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Abstract: The end-milling procedure has been widely used for machining glass-fiber-reinforced 
polymer composite (GFRP) materials. A complex interaction of reinforcing glass fibers with each 
other as well as the matrix element during the end-milling process can result in high cutting force 
(CF), surface roughness (SR), and delamination factor (DF) because of the anisotropic nature of GFRP. 
To reduce the three responses (CF, SR, and DF) at the same time, the end-milling cutting parameters, 
i.e., rotating speed (n), feed speed (Vf), and axial depth of cut (d), must carefully be determined. In 
this study, the end-milling of GFRP composites was investigated by utilizing a full factorial design of 
trials with three distinct values of n, Vf, and d. Also, a mix of genetic algorithms (GA) and 
backpropagation neural networks (BPNN) was administered to forecast the responses and obtain the 
optimized end-milling parameters. The firefly algorithm (FA), GA, and the integration of GA and the 
simulated annealing algorithm (SAA) were used to discover the best combination of end-milling 
parameter levels to reduce the responses' total variance. Later, the combination of BPNN and GA-
SAA capable of accurately predicting multi-response characteristics and significantly improving 
multi-response characteristics was obtained through analyzing the confirmation experiment. 

Keywords: Back propagation neural network; End-milling; Genetic Algorithm - Simulated 

Annealing Algorithm; Glass-fiber-reinforced polymer; Firefly algorithm 

 

1. Introduction 

The hybrid glass-fiber-reinforced-plastic (GFRP) and Fiber-Reinforced Polylactic Acid (FRPLA) 
are examples of Fiber-reinforced polymer (FRP). This material has been touted as a low-cost 
replacement for a variety of heavy exotic materials. Due to its unusual strength, high modulus, and 
fracture toughness, as well as being lightweight, GFRP composite has been employed in a variety 
of applications, including sports equipment (Morampudi et al., 2021), automotive parts 
(Mohammadi et al., 2023; Becker et al., 2019), and airplanes (Săftoiu et al., 2024; Shivanagere et al., 
2018), and improving the tensile strength zone of concrete (Tudjono et al., 2018; Caratelli et al., 
2017). On the other side, FRPLA is a biodegradable composite material with excellent strength and 
modulus elasticity (Budiyantoro et al., 2024.; Dawood and AlAmeen, 2024) for producing wind 
turbine (Lololau et al., 2021), producing filament in fused deposition modelling (FDM) 3D printing 
(Wang et al., 2024), and automotive sector (Giammaria et al., 2024).  
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In industries that use GFRP composites, end-milling is one of the most essential and generally 
utilized material-removal operations. The method has been used to remove superfluous materials 
and provide high-quality surfaces for composite material linking structures. Nevertheless, due to 
the cutting force, surface roughness, delamination or surface damage factor, fiber pull-out, and 
matrix failure that are all features of composite materials, the end-milling process of GFRP 
composites also offers several challenges.  

These include the cutting parameters utilized for machining, as well as the tool material, tool 
shape, and fiber orientation (Prasanth et al., 2018). (Thakur et al., 2019) have applied response 
surface methodology (RSM) for modelling and optimization during the end-milling process of 
GFRP composites. The end-milling process parameters were n, feed rate (fr), n, and weight % of 
graphene, while the minimized responses were SF and DF. The utilization of RSM showed a good 
agreement between the experimental results and the predicted values. 

A machinability study of the end-milling process of GFRP composites regarding three responses, 
i.e., CF, tool life (TL), and SR, were performed by (Azmi et al., 2013). The end-milling process 
parameters varied: feed rate (fr), n, and d. The effect analysis of the end-milling process criterion on 
the responses was employed using analysis of variance (ANOVA). The analysis was performed 
using ANOVA and multiple regression. They stated that the most influential parameter that 
affected all three responses was fr.  

(Çelik et al., 2014) investigated the significance of fr, cutting speed (Vc), and the number of flutes 
on thrust force and SR in milling GFRP using experimental and fuzzy logic models. The results of 
both models reveal that a low fr, Vc, and a high number of flutes end-mills produced minimum 
thrust force, while a high Vc, low fr, and a high number of flutes end mills produced low SR. 

Furthermore, (Sulaiman et al., 2022) used the Taguchi method to determine the optimal 
parameters of a milling machine (i.e., Vc, fr, and d) to find the minimum surface roughness in the 
dry milling machine process for aluminum 6061 material. Next, (Seo et al., 2014) used the Surface 
Response Design method to determine the optimal parameters of the micro end-milling machine 
(i.e., radial depth of cut (Rd) and axial depth of cut (Ad)) to obtain the minimum width error zone 
for materials STAVAX. 

Therefore, it can be said cutting force, surface roughness, and delamination factor have all been 
utilized to determine composite machinability and are thought to be closely related to the end-
milling performance of GFRP composites. In the references, the three end-milling parameters n, Vf, 
and d have been used in researching the machinability of composites in the end-milling of GFRP, 
as well as the modelling and optimization. Through testing, a selection procedure for determining 
the appropriate combination of process parameters to generate quality goods that concurrently 
satisfy many standards takes a long time, is expensive, and is tedious. Many researchers choose soft 
computing approaches because they may be used to handle challenging, highly intricate nonlinear, 
and multidimensional engineering issues (Weichert et al., 2019).  

There have been no publications on multi-performance optimization on CF, SR, and DF utilizing 
a combination of BPNN and three soft computing optimization methods, i.e., FA, GA, and SAA, in 
the end-milling process of GFRP, according to the literature review. However, a few research 
utilizing FA in the turning process has been undertaken on single and multi-performance 
optimizations. (Senthilkumar et al., 2014) minimized SR, VB (tool flank wear) and maximized MRR 
simultaneously using response surface methodology (RSM) and FA in turning AISI 1045 steel. RSM 
was applied to develop the model that relates the cutting parameters and the three responses, while 
FA was employed to minimize SR, VB, and maximize MRR. (Lobato et al., 2014) applied the bio-
inspired optimization (BiOM) algorithm in the end-milling process of stainless steel AISI (ABNT) 
420 to determine the appropriate levels of Vc, thrust force (Fz), and d. The selected BiOM was the 
bee colony algorithm (BCA), firefly colony algorithm (FCA), and fish swarm algorithm (FSA). The 
minimized responses considered were TL and CF. 

(Liu et al., 2019) developed a hybrid FA applied in a multi-pass internal grinding process using 
ceramic material. The optimization objective was to minimize SR, cylindrical error, and grinding 
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time. FA was employed to develop a mathematical model and multi-objective optimization on the 
experiments performed on an EDM process of hardened die steel (Bharathi Raja et al., 2015). 
(Gautam and Mishra, 2019)put forward FA based multi-performance optimization approach in 
laser beam cutting (LBC) using basalt fiber-reinforced polymer (BFRP) composites. The aim of the 
optimization was to find the levels of the LBC process parameters that produce minimum kerf 
width, kerf deviation, and kerf taper simultaneously.  

Next, SAA has been popular for performing single and multi-objective optimizations in 
numerous machining processes. (Majumder, 2015) implemented a method combining BPNN and 
SAA to maximize MRR and minimize wear ratio (WR) in the EDM process of mild steel (IS: 226/75). 
(Shukla and Singh, 2017) proposed a combination of regression analysis and SA to compute the 
optimal parameter setting for the AWJM process parameters in cutting AA6351-T6 (AlMgSi1) 
aluminum wrought alloy. The minimized machining characteristics were taper angle width and 
kerf top. 

Numerous studies have been conducted to model and improve the end-milling of GFRP 
composites. However, the literature review reveals that more research needs to be done on 
modelling and optimization in GFRP composite end-milling using soft computing approaches to 
obtain the minimal CF, SR, and DF concurrently. This study aims to close a gap in the body of 
knowledge. This study has two novel aspects. First, CF, SR, and DF are predicted by building a 
model of the end-milling process parameters using BPNN. The second is to combine and contrast 
several soft computing techniques to develop practical strategies for achieving the correct levels of 
the end-milling process parameters of GFRP composites. Combining GA with BPNN allowed for 
the best number of hidden nodes to be found for this model. The values of the end-milling process 
parameters that jointly reduce CF, SR, and DF are then achieved by combining three soft computing 
algorithms: FA, GA, and GA-SAA. Additionally, the impact of end-milling parameters on the three 
responses is examined using response graphs. 

2. Methodology 

This paper is arranged into 4 sections, as shown in Figure 1. Section 1 explains the literature 
review of the end-milling process, modelling, and optimization algorithms. Section 2 provides the 
preparation of the materials and experiments and also the optimization process methods, including 
BPNN, SAA, FA, and GA. Section 3 describes the findings, including the experimental data, the 
BPNN model development, the fitness function, the optimization of multi-performance using FA, 
GA, SAA, GA-SAA, the effects of end-milling process parameters on responses, surface analysis 
using SEM, and the confirmation experiment. Finally, section 4 presents the notable contributions 
of the study are highlighted as conclusions.  

2.1. Preparing the Materials and Experiments 
In the experiment, tested specimens were made of GFRP composites where the type of glass fiber 

used was combo fiber. This thick fiber type comprises two layers of unidirectional fibers crossing 
at a 60-degree angle. Epoxy resin was used in producing GFRP composites. The GFRP specimen 
was 40 (length) x 30 (width) x 5 (thickness) mm in size. The specimen size is fabricated based on the 
dimensions limitation of the dynamometer type 9272 (the diameter of a base plate for positioning 
the specimen is only 100 mm). The mechanical properties of GFRP composites typically have a 
tensile strength of 74.8 MPa, a density of 1800 kg/m3, an elastic modulus of 1400 MPa, and a 
percentage of fiber of 7%. 

The end-milling procedure on GFRP composites was carried out using a vertical milling machine 
Hartford S-Plus 10, having a spindle power of 10 kW and a maximum rotating speed of 10,000 rpm. 
Solid carbide end-mills with a diameter of 6 mm, four flutes, and 35o helix angles were employed 
in the end-milling testing. Table 1 lists the end-milling parameters used in the studies. The 
parameters' levels were selected using the result of preliminary experiments, the tools' catalog, and 
previous researcher setting levels (Jenarthanan et al., 2017; Mahesh et al., 2015). A complete factorial 



100 
International Journal of Technology 16(1) 97-111 (2025)  

 

 

 

design of 3 x 3 x 3 with three replications was used in the study. All tests were conducted randomly, 
without the use of any coolant, and the down-milling process was applied during the cutting 
process. 

 

   Table 1 The levels of end-milling parameters 

End-milling parameters Units Values 

Spindle speed (n) rpm 3000, 4000, and 5000 
Feed speed (Vf)  mm/min 500, 750, and 1000 

Axial depth of cut (d) mm 1, 1.5, and 2 

 
End milling process parameters of GFRP 

composites: 
spindle speed, feed speed, and depth of cut

Surface roughness 
measurement

Cutting force 
measurement

Delamination 
measurement

Experimental data BPNN modeling
Analysis the effects of end 

milling process parameters on 
responses

Optimization using FA, GA, 
and SA

Microscope Macro 
Carl Zeiss Stemi DV4 

Surfest Mitutoyo SJ-310

Kistler dynamometer 
type 9272

Confirmation experiment
Surface analysis using 

SEM

Conclusions

Kistler charge amplifier 
type 5070A

Kistler data ccquisition 
system type 5097 A

 
Figure 1 Diagram of experimental design 

 
The Kistler piezoelectric dynamometer type 9272 was used to estimate the three orthogonal 

components of the end-milling cutting forces: cutting force in the x direction (Fx), cutting force in y 
direction (Fy), and cutting force in the z-direction/thrust (Fz). Four piezoelectric force sensors on 
the dynamometer produce voltage outputs that vary directly with the load acting on the sensor. 
The voltage is then amplified using a Kistler charge amplifier 5070 A. A data acquisition system 
(Kistler 5097 A) is then employed for connecting and controlling the charge amplifiers and signal 
conditioners. The signal is then calibrated using Kistler Dyno Ware software via the RS-232 serial 
interface. The resultant of three measured forces or CF calculated by using Equation(1) (Soepangkat 
et al., 2019): 

CF = √𝐹𝑥
2 +  𝐹𝑦

2 +  𝐹𝑧
2 

(1) 

SR measurements were performed by using Mitutoyo Surftest SJ 310. Since the surface roughness 
values are in the range of 1-3 µm, based on the standard EN ISO 4288, the recommended cut-off 
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wavelength (λc) range is 0.8 mm and 2.5 mm, and the evaluation length (ln) consists of 5 sampling 
lengths (4 and 10 mm). An example of a macro imaged slot is depicted in Figure 2. The width of the 
slot is denoted by the letter W (equal to the diameter of end-milling), where the maximum damaged 
width or delamination factor, as assessed by using CAD, is Wmax. The delamination factor for each 
slot can be calculated using equation 2 (Jenarthanan et al., 2017; Kiliçkap et al., 2015; Çelik et al., 
2014; Erkan et al., 2013): 

𝐷𝐹 =
𝑊𝑚𝑎𝑥

𝑊
 

  (2) 

 
 Figure 2 The macro imaged slot 
 

2.2. Optimization Process  
2.1.1 Back Propagation Neural Network (BPNN) 

A BPNN model possesses input, hidden, and output layers, each with several neurons 
connected. The bias and weight of each neuron in each layer represent the link that connects the 
input and output layers. During the BPNN model training, the bias and weight for each neuron 
will be adjusted utilizing an error function to lower the error gradually. The optimal network design 
that yields the minimum mean squared error (MSE), response prediction, and goal function is the 
result of developing the BPNN model. The following are the steps for creating a BPNN model 
(Wang et al., 2019; Soepangkat et al., 2019): (a) Selecting the appropriate training function and 
conducting training, testing, and validation, (b) Creating the BPNN network design by determining 
the parameters of modelling which include variations of hidden layers and neurons in the hidden 
layers, stopping criteria or maximum iterations, learning rate, and activation functions for hidden 
and output layers, (c) Comparing the predicted results from BPNN output with the experimental 
results, (d) Collecting the BPNN pattern and objective function. 

2.1.2 Simulated Annealing Algorithm (SAA) 
SAA is considered a stochastic optimization tool for solving nonlinear programming (NLP) 

issues. The primary concept behind SAA is to produce random locations to elude becoming stuck 
in a local minimum. According to (Dowsland and Thompson, 2012), the SAA can be summarized 
as follows: 

1. Choosing a new solution (𝑠), initial solution (𝑠0), initial temperature (𝑇0), maximum iteration, 
and maximum sub-iteration, the fitness function of the new solution (𝑓(𝑠)), and fitness 
function of initial solution (𝑓(𝑠0)). 

2. Examining the fitness function difference (𝛿) using the following equation. 
𝛿 =  𝑓(𝑠) − 𝑓(𝑠𝑜)  (3) 

3. Generate random value (x) in the limits (0,1) 

a. If x < 𝑒𝑥𝑝
(−

𝛿

𝑇0
)
 , a new solution (𝑠) is used to replace the initial solution (𝑠0), and go to step 

5. 
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b. If x > 𝑒𝑥𝑝
(−

𝛿

𝑇0
)
 , go to step 5. 

4. Lowering the temperature and ensuring that the termination requirement has been met. The 
cooling schedule for lowering temperature was computed using equation (4)  

𝑇(𝑘) = 𝑇𝑜 × 𝑒𝑥𝑝
(−

𝑐
𝑘

)
 (4) 

where 𝑇(𝑘) is the latest temperature,  𝑇𝑜 is an initial temperature, and c and k are constants. 

5. Repeating steps 2 to 5 until a maximum number of iterations until the SAA is terminated. 

2.1.3. Firefly algorithm (FA) 
Firefly algorithm (FA) was built on the behavior of a swarm of fireflies. The intensity of fireflies' 

light is linked to their attraction parameter. The Euclidean distance formula can be used to calculate 
the range between the fireflies. The current location of the firefly (ith), eagerness to approach other 
appealing fireflies (jth), and product of randomization constraint (α) and a random number (εi) are 
factors considered in updating the firefly position. The FA can be proceduralized as follows (Fister 
et al., 2013): 

1. Initializing the random locations of the firefly inside the variables' border after defining the 
objective function. 

2. Assessing the intensity of light (or fitness value) for all fireflies. 
3. Choosing the best firefly depends on the light intensity value. 
4. Calculating the distance between the best and other fireflies (r). Further, equation (5) can be 

used to calculate the distance between two fireflies i and j:  

𝑟𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖    = √∑(𝑥𝑖,𝑘 − 𝑥𝑖,𝑗)
2

𝑑

𝑘=1

 

(5) 

The kth component of the spatial coordinate xi of ith is xi,k. 
5. Changing the location of the fireflies. The motion of a firefly attracted by another firefly can 

be determined by using the following equation: 

𝑥𝑖 = 𝑥𝑖 + 𝛽 × 𝑒−𝛾𝑟𝑖𝑗
2

(𝑥𝑖 − 𝑥𝑗) + 𝛼(𝑟𝑎𝑛𝑑 − 1
2⁄ ) (6) 

where (𝛼) is the scaling parameter that can be computed using equation (7), where  ∆ is a 
randomness reduction parameter: 

𝛼 = 𝛼0 + ∆ (7) 
Furthermore, the attractiveness parameter (𝛽) is then calculated using the following formulation: 

𝛽(𝑟) =  𝛽0 × 𝑒−𝛾𝑟2
 (8) 

where 𝛽𝑜  is the initial attractiveness parameter, and 𝛾 is the media light absorption coefficient, and 
r is the range between two fireflies. 

6. Analyzing the intensity rate, fireflies' intensities, and location of the fireflies. 
7. Choosing the most appropriate firefly for the current iteration. The overall process is then 

repeated until the FA's stopping criteria are satisfied. 

2.1.4. Genetic Algorithm (GA) 
The genetic algorithm (GA) is a commonly used population-based metaheuristic or soft 

computing method for solving optimization problems in mathematics, engineering, and other 
subjects (Sekulic et al., 2018; Mahesh et al., 2015). The steps of a generic GA are as follows 
(Soepangkat et al., 2019; Sekulic et al., 2018; Mahesh et al., 2015): generating N solutions at random 
to form the first population, calculating the solution's fitness values, selection, crossover, and 
mutation. 

3. Results and Discussion 

3.1. Findings 
Figure 3 represents the experimental process and response measurement. As a result of the 
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combination of n, Vf, and d, Table 2 illustrates the measured CF, SR, and DF successively. This table 
reveals that CF, SR, and DF values trace a steady path in a reasonable interval of end-milling process 
parameters.  

 
(a) 

 
(b) 

   
(c)  

Figure 3 Response Measurement for (a) Cutting force, (b) Delamination, (c) Surface roughness. 
 

3.2. BPNN Model Development 
The first stage in modelling is to normalize the experimental data to make sure that the interval 

value is between -1 and 1 using a normalization method of MATLAB 2022b. The best BPNN 
network structure had an MSE score of 0.17457 with an architectural network option was 3 - 8 - 8 - 
8 - 3, where the predicted cutting force, surface roughness, and delamination factor all had average 
errors of 2.806%, 4.311%, and 0.026%, respectively, as shown in Table 2. An error between the 
experiment and prediction is calculated using the following equation: 

𝑒𝑟𝑟𝑜𝑟 =  
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡
× 100% 

(9) 

 

Table 2 The measured CF, SR, and DF using the combination of n, Vf, and d 

No. of 
exp. 

a 
(mm) 

n 
(rpm) 

Vf 
(mm/min) 

Fr (N) Ra (µm) DF 

Exp. Pred. 
Error 
(%) 

Exp. Pred. 
Error 
(%) 

Exp. Pred. 
Error 
(%) 

1 1 3000 500 25.769 26.044 1.069 1.877 1.863 0.742 1.055 1.087 0.03 

2 1 3000 750 27 27.618 2.29 2.214 2.266 2.349 1.114 1.09 0.022 

3 1 3000 1000 33.494 33.7 0.615 2.267 2.386 5.277 1.124 1.117 0.006 

4 1 4000 500 14.516 14.551 0.238 1.599 1.658 3.737 1.1 1.087 0.012 

5 1 4000 750 27.454 28.24 2.862 1.848 2.007 8.612 1.137 1.089 0.043 

6 1 4000 1000 34.536 34.786 0.725 2.3 2.328 1.217 1.094 1.107 0.012 

7 1 5000 500 21.148 20.879 1.274 1.498 1.517 1.264 1.073 1.087 0.013 

8 1 5000 750 19.198 19.145 0.279 1.635 1.733 5.969 1.083 1.088 0.005 

9 1 5000 1000 49.177 46.89 4.65 2.103 2.121 0.846 1.06 1.1 0.037 



104 
International Journal of Technology 16(1) 97-111 (2025)  

 

 

 

Table 2 The measured CF, SR, and DF using the combination of n, Vf, and d (Cont.) 

No. of 
exp. 

a 
(mm) 

n 
(rpm) 

Vf 
(mm/min) 

Fr (N) Ra (µm) DF 

Exp. Pred. 
Error 
(%) 

Exp. Pred. 
Error 
(%) 

Exp. Pred. 
Error 
(%) 

10 1.5 3000 500 51.952 51.952 0 1.826 1.922 5.237 1.106 1.122 0.015 

11 1.5 3000 750 39.371 39.9 1.343 2.313 2.285 1.212 1.107 1.15 0.039 

12 1.5 3000 1000 56.586 53.535 5.391 2.378 2.389 0.474 1.146 1.162 0.014 

13 1.5 4000 500 22.631 22.975 1.521 1.598 1.679 5.1 1.13 1.115 0.014 

14 1.5 4000 750 29.781 31 4.093 2.015 2.084 3.406 1.123 1.149 0.023 

15 1.5 4000 1000 65.764 63.08 4.081 2.444 2.339 4.323 1.152 1.158 0.005 

16 1.5 5000 500 31.514 31.22 0.934 1.6 1.605 0.293 1.133 1.107 0.023 

17 1.5 5000 750 27.01 27.01 0 1.629 1.783 9.464 1.123 1.147 0.021 

18 1.5 5000 1000 39.074 38.62 1.163 2.226 2.217 0.416 1.201 1.158 0.036 

19 2 3000 500 38.47 40.247 4.618 2.097 1.954 6.799 1.217 1.162 0.045 

20 2 3000 750 62.856 62.92 0.101 2.314 2.347 1.39 1.173 1.171 0.002 

21 2 3000 1000 66.483 66.483 0 2.499 2.393 4.248 1.196 1.199 0.003 

22 2 4000 500 30.803 32.28 4.795 1.776 1.735 2.327 1.128 1.161 0.029 

23 2 4000 750 40.911 39.02 4.622 2.153 2.08 3.365 1.161 1.174 0.011 

24 2 4000 1000 54.039 53.664 0.694 2.431 2.382 2.027 1.259 1.198 0.049 

25 2 5000 500 25.998 24.599 5.383 1.597 1.612 0.917 1.185 1.161 0.02 

26 2 5000 750 49.681 52.92 6.52 1.779 1.826 2.63 1.227 1.181 0.038 

27 2 5000 1000 46.119 44.64 3.208 2.33 2.224 4.543 1.221 1.196 0.02 

28 1 3000 500 26.32 26.044 1.047 1.694 1.863 10.003 1.102 1.087 0.014 

29 1 3000 750 26.333 27.618 4.882 2.369 2.266 4.327 1.046 1.09 0.042 

30 1 3000 1000 32.389 33.7 4.046 2.353 2.386 1.418 1.143 1.117 0.023 

31 1 4000 500 14.038 14.551 3.654 1.671 1.658 0.768 1.028 1.087 0.057 

32 1 4000 750 27.16 28.24 3.978 2.031 2.007 1.157 1.038 1.089 0.049 

33 1 4000 1000 34.827 34.786 0.118 2.411 2.328 3.442 1.128 1.107 0.018 

34 1 5000 500 19.563 20.879 6.722 1.43 1.517 6.024 1.08 1.087 0.006 

36 1 5000 1000 47.22 46.89 0.699 2.137 2.121 0.789 1.12 1.1 0.018 

37 1.5 3000 500 52.655 51.952 1.335 1.824 1.922 5.379 1.162 1.122 0.034 

38 1.5 3000 750 41.847 39.9 4.653 2.227 2.285 2.591 1.163 1.15 0.011 

39 1.5 3000 1000 55.949 53.535 4.315 2.377 2.389 0.49 1.172 1.162 0.008 

40 1.5 4000 500 23.424 22.975 1.914 1.61 1.679 4.324 1.165 1.115 0.043 

41 1.5 4000 750 31.477 31 1.514 2.049 2.084 1.712 1.109 1.149 0.036 

42 1.5 4000 1000 66.979 63.08 5.821 2.448 2.339 4.452 1.176 1.158 0.015 

43 1.5 5000 500 29.966 31.22 4.183 1.637 1.605 1.955 1.106 1.107 0.001 

44 1.5 5000 750 26.956 27.01 0.201 1.631 1.783 9.28 1.164 1.147 0.015 

45 1.5 5000 1000 40.008 38.62 3.47 2.183 2.217 1.553 1.131 1.158 0.024 

46 2 3000 500 38.697 40.247 4.005 1.725 1.954 13.272 1.183 1.162 0.017 

47 2 3000 750 60.831 62.92 3.435 2.375 2.347 1.185 1.185 1.171 0.012 

48 2 3000 1000 66.288 66.483 0.295 2.462 2.393 2.816 1.252 1.199 0.043 

49 2 4000 500 30.897 32.28 4.477 1.696 1.735 2.302 1.123 1.161 0.034 

50 2 4000 750 40.909 39.02 4.617 2.148 2.08 3.151 1.208 1.174 0.028 

51 2 4000 1000 53.289 53.664 0.704 2.365 2.382 0.695 1.264 1.198 0.052 

52 2 5000 500 25.123 24.599 2.089 1.69 1.612 4.585 1.115 1.161 0.042 

53 2 5000 750 49.938 52.92 5.97 1.643 1.826 11.107 1.182 1.181 0.001 

54 2 5000 1000 45.994 44.64 2.944 2.184 2.224 1.852 1.194 1.196 0.001 

55 1 3000 500 27.382 26.044 4.885 2.078 1.863 10.346 1.092 1.087 0.005 
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Table 2 The measured CF, SR, and DF using the combination of n, Vf, and d. (cont.) 

No. of 
exp. 

a 
(mm) 

n 
(rpm) 

Vf 
(mm/min) 

Fr (N) Ra (µm) DF 

Exp. Pred. 
Error 
(%) 

Exp. Pred. 
Error 
(%) 

Exp. Pred. 
Error 
(%) 

56 1 3000 750 28.237 27.618 2.19 2.299 2.266 1.424 1.119 1.09 0.026 

57 1 3000 1000 35.217 33.7 4.306 2.48 2.386 3.774 1.048 1.117 0.065 

58 1 4000 500 14.585 14.551 0.237 1.757 1.658 5.603 1.115 1.087 0.026 

59 1 4000 750 30.106 28.24 6.199 2.157 2.007 6.947 1.101 1.089 0.011 

60 1 4000 1000 35.037 34.786 0.714 2.236 2.328 4.083 1.073 1.107 0.032 

61 1 5000 500 20.879 20.879 0 1.628 1.517 6.824 1.129 1.087 0.038 

62 1 5000 750 19.091 19.145 0.281 1.775 1.733 2.398 1.127 1.088 0.034 

63 1 5000 1000 44.603 46.89 5.126 2.164 2.121 1.988 1.102 1.1 0.002 

64 1.5 3000 500 51.423 51.952 1.03 2.145 1.922 10.382 1.128 1.122 0.005 

65 1.5 3000 750 38.482 39.9 3.685 2.456 2.285 6.988 1.192 1.15 0.035 

66 1.5 3000 1000 50.485 53.535 6.042 2.385 2.389 0.183 1.147 1.162 0.014 

67 1.5 4000 500 22.975 22.975 0 1.86 1.679 9.701 1.05 1.115 0.061 

68 1.5 4000 750 31.742 31 2.339 2.142 2.084 2.713 1.227 1.149 0.064 

69 1.5 4000 1000 60.396 63.08 4.444 2.131 2.339 9.766 1.143 1.158 0.013 

70 1.5 5000 500 31.22 31.22 0 1.621 1.605 0.963 1.106 1.107 0.001 

71 1.5 5000 750 27.064 27.01 0.2 2.092 1.783 14.788 1.166 1.147 0.017 

72 1.5 5000 1000 36.777 38.62 5.01 2.172 2.217 2.062 1.142 1.158 0.013 

73 2 3000 500 42.023 40.247 4.227 2.061 1.954 5.148 1.098 1.162 0.059 

74 2 3000 750 65.073 62.92 3.309 2.347 2.347 0.003 1.146 1.171 0.022 

75 2 3000 1000 66.669 66.483 0.279 2.227 2.393 7.439 1.131 1.199 0.059 

76 2 4000 500 35.14 32.28 8.14 1.733 1.735 0.08 1.271 1.161 0.086 

77 2 4000 750 37.129 39.02 5.093 1.802 2.08 15.445 1.162 1.174 0.01 

78 2 4000 1000 52.242 53.664 2.722 2.276 2.382 4.629 1.098 1.198 0.091 

79 2 5000 500 24.599 24.599 0 1.44 1.612 11.945 1.186 1.161 0.021 

80 2 5000 750 55.901 52.92 5.333 2.045 1.826 10.73 1.143 1.181 0.033 

81 2 5000 1000 41.807 44.64 6.778 2.244 2.224 0.869 1.161 1.196 0.03 

Average of Error 2.806   4.311   0.026 

 
3.3. Fitness Function 

Fitness function is generated using three objectives, i.e., CF, SR, and DF, as shown in the 
following equation: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) =  𝑂𝑏𝑗1 + 𝑂𝑏𝑗2 + 𝑂𝑏𝑗3 (10) 

Where 𝑂𝑏𝑗1 is an objective function of CF, 𝑂𝑏𝑗2 is an objective function of SR, and 𝑂𝑏𝑗3 is an 
objective function of DF. 

3.4. Optimization of Multi-Performance Using FA, GA, SAA, GA-SAA 
Parameters used in BPPN modelling and optimization methods (GA, FA, and SAA) can be seen 

in Table 3 and Table 4. 
Table 5 compares optimization results using FA, GA, SAA, and GA- SAA. Again, the combination 

of GA and SAA produced the lowest fitness value compared with the other optimization methods. 
As a result, n, Vf, and d for the end-milling process of GFRP composites are 4357.65 rpm, 563.57 
mm/min, and 1.26 mm, respectively. 
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Table 3 Parameters utilized in BPNN modelling 

Parameters Values 

Variation of hidden layers and neurons in the 
hidden layer                                                

1 – 5 and 1-10 

Stopping criteria or maximum iteration                       1000 epoch 
Variation of activation function  Tansig, Logsig, hardlim, purelin, hardlims  
Training function                                                            Levenberg-Marquardt                                                            
Data for training: testing: validation                                                                 70% : 15%: 15% 
Selection method for the best network structure           minimum mean square error (MSE) 

 
Table 4 Parameters utilized in Optimization methods (GA, FA, and SAA)  

Parameter utilized in GA Parameter utilized in FA Parameter utilized in SAA 

Parameters Values Parameters Values Parameters Values 
Population size 50 𝛽𝑜 1 Constant c 0.1 
Mutation rate 0.8 𝛾 1 Constant k 1 

Chromosome 
number 

24 𝛼0 0.2 Maximum 
iteration 

20 

Crossover 
method 

Uniform  ∆ 0.97 Maximum sub 
iteration 

100 

Selection 
method 

Roulette 
wheel 

Fireflies number 200   

Stopping 
criteria using 
max. generation 

50  Maximum 
iteration 

10   

 
Table 5 The comparison of optimization results using FA, GA, SAA, and GA-SAA 

Method n [rpm] Vf 
[m/min] 

d [mm] CF [N] SR 
[µm] 

DF Fitness 
value 

Time 
(s)  

FA 4679.49 580.28 1.17 18.18 1.51 1.05 0.469 26.45 

GA 4701.96 527.45 1.35 14.08 1.43 1.03 0.0046397 57.675 

SAA 4967.92 661.12 1.24 14.04 1.43 1.03 9.3123e-05 19.35 

GA-
SAA 

4357.65 563.57 1.26 14.04 1.43 1.03 2.1681e-05 23.81 

 
3.5. Effects of End-Milling Process Parameters on Responses 
 ANOVA was utilized to calculate the percent contribution of end-milling parameters on the total 
variance of the CF, SR, and DF. Table 6 shows the percent contribution of each end-milling 
parameter to the total variance. Regarding all three responses, Vf  was the highest contributor to the 
total variance, followed by d and n as the second and third contributors to the total variance of CF. 
Meanwhile, the second and third contributors to the total variance of SR and DF were n and d. In 
addition, several researchers obtained the same results for CF (Soepangkat et al., 2019; Sekulic et 
al., 2018), SR (Raj et al., 2020; Jenarthanan et al., 2017; Rajesh Mathivanan et al., 2016; Kiliçkap et al., 
2015; Mahesh et al., 2015). Furthermore, the effects of the end-milling parameters on CF, SR, and 
DF were examined using response graphs presented in Figures 4, 5, and 6. 

Figure 4 depicts the effects of the end-milling parameters on CF. As the Vf and d rise, the CF 
increases, and while n increases, the CF reduces. It is easy to see how raising n reduces the CF. This 
phenomenon occurs because when n increases, the friction force on the cutting surface increases, 
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resulting in the temperature elevation on the cutting surface. Since the thermal conductivity of glass 
fiber and epoxy resin is low, the heat produced on the cutting surface cannot be dismissed easily. 

 
Table 6 Percent contribution of end-milling parameters for each response 

Source 
CF [N]  SR [µm] DF 

Rank Cont. (%)  Rank Cont. (%) Rank Cont. (%) 

n 3 26.12  2 31.84 2 34.16 
Vf 1 39.21  1 59.26 1 45.82 
d 2 29.82  3 5.78 3 15.24 

Error 4.85  3.12 4.78 

 

   

 Figure 4 The end-milling parameters' effects on Cutting Force (CF) 
 

Further, with the concentration of heat in the cutting area, the matrix around this area becomes 
softer, and CF decreases. The factor that has the most significant impact on CF is feed speed. A 
faster feed speed increases the undeformed chip cross-sectional area (Azmi et al., 2013). In addition, 
the cut depth considerably impacts the response to the CF. The increase in d would increase the 
cross-sectional area and the number of fibers cut, increasing CF. (Jenarthanan et al., 2017; Rajesh 
Mathivanan et al., 2016; Çelik et al., 2014) came up with the same findings.    

Figure 5 depicts the end-milling parameters' effects on SR. As n is increased, SR decreases. This 
phenomenon happens because increasing n lowers the distortion of the tool-chip interface, resulting 
in a smoother surface. The high value of n should not be used; however, because GFRP is an 
abrasive material, it can cause premature tool wear. Figure 11 further illustrates that increasing Vf 
appears to enhance the SR. Increasing Vf causes the composite material strain rate to grow, yielding 
significant fissures in the epoxy and glass fiber (Azmi et al., 2013). The escalation in SR produced 
by increasing Vf is consistent with the theoretical surface roughness equation (Stephenson and 
Agapiou, 2016). SR decreases as n increases, but SR appears to rise with d increases; however, the 
effect is minor. (Raj et al., 2020; Stephenson and Agapiou, 2016) also indicated similar findings. 

The effect of process parameters on DF is shown in Figure 6. As n and Vf rise, DF increases 
considerably. This could be due to increased speeds, which raise the cutting surface's friction force 
and cause the cutting surface temperature to rise. Since the thermal conductivity of both glass fiber 
and epoxy resin is low, the heat resulting on the cutting surface cannot be dismissed easily. The 
intense heat in the cutting area weakens the link between the matrix and the fibers, resulting in 
delamination. The faster the Vf, the more cutting force is generated, resulting in more delamination. 
Although just slightly, increasing the depth of cut increases DF. These findings were comparable to 
those of (Raj et al., 2020; Kiliçkap et al., 2015; Erkan et al., 2013). 
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 Figure 5 The end-milling parameters' effects on Surface Roughness (SR) 

   

  Figure 6 The end-milling parameters' effects on Delamination Factor (DF) 
 

Figure 7 illustrates the delamination on one side of the cut slot when the cut width is greater than 
the slot width (equal to the end-milling diameter). It is shown that the fiber has been cut, and the 
matrix/resin part has been peeled off or crushed. 

 

Figure 7 A SEM image illustrates the delamination on one side of the cut slot 
 

3.6.  Confirmation Experiment 
The minimal CF, SR, and DF were reached by setting n, Vf, and d to 4357.65 rpm, 563.57 mm/min, 

and 1.26 mm, respectively, using the BPNN GA-SAA method to solve the multi-response 
optimization. The confirmation experiment is then repeated five times with the best end-milling 
parameter settings, as shown in Table 7.  It has been observed that the deviation between the 
predicted outcomes of the BPNN-GA-SAA model and the actual results of the confirmation 
experiment does not exceed 5% for all responses. This suggests that the predicted response of the 
end-milling process is in close agreement with the actual experimental results. 

 
Table 7 Comparison between BPNN-GA-SAA prediction and confirmation experiments. 

End-milling Parameters CF [N] SR [µm] DF 

n [rpm] Vf 
[m/min] 

d 
[mm] 

Pred./Exp. Error 
(%) 

Pred./Exp. Error 
(%) 

Pred./Exp. Error 
(%) 

4357.65 563.57 1.26 14.04/14.54 3.43 1.43/1.5 4.7 1.03/1.06 2.86 

4. Conclusions 

This study used the integration of BPNN, FA, GA, SAA, and GA-SAA to predict the best 
combination of end-milling parameters of GFRP composites. The cutting force, surface roughness, 
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and delamination factor are end-milling parameters were predicted using BPNN, with an MSE 
value is 0.17457. Since the resulting average error is less than 5%, BPNN has effectively forecasted 
the minimum value of cutting force, surface roughness, and delamination factor after being 
appropriately applied. SAA was found as the fastest method to solve the optimization problem. 
However, GA-SAA was the best method to predict the best optimization result. The findings of 
using a hybrid BPNN-GA-SAA for optimization show that by arranging the rotational speed, feed 
speed, and axial depth of cut to 4357.65 rpm, 563.57 mm/min, and 1.26 mm, respectively, the 
minimum values of cutting force, surface roughness, and delamination factor can be obtained 
simultaneously. Furthermore, based on the ANOVA, feed speed contributes the most to the total 
variance of cutting force, surface roughness, and delamination factor. The graphical analysis 
confirms that the three responses increased considerably with increasing feed speed compared to 
the increasing axial depth of cut. Meanwhile, increasing spindle speed would decrease the cutting 
force and surface roughness but increase delamination. The SEM analysis indicates that 
delamination mainly consists of fiber cuts and the peeling or crushing of the matrix/resin. The 
prediction performance of BPNN can be improved by increasing experimental data sets, for 
example, using finite element methods to reduce experimental costs.   
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