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Abstract. A transmission pipeline is the safest and most effective way of transporting large volumes 
of natural gas over long distances. However, if not maintained efficiently, failures of gas 
transmission pipelines can occur and cause catastrophic events. Therefore, an accurate prediction 
of pipe failures and operational reliability is required to determine the optimal pipe replacement 
timing such that the incidence of pipe failures can be prevented. Nowadays, computer-assisted 
technology helps businesses make better decisions, and machine learning is among the excellent 
techniques that can be utilized in predicting failures. In this study, two machine learning algorithms, 
i.e., random forest and binary logistic regression, are developed, and their prediction abilities are 
compared. The model is developed based on a decade of unstructured and complex historical failure 
data of the onshore gas transmission pipelines released by the United States Department of 
Transportation. The modeling process begins with data pre-processing followed by model training, 
model testing, performance measuring, and failure predicting. Both algorithms have demonstrated 
excellent results. The random forest model achieved an AUC of 0.89 and a predictive accuracy of 
0.913, while the binary logistic regression model outperformed with an AUC of 0.94 and a prediction 
accuracy of 0.949. The trained model is further employed to predict future failures on a 11900-mile 
natural gas pipeline spanning from Louisiana to the northeast section of the United States. We show 
the location of the pipes that will be broken in the interval of five years and estimate that 
29%/63%/83% of the pipes will break by 2025/2030/2035. 
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1. Introduction 

Natural gas as a petroleum substitute offers many economic, technological, and 
environmental benefits and increases efficiency because it is quickly developed (Lee et al., 
2012) as cited in Bawono and Kusrini, 2017). It is a versatile energy source because it can 
be stored and transported in trucks or tankers as liquified natural gas, medium-conditioned 
liquified gas, or compressed natural gas (Ríos-Mercado and Borraz-Sánchez, 2015) as cited 
in (Farizal, Dachyar, and Prasetya, 2021).  However, Mikolajková-Alifov et al. (2019) study
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conveys that transporting large amounts of natural gas via pipelines, one of which is 
through onshore gas transmission pipelines, is more cost-effective (Farizal, Dachyar, and 
Prasetya, 2021). A submarine pipeline in a submerged floating tunnel (SFT) is proposed as 
an alternative solution to pipeline-related ecological issues (Budiman, Raka, and Wahyuni, 
2017). However, SFT is not covered by the scope of this study, which is concerned with a 
natural gas pipeline that runs from Louisiana to the northeast United States. 

Although more efficient than trucks or tankers, onshore gas transmission pipelines face 
serious challenges. Its failures are disastrous, causing financial losses, environmental 
damage, and even death. Gas pipeline failures are caused by several factors, including 
pipe/weld material failure, excavation damage, corrosion, equipment failure, soil 
movement, and incorrect operation (Dai et al., 2017).  Between January 2010 and 
November 2017, approximately 17.55 billion cubic feet of methane gas was lost through 
the transmission pipeline in the United States. This amount of gas is enough to heat around 
233 thousand houses for a year. Unfortunately, during this period, pipeline failures caused 
nearly 100 fatalities, and around 500 injuries, and incurred a cost of approximately 1.1 
billion US dollars  (Thompson, 2017). 

In the context of industrial internet of things (IIoT)– increased interconnectedness and 
opportunities to collect data, process and analyze information – predictive maintenance can 
be a good strategy to face the problem. Predictive maintenance utilizes a wealth of process 
data and advanced analytical methods to predict failures well before urgent action has to 
be taken.  

The current era of the fourth industrial revolution has enabled computer-assisted 
technology to help businesses, including the oil and gas industries, make better decisions 
(Hanga and Kovalchuk, 2019). In particular, machine learning techniques, which allow for 
automation of the process of analytical model building, offer great potential in predicting 
failures accurately. Machine learning tools are built to learn from data by establishing data 
structures and mapping complex relationships between input parameters and targets such 
that they can adapt to future input data (Shalev-Shawrtz and Ben-David, 2014). For 
instance, recently, the machine-learning created model for predicting pipe failures in water 
supply networks in Seville, Spain, shows detailed estimation and suggest specific and 
realistic suggestion to prevent approximately 30% of failures by replacing only 3% of the 
network's pipes annually (Robles-Velasco et al., 2020). Eastvedt, Naterer, and Duan (2022) 
have presented a method of monitoring a subsea oil pipeline for fault detection using a 
regression-supervised machine learning (ML) algorithm. ML algorithms were developed by 
using flow velocity data derived from ANSYS Fluent simulations, pressure, and 
temperature. It shows that the ML algorithm could 97% accurately predict the outputs 
(Eastvedt, Naterer, and Duan, 2022). A study has also been carried out by analyzing the 
performance of the Bayesian network in predicting pipe failure using a large and highly 
variable dataset from the water distribution system in the United Kingdom. Method one 
involved a supervised learning method to build a Bayesian network by understanding 
common failure types (joint, pinhole, circumferential, and longitudinal), while method two 
involved an automated learning method. The Bayesian network built using the automated 
method was able to achieve an overall accuracy of 84.4% compare to the 81.2% for the 
Bayesian network supervised learning method (Tang, Parsons, and Jude, 2019). Therefore, 
machine learning, if trained properly, can predict failures quickly and accurately. In this 
study, two ML algorithms, i.e., random forest and binary logistic regression, are developed, 
and their performances are compared in predicting a decade of historical data on gas 
transmission pipeline failures in the US.  
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2.  Methods  

2.1.  Raw Dataset 
 The raw dataset was collected from the open-source data released by the Pipeline and 
Hazardous Materials Safety Administration (PHMSA) under the US Department of 
Transportation. The data were collected from 2010 to 2020, and their attributes can be 
classified into three groups. The first group includes the pipes’ physical characteristics, such 
as the nominal diameter of the section, material, length, cover depth, and wall thickness. 
The second group comprises the attributes of an operational condition, such as working 
pressure and class locations. The third group of attributes comprises work logs related to 
the pipes, including pipe ID, pipe facility name, operator of the pipe, region, latitude, 
longitude, years since installation, date of every historical break, and incident report 
number. To facilitate the understanding of the available datasets, we created a map (Figure 
1) that displays the status of onshore gas transmission pipes in the United States from 2010 
to 2020. The map indicates that 1065 out of 1270 pipes (84%) are currently in a "fail" 
status, while the remaining pipes, marked in green, are in a "not fail" status. 

 

Figure 1 Map of status of pipes for onshore natural gas transmission in the United States 
from 2010 to 2020 

2.2.  Methods 
Pre-processing, learning, testing, performance measuring, and mapping of the datasets 

were performed using R, a language and software environment for statistical computing, 
version 4.0.2. R studio version 1.2.5042 was used as an integrated development 
environment for R. The ‘caret’ R package was used to perform the models (Kuhn, 2008), 
and Leaflet, an open-source JavaScript library, is employed to create an interactive map of 
the pipes network with the attached state of failure.  

2.2.1. Data Pre-Processing 
Raw datasets are usually not used directly in machine learning because of several 

reasons, including missing values and noises. Therefore, data pre-processing is necessary 
to perform easy operations in later steps. Firstly, the attributes deemed irrelevant to the 
prediction system, such as gas flow, and the attributes with more than 50% missing values, 

https://rpubs.com/deaamria/failuredistmap
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are eliminated. Secondly, to improve the predictors’ predictive performance and to simplify 
the model for easy interpretation, several most influential attributes in the prediction 
problems are selected based on the importance value (Guyon and Elisseeff, 2003). Here, 
calculations of filter-based variable importance were carried out to select attributes for the 
model. Thirdly, we divided the dataset into 90% of the dataset for the training set and the 
remaining 10% for the testing set. We note that the percentage of failed and not-failed pipes 
in both training and testing data sets is the same.   

It is well known that the problem of learning from imbalanced data (He and Gracia, 
2009) emerged from underrepresented data, and severe class distribution skews can cause 
the standard classification models to perform improperly (Wang et al., 2013). In the present 
study, the dataset is imbalanced as 84% of the data are correlated to the “fail” status, and 
hence the model will tend to predict a “fail” status. One method that can be applied to solve 
the imbalance problem, which is employed in the present study, is the Randomly Over 
Sampling Example (ROSE) technique. One method that can be applied to solve the 
imbalance problem, which is employed in the present study, is the Randomly Over Sampling 
Example (ROSE) technique (Lunardon, Menardi, and Torelli, 2014). After incorporating the 
imbalanced treatment is incorporated in the pre-processing step, the user data is ready to 
be used for the machine learning algorithms. 

2.2.2. Failure Prediction Modeling: Training and Testing 
Machine learning (ML) is a technique that automatically learns patterns from data 

without assumptions regarding the structure of the data. We adopted Binary Logistic 
Regression (BLR) and Random Forest (RF) as ML algorithms in our prediction system. BLR 
is a supervised machine learning algorithm that analyzes a dataset containing one or 
multiple variables to predict a binary outcome. The classification algorithm of BLR is 
trained on a labeled dataset and uses true labels during the training phase. BLR allows us 
to “study how a set of predictor variables is related to a dichotomous response variable” 
(Harrell, 2005). If we note (X1, X2,…, Xn) as the set of n explanatory variables, (β0, β1,…βn) as 
the set of n+1 parameters, and Y as the dependent variable, the logit model or logistic model 
can be constructed as follow: 

logit (P(Y=1)) = logit (p)+β
0
+β

1
X1+…+β

n
Xn               (1) 

If we denote P(Y=1) = p, the logit function becomes 

logit (p) = log (
p

1-p
) = log (

P(Y=1/X)

P(Y=0/X)
) = log(odds)  (2) 

The model measures the estimated probability of the predicted output, which varies 
between 0 and 1 and is on a sigmoid function of the following form 

f (t)=
1

1+e-t       (3) 

The random forest algorithm is a classification model that consists of a structured 
collection of trees. Unlike a decision tree, which only consists of one tree in the classification 
and prediction process, a random forest creates a voting mechanism for the class, which 
significantly affects the accuracy of the model (Chen, Liaw, and Breiman, 2004). Decision 
trees are generated using the attribute selection indicators such as information acquisition, 
acquisition ratio, and the Gini index for each attribute. The Gini index is used to measure 
the probability of a particular variable being misclassified when randomly selected. 

Random forest is an ensemble learning technique that combines multiple decision trees 
to improve the accuracy of the model. The random forest equation can be written as: 

f(x) = 1/n * n(f1(x), f2(x), …, f(n)) 

where  
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f(x) is the predicted output. n is the number of decision trees in the forest. 

fi(x) is the predicted output of the ith decision tree. 

Each decision tree is trained on a different subset of the training data and a random 
subset of the features. The final prediction is made by taking the average of the predictions 
of all the decision trees. 

Random forest depends on a random vector value with the same distribution in all 
trees. Each decision tree has the maximum depth. The random forest is a classifier 
consisting of a tree classifier (h (x, θk), k = 1, ...} where θk is a random vector distributed 
independently, and each tree with the most votes and the most popular class is selected as 
a result. RF is arguably simpler and more powerful than other non-linear classification 
algorithms (Breiman, 2001). 

2.2.3. Measuring Performance 
In building the prediction system, we need a numerical indicator to tell whether the 

system performs well or not. The performance is measured by the confusion matrix, the 
receiver operating characteristic (ROC) curve, and the estimation of the accuracy. The 
confusion matrix contains the real values against those predicted for the validation set 
(Table II). There are four possible results for each sample: true-positive (TP), true-negative 
(TN), false-positive (FP), and false-negative (FN). Each box would include the value of 
observations of each type (Han, Kamber and Pei, 2000). 

Table 1 Confusion matrix for evaluating the performance of a classification model 

    Predicted 

    Negative Positive 

Actual 
Negative TN FP 

Positive FN TP 

The Receiver Operating Characteristics curve depicts the TP rate (or recall) against the 
FN rate (or 1−specificity) for the different values of a risk threshold. The accuracy is 
calculated as the fraction of the correct predictions to the total predictions. Furthermore, it 
is common to calculate the Area Under the Curve (AUC) as a metric, representing a 
classifier’s ability to avoid false classifications. The AUC is between 0 and 1 (Fawcett, 2006). 
When an AUC equals 0.5, the classifier will make random classifications. An AUC higher than 
0.9 is excellent (Hosmer and Lemeshow, 2000; Bawono and Kusrini, 2017). 

After optimizing and testing the performance of the model, we applied it to predict the 
failure on a 11900-mile natural gas pipeline that spans from Louisiana to the northeast 
section of the United States. The pipeline is operated by the Tennessee Gas Pipeline 
Company. The reconstructed dataset consists of approximately 50 documented properties, 
including diameter, material, and length. 
 
3. Results and Discussion 

 We considered thirteen attributes, the importance value of which are calculated and 
shown in Table II. The correlation value between pipe failures (dependent variable) and 
other selected attributes (independent variable) from the training datasets is listed in the 
column of Table II. Attributes, the importance value of which is below 0.5, are considered 
to have no relevance to pipe failures (Wang et al., 2016). Therefore, the attributes "Explode 
Indication," "Ignite Indication," and "Case" are excluded in the modeling stage, and further 
computation will only consider the remaining ten attributes. 
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Table 2 Attributes of the dataset with the type of data, description, and the important 
values between each attribute and the “Failure” attribute. 

Name of Attributes Type Description Value 

Explode Indication Categorical Indication of possible pipe explosion 0.206 

Ignite Indication Categorical Indication of possible pipe ignition 0.212 

Cause Categorical Cause of pipe failure 0.215 

MAOP Numerical Maximum Allowable Operating Pressure in psig 0.630 

Thickness Numerical The pipe’s wall thickness is in inch 0.634 

Depth Numerical The depth of cover in inch 0.637 

Age Numerical The pipe’s age in a year 0.647 

Area Categorical The area of the laid pipe 0.651 

Coat Categorical The pipe coating type 0.655 

Diameter Numerical The nominal pipe size in inch 0.689 

Length Numerical The length of isolation segment in ft 0.741 

Class Categorical The pipe class (class 1, class 2, and class 3) 0.842 

Failure Categorical The status of the pipe (fail or not fail)  1 

 Table 3 displays how each algorithm performed on the testing data by creating the 
confusion matrix for each algorithm. The rows in a confusion matrix correspond to what 
the machine learning algorithm predicted, and the columns correspond to the historical 
data. Both algorithms perform very well in predicting at least 93.5% of the failed pipes and 
80% of the not-failed pipes. BLR algorithm performs slightly better than the RF algorithm 
as BLR identifies 4 more failed pipes correctly, bringing the percentage of correctly 
identified failed pipes to 97.2%. 

Table 3 Confusion matrix obtained from the BLR and RF algorithms 

Algorithm: 
BLR 

Predicted 
Not Fail Fail 

Actual  
Not Fail 16 (80.0%) 3 (2.8%) 

Fail 4 (20.0%) 104 (97.2%) 

Algorithm: 
RF 

Predicted 
Not Fail Fail 

Actual 
Not Fail 16 (80.0%) 7 (6.5%) 

Fail 4 (20.0%) 100 (93.5%) 

 
To further compare the performance of the two studied algorithms, we compute the 

accuracy, sensitivity, specificity and F1 score according to the following formula:   
Accuracy = TP + TN/ (TP + FP + TN + FN)      (4) 
Specificity = TN/ (TN + FP)         (5) 
Sensitivity = Recall = TP/ (TP + FN)      (6) 
Precision = TP/ (TP + FP)        (7) 
F1 Score = 2 × (Precision × Recall)/ (Precision + Recall)    (8) 

Table 4 presents a summary of the accuracy, sensitivity, precision, and F1 score of both 
studied algorithms. Based on the results, logistic regression is preferred over the random 
forest model due to its superior performance in terms of accuracy, precision, recall, and F1 
score. The higher F1 score of the logistic regression model suggests that it is more effective 
in predicting outcomes and is more stable than the random forest model.  
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Table 4 The performance of machine learning algorithms 

Performance Binary Logistic Regression Random Forest 

Accuracy 0.945 0.913 
Specificity 0.842 0.696 
Precision 0.972 0.935 
Recall 0.963 0.962 
F1 Score 0.967 0.948 

 

Figure 2 ROC curve for pipe failures obtained from the application of binary logistic 
regression and random forest algorithms. The values of AUC are also indicated. 

ROC curves, which plot the true positive rate (sensitivity/recall) in the y-axis as a 
function of the false positive rate (1−specificity) in the x-axis, from the computations using 
each algorithm are shown in Figure 2. The ROC curves for both methods can be categorized 
as excellent since the area under the curve (AUC) value is higher than 0.9. (Hosmer and 
Lemeshow, 2000). Again, the BLR algorithm demonstrates a slightly better performance as 
the resulting AUC is larger than that of RF (0.89 vs 0.94). 

As the binary logistic regression algorithm shows better performance, we employ it to 
predict the failures of the pipeline operated by the Tennessee Gas Pipeline. This pipeline is 
chosen because the available data match the input attribute requirements of the trained 
model. The results are mapped into the geographical location of the pipeline shown in 
Figure 3.  Our analysis predicts that 29% of the pipes are expected to break by 2025, 63% 
by 2030, and 83% by 2035. Interestingly, the percentage of predicted pipe breaks does not 
increase monotonically as a function of time, with the highest number of pipe breaks 
anticipated to occur between 2025 and 2030. 
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Figure 3 Prediction of pipe breaks (indicated by red dots) on the Tennessee Gas Pipeline 
in 2025, 2030, and 2035 
 
4. Conclusions 

 A study on the failure prediction and operational reliability of gas transmission 
pipelines using random forest and binary logistic regression algorithms has been carried 
out. Both algorithms showed excellent results. Random forest has an AUC of 0.89 and a 
prediction accuracy of 0.913, while the binary logistic regression shows better 
performance, namely an AUC of 0.94 and a prediction accuracy of 0.949. The created model 
is expected to help companies assess and predict failures of transmission gas pipelines such 
that better inspections and maintenance schedules can be conducted. The trained model 
predicts that 29%/63%/83% of the pipes on a 11900-mile natural gas pipeline spanning 
from Louisiana to the northeast section of the United States will break by 
2025/2030/2035. Several aspects can be explored to further improve the present study. 
Firstly, we note that some important attributes, e.g., temperature and natural gas flow, 
which we estimate, can improve prediction performance, were not available in the raw 
dataset. Secondly, this study has not considered the costs incurred due to pipe failures and 
the costs required to maintain the pipes. Such economic analysis will be beneficial for the 
industry to plan their annual budget accordingly. This study can help gas transmission 
pipeline industry optimize their preventive maintenance schedule in advance. This allows 
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for estimating the remaining runtime of pipelines with high accuracy. It also can estimate 
time to failure and identify which sections of pipelines need to be fixed. By predicting 
failures before they happen, companies can minimize the possibility of catasthrophic 
incidents, and the cost due to unplanned downtimes or maintenance. 
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