraction angle. Subsequently, the crystallite size of samples A and B are shown in Table 
3. 
 
Table 3 Average crystal size of sample at each stage 

Stage Sample Average crystal size (nm) 

This study Putri et al. (2020) Taufiq et al. (2020) Swastika et al. (2021) 

1 A 1.36 2.7-68.8 8.2 22 

2 B 1.41 - 8.9-13.2 - 

 
3.4. PSA Analysis 

At the stage of surfactant templating and silica incorporation (sol-gel), silica interacted with the 
hydrophilic component of CTAB through electrostatic forces, as presented in Figure 4 (Semeykina 
and Zharov, 2022). The type of electrostatic interaction that occurred including silica charge was 
controlled by pH and isoelectric point, where the molecular charge is zero (Pal and Bhaumik, 2013). 
Generally, silica species have an isoelectric point of 2, showing a positive, neutral, and negative 
charge in acidic (pH<2), neutral (pH=2), and alkaline (pH>2) conditions, respectively. At the end 
of the surfactant templating and silica incorporation into the magnetite/silica composite stage, a 
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solution with pH 9 was formed due to the addition of NH4OH. Therefore, the condition of the 
solution was alkaline, making the silica negatively charged. To determine the type of electrostatic 
interaction, the inorganic precursor was symbolized as I and the polar head of the surfactant was 
denoted as S. In this study, silica is negatively charged and CTAB is a cationic surfactant making it 
positively charged. Consequently, the type of electrostatic interaction that occurs is the S+I- 
interaction. The type of interaction to produce well-organized mesoporous silica material is the S+I- 
(alkaline conditions) and S+X-I+ (acidic conditions) (Xiang et al., 2010). 

Table 4 shows the particle size data of all samples in this study based on PSA analysis. The 
presence of the silica coating stage on magnetite nanoparticles caused the particle size of sample B 
to be 114.6% or 2.15 times larger than A. At the same CTAB concentration of 1 g, sample D produced 
a larger particle size than sample C. This showed that prolonged reaction time resulted in a longer 
silica growth process, leading to a larger particle size. Sample C was also studied to determine the 
extent of silica growth from 20 minutes to 120 minutes (sample D). However, the increase in particle 
size that occurred was significant at 17.62%. 

At the same complete reaction time of 120 minutes, sample E had a smaller particle size than 
sample D. This showed that a larger concentration of CTAB led to smaller particle size, causing the 
formation of more micelles, and increasing the bonds between silica and CTAB. Therefore, the 
bonds between silica and silica to form Si-O-Si groups would decrease, resulting in smaller particle 
size (Purwaningsih et al., 2019).  

 

Figure 4 Illustration of the interaction between CTAB and silica 
 
Table 4 Particle size distribution of the synthesized results at each stage 

Sample Particle size (nm) 

A 213.8 
B 459.0 
C 629.4 
D 740.3 
E 698.0 

 
3.5. VSM Analysis 

The magnetic properties of a material can be measured using a Vibrating Sample Magnetometer 
(VSM). Figure 5 shows that samples A and B have superparamagnetic properties, indicated by 
remnant magnetization (Mr) and coercivity field (Hc) values that are close to zero, and high 
saturation magnetization (Ms) values (Taufiq et al., 2020; Quy et al., 2013). Meanwhile, the type of 
hysteresis loop of samples D and E has paramagnetic properties. 

Ms, Mr, and Hc values of all samples are presented in Table 5. A comparison of samples A and 
B shows a decrease in Ms value due to non-magnetic surface coating by silica (Moorthy et al., 2017). 
Due to the smaller particle size, sample E has a slightly higher Ms value than sample D From the 
results of VSM analysis, a higher concentration of CTAB can provide magnetic strength with a 
larger saturation magnetization value. 
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Figure 5 Magnetization curves of particles synthesized with magnetic field range of (a) ±20.000 Oe 
(b) ±1.000 Oe 

 

Table 5 Ms, Mr, and Hc values of particles synthesized at each stage from magnetization data 
analysis 

Stage Sample 

This study 

Ms  
[emu/g] 

Mr  
[emu/g] 

Hc  
[Oe] 

1 A 24.04 0.447 -8.42 
2 B 17.78 0.347 -8.91 
4 D 3.60 0.095 -9.23 
4 E 4.76 0.099 -10.73 

 
3.6. FTIR Analysis 

FTIR analysis was performed to confirm the formation of silica in magnetite nanoparticles and 
the removal of CTAB surfactant in the synthesized particles. Based on the results of PSA and VSM 
analysis, sample E was used in FTIR analysis due to its smaller size and higher MS value compared 
to sample D. From Figure 6, the characteristic peak appearing at 590 cm-1 in the sample confirmed 
the presence of Fe3O4. The vibration peak at 559 cm-1 showed the presence of SiO2 coating to the 
Fe3O4 magnetite core. The vibrational bands at 802 cm-1 and 971 cm-1 were identified as Si-OH 
bonds, while 1061 cm-1 showed Si-O-Si bonds. This showed the formation of silica network and 
surface silanol groups. Additionally, Figure 6 showed no wavenumber for the chemical bonds of 
CH-, N(CH3)2, -CH2-, indicating that the CTAB removal process by calcination at 350°C was 
successful. This suggested a high template removal efficiency and ability to minimize the particle 
structural damage. 

 

Figure 6 FTIR analysis of magnetite mesoporous silica nanoparticles (sample E) 
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3.7. BET Analysis 
The surface area of sample E was very high, approximately 912.950 m2/g, with an average pore 

diameter of 3.0706 nm and volume of 0.83 cm3/g. The molecular size of DOX was estimated to be 
1.5 nm (Bilalis et al., 2016). Due to an average pore diameter of 3.0706 nm, the anticancer drug DOX 
can fit into the pores of these magnetite mesoporous silica nanoparticles. 

3.8. Magnetism Suspension Test 
The magnetism test of the suspension of magnetite mesoporous silica nanoparticles (sample E) 

in water was carried out as shown in Figure 7. The results showed that the synthesized particles, 
namely magnetite mesoporous silica nanoparticles, could be directed by an external magnetic field, 

 

Figure 7 Magnetism test of magnetite mesoporous silica nanoparticle suspension in water (sample 
E) 

4. Conclusions 

In conclusion, this study showed the synthesis of magnetite mesoporous silica nanoparticles 
from local iron sand of Glagah Beach as a potential drug carrier. Based on EDX analysis results, the 
purity of Fe3O4 produced was 76.58%, showing that local iron sand from Glagah Beach could be 
used as magnetite nanoparticles. Sample E (Fe3O4@SiO2@SiO2 particles) with a higher CTAB 
concentration, had a smaller particle size with a surface area of 912.950 m2/g, and an average pore 
diameter of 3.0706 nm. Additionally, sample E had a higher Ms value, paramagnetic properties, 
and could be directed by an external magnetic field, with potential as a hyperthermia agent. These 
results showed that Fe3O4 magnetite nanoparticles from iron sand Glagah Beach Yogyakarta were 
successfully synthesized into magnetite mesoporous silica nanoparticles (Fe3O4@SiO2@SiO2), 
showing significant potential for future biomedical applications.  
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