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Abstract. Predicting the spread of infectious diseases is an urgent task, since it allows for an 
assessment of the current situation and making informed decisions on the disease stemming 
measures to be taken. However, predictive models need constant adjustment and validation of the 
data obtained according to current data on infection spread dynamics. The present research aims 
to select and integrate a calibration method for the epidemiological Kermak-McKendrick SEIR 
model with additional factors. This paper provides an overview and analysis of calibration 
algorithms for the required parameters of the epidemiological model, as well as numerical 
experiments comparing the accuracy of the results. The resulting calibration method is the least 
squares method, since it allows considering boundary values and searching for a local minimum, 
spending the least amount of time compared to other algorithms.Automatic calibration of the model 
parameters allows for up-to-date predictions on the spread of infectious diseases with minimal time 
resources in response to changes in disease data and various quarantine measures. The developed 
solution can be tailored to other infection spread models. 
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1. Introduction 

The outbreak of the COVID-19 pandemic, which turned out to be one of the deadliest 
pandemics in history, caused the development of new tools to control the spread of 
infectious diseases (Berawi et al., 2020). As part of stemming the spread and struggling with 
the consequences of COVID-19, various predictive models have been developed as a tool for 
making informed decisions at the governmental level (Zubkova & Efremova, 2022). 

The peculiarity of modeling sociotechnical systems is an increase in complexity and a 
decrease in the level of determinism in comparison with the modeling of technical systems. 
The lack of adequate management methods for sociotechnical systems leads to suboptimal 
management decisions, which significantly reduces the quality of management and the 
efficiency of the system. 

Predictive modeling allows revealing stable trends or, conversely, significant changes 
in socio-economic processes, assessing their probability for the future planning period, 
identifying possible alternatives, accumulating scientific and empirical material for a 
reasonable choice of a particular development   concept or a planned solution 
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(Antohonova, 2022; Bol et al. 2021; Narayan et al., 2021). The predictive method is a set of 
techniques that make it possible to derive propositions based on a certain reliability of the 
relative future development of the predictive object. Such propositions are based on data 
analysis, the exogenous and endogenous connections of an object, and their measurement 
(Antohonova, 2022). Therefore, predicting the consequences of a pandemic allows 
researchers to determine how various measures of influence on the system will affect the 
morbidity dynamics (Borovkov et al., 2022). This result is important for making managerial 
decisions to counteract the COVID-19 spread in various regions at the governmental level 
(Borovkov et al., 2022; Berawi, 2021).  

However, constant additions to the model of infectious diseases, considering the 
dynamics of quarantine measures and their diversity, as well as the virus evolution, require 
constant modification, evaluation, and model parameter adjustment due to the variability 
of miscellaneous factors affecting the result (Pesaran & Yang, 2022). In this respect, in order 
for the predictive model to remain reliable, it is necessary to compare the actual results 
with the expected or training data and adjust the model parameters. This process is called 
calibration. Thanks to it, when the indicators change, the model will adjust and give a result 
close to the real one (Villaverde et al., 2022). 

It is worth noting that manual calibration is a demanding and time-consuming process 
that needs to be automated to reduce resource exploitation. The number of fitting 
parameters can be more than ten; the amount of data is not regulated. Therefore, manual 
calibration will have a negative effect in the form of long and inaccurate work. In the case 
of the infection spread, it is necessary to automate the process of fitting variables, since 
changes occur regularly based on large amounts of data, numerous factors and indicators 
(Osborn et al., 2020). In this regard, manual calibration is a suboptimal process that 
requires constant recalculation of coefficients, which, with an increase in the amount of 
data and parameters, will increase the operating time.  
 The present research aims to select and implement an automated calibration method 
for predicting morbidity dynamics. In this paper, a regression model of time series based on 
the Kermack-McKendrick SEIR model is used (Borovkov et al., 2022). Besides factors 
accepted in the SEIR model, the considered model considers new conditions, with the help 
of which it was possible to track the dynamics of the COVID-19 outbreak more reliably and 
obtain a more plausible prediction. In this paper, the calibration method is selected from the 
available software tools of the Python programming language, and its implementation and 
integration into the software for predicting the morbidity dynamics during the COVID-19 
pandemic are carried out. The main advantages of the Python programming language are 
accessibility, simplicity, and ease of use and learning, as well as its many libraries and 
frameworks. The software is verified using publicly available data, and the values obtained 
are compared with those available based on statistical criteria. The result allows obtaining 
more accurate estimates of patients, which reduces the time spent on calculations and model 
adequacy assessments. 
 
2. Methods 

2.1.  Model description  
The paper deals with the analysis and implementation of tools for automated 

calibration carried out based on a SIR model variant, considering additional factors 
(vaccination, including revaccination; recurrent morbidity; individual isolation) – Kermak-
McKendrick SEIR model (Borovkov et al., 2022). The mathematical interpretation of the 
model is simultaneous homogeneous differential equations (a time series model). The 
general scheme of the modified COVID-19 distribution model is shown in Figure 1. 
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Figure 1 General scheme of the modified COVID-19 propagation model (Borovkov et al., 
2022; Borovkov et al., 2020) 

Formalization of the mathematical model of COVID-19 spread: 
𝑑𝑆

𝑑𝑡
=  −𝛽𝑆𝐼 − 𝑓(𝑡) + 𝜑(𝑡) − 𝜎(𝑡) + 𝜏(𝑡) + 𝜔(𝑡), 

𝑑𝐸

𝑑𝑡
=  𝛽𝑆𝐼 − 𝛾𝐸, 

𝑑𝐼

𝑑𝑡
=  𝛾𝐸 − 𝛿𝐼, 

𝑑𝑅

𝑑𝑡
=  𝛿𝐼 − 𝜔(𝑡), 

𝑑𝑄

𝑑𝑡
= 𝑓(𝑡) − 𝜑(𝑡), 

𝑑𝑉

𝑑𝑡
=  𝜎(𝑡) − 𝜏(𝑡), 

𝑆(𝑡0) =  𝑆0 ≥ 0, 𝐸(𝑡0) =  𝐸 ≥ 0, 𝐼(𝑡0) =  𝐼0 ≥ 0, 𝑆0 + 𝐸 + 𝐼0 = 𝛼, 𝑅(𝑡0) =  1 − 𝛼 

𝑆(𝑡) – number of susceptible individuals at a time t; 
𝐸(𝑡) – number of individuals in incubation at a time t; 
𝐼(𝑡) – number of infected individuals at a time t; 
R(t) – number of individuals who have been ill at a time t; 
𝑄(𝑡) – number of quarantined individuals at a time t; 
𝑉(𝑡) – number of individuals who are immune as a result of vaccination, at a time t; 
𝛼 – initial ratio of susceptible individuals in the population; 
𝛽 – intensity coefficient of individual contacts with subsequent infection; 
𝛾 – intensity coefficient of transition to the stage of infected individuals; 
𝛿 – coefficient of intensity of recovery of infected; 
𝑓(𝑡) – function corresponding to the isolation measures input scenario; 
𝜑(𝑡) – function corresponding to the scenario of cancellation of isolation measures; 
𝜎(𝑡) – function corresponding to vaccination rates in the region according to official data 
(adjusted for vaccine effectiveness); 
𝜏(𝑡) – function that determines the termination of immunity as a result of vaccination 
(inverse proportionality of the duration of the vaccine); 
𝜔(𝑡) – function that determines the end of the natural immunity acquired as a result of the 
disease (inverse proportionality of the duration of the natural immunity). 
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The model has a 𝛽  parameter that represents the intensity of effective contacts, 
characterizing the infection transmission rate (Borovkov et al., 2020). The effective contact 
intensity value is a time-dependent function (1): 

 
𝛽(𝑡) =  {

𝛽0, 𝑡 ≤ 𝑡∗

𝛽0𝑒−µ(𝑡−𝑡∗)
, 𝑡 > 𝑡∗

 (1)
 

The intensity indicator depends not only on the properties of the infection but also on 
the society’s structure, population density, and a large number of other factors that make 
up the daily routine of a modern person (Popkov et al., 2022).  The exponent indicator takes 
into account the gradual increase in the impact of time-control measures introduced since 
the morbidity level and the effectiveness of control measures µ . Thus, the pandemic 
progress over time can be analyzed, and the effectiveness of the stemming measures can be 
evaluated (Popkov et al., 2022). 

The use of the effective contact rate variable 𝛽  makes it possible to increase the 
plausibility of the COVID-19 spread dynamics simulation and obtain a more accurate 
expected morbidity rate. Therefore, this paper considers changes in the 𝛽  and µ 
parameters depending on the introduced measures of morbidity control and the time that 
has passed since then. 

After developing a predictive model, it is required to validate the obtained results to 
find out how close they are to the expected ones. To do this, the following properties are 
checked: adequacy and stability (Maksimej et al., 2014). The adequacy assessment reflects 
the correspondence of the obtained and source data, and the stability assessment ensures 
that the model behaves correctly over the entire range. 

Thus, if the resulting model does not meet the standards, then it needs to be corrected. 
This procedure is called calibration. It is iterative. Calibration verifies the reliability of the 
model results obtained and finds a more accurate solution that is optimally close to real 
data. 

The calibration process consists of 3 stages (Villaverde et al., 2022; Borzooei et al., 
2019): 

1. Comparing output results (the adequacy of the model is evaluated); 
2. Balancing the model (the stability of the model is evaluated); 
3. Optimizing the model (parameters are adjusted to improve the output data quality 

and ensure the required accuracy). 
To carry out calibration when predicting the considered model, it is necessary to divide 

the available data into intervals (waves) and on each of them select the best values of the 𝛽 
and µ parameters, based on which the prediction of all infected is made later within the 
selected time interval. 

2.2. Software tools for the calibration method 
Software implementation of optimization methods and function fitting to data is 

present in some Python libraries. In the selected programming environment, there are 
several possible options for calibration methods: 

• The scipy library, which contains the scipy.optimize.curve_fit() function (SciPy 
Documentation, 2022a). 

• The lmfit library, which contains the lmfit.minimize() function (LMFIT, 2021) 
Both scipy.optimize.curve_fit() and lmfit.minimize() are wrappers for 

scipy.optimize.leastsq(). Both of these functions offer many advantages over 
scipy.optimize.leastsq(), however, lmfit.minimize() requires more resources to adjust the 
input parameters of the function than scipy.optimize.curve_fit(). 
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The main difference between these functions is that lmfit has a Model class, which 
provides a more flexible and convenient approach to the curve matching task. Moreover, 
lmfit has a Parameters class, which makes it possible to separately set the parameters and 
their properties necessary for fitting. In addition, lmfit has the fit_report() method, which 
allows getting information about the best values of parameters, their standard errors, and 
other evaluation criteria. The lmfit.minimize() function is more extensive and time-
consuming from the perspective of execution steps however, it is more difficult to introduce 
changes to the scipy.optimize.curve_fit() method in terms of abstraction and structure. 

In addition, the scipy.optimize.curve_fit() method implements minimization using the 
least-squares method, while in the lmfit.minimize() function, there is an option to select the 
method by which the optimization will be performed. 

The brute, basinhopping, dual annealing, differential evolution, and shgo methods are 
applied to search for a global extremum, other algorithms are applied to search for a local 
one. For the above problem, it is required to find local minima at all intervals of the graph; 
therefore, global optimization methods are inappropriate for solving it. 

Further, the newton, trust-ncg, trust-exact, trust-krylov, and dogleg methods require a 
Jacobi matrix and a Hesse matrix to search for a local extremum without considering 
constraints. Defining a function to calculate the Jacobian and Hessian is demanding, and 
their execution requires additional program time. Therefore, these functions were not 
considered for fitting variables, given that these algorithms do not consider constraints. 
Table 1 shows the differences between appropriate minimization methods. 

Table 1 Number of receptors in each container 

Minimization algorithm 
lmfit.minimize() 

Features of the minimization algorithm 

leastsq 
Minimization of the sum of simultaneous equations squares using a loss 
function based on the Levenberg-Marquardt algorithm. This method is used if 
constraints are not needed, because it does not handle boundaries. 

least_squares 
 

Minimization of the sum of simultaneous equations squares using a loss 
function based on the Levenberg-Marquardt algorithm, using the Trust Region 
Reflective method. Takes into account constraints (boundary values). This 
method is an extended version of the leastsq algorithm. 

nelder 
Minimization of the scalar function of one or more variables using the Nelder-
Mead algorithm. 

bfgs 
Minimization of the scalar function of one or more variables using the BFGS 
algorithm. 

lbfgsb 
 

Minimization of the scalar function of one or more variables using the L-BFGS-
B algorithm. A method implemented with reduced memory consumption due to 
partial loading of vectors from the Hesse matrix. 

Powell 
Minimization of the scalar function of one or more variables using the modified 
Powell algorithm. 

Cg 
Minimization of the scalar function of one or more variables using the conjugate 
gradient algorithm. 

Cobyla 
 

Minimization of the scalar function of one or more variables using the 
Constrained Optimization by Linear Approximation Algorithm (without 
gradient calculation). 

Tnc 
Minimization of the scalar function of one or more variables using a truncated 
Newton (TNC) algorithm. This algorithm has a limited number of iterations and 
is good for nonlinear functions with a large number of independent variables. 

trust-constr Minimization of the scalar functions is subject to constraints. 

Slsqp 

Minimization of the scalar function of one or more variables using Sequential 
Least Squares Programming (SLSQP) with constraints (The Lagrange-Newton 
method). 
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 The description of the algorithms is taken from the open documentation of the SciPy 
library (SciPy Documentation, 2022b). 
 Within further research, these methods will be verified on common data, that will be 
taken from an electronic resource on operational data on coronaviruses.  And an analysis 
will be carried out, and the tested results will be evaluated. 
 
3. Results 

When implementing the calibration method, experiments were carried out with 
several functions: 

1. Personally developed method 
2. scipy.optimize.curve_fit() 
3. lmfit.minimize() 
The decision to select the function was based on running each option on the available 

data from Moscow and St. Petersburg. The criteria considered are the prediction accuracy 
and the time spent on the execution of the algorithm. 

The personally developed method had a standard deviation comparison criterion, but 
it iterated over the parameter values within the specified boundaries. That is why this 
method produced the most inaccurate and time-consuming results compared to the others. 

The scipy.optimize.curve_fit() method and the lmfit.minimize() method had similar 
results in time and accuracy, but the final choice depended on the minimization method.  

The considered minimization algorithms performed the same task, but in different 
ways. The leastsq method does not take into account restrictions, which leads to incorrect 
data on the Moscow graph. When using the trust-constr, tnc, cobyla, cg, bfgs, lbfgsb, and 
slsqp methods, the parameter values assumed boundary values, which did not correspond 
to the optimal solution in this section of the curve. In the cases of the nelder and powell 
methods, the curve fitting process took a long time, but the selected values were not quite 
accurate. The prediction parameters for the operating time and accuracy changed 
depending on the various features of the methods. 

The results of the algorithms' running time are shown in Table 2. 

Table 2 Calculation of the operating time of the program for Saint-Petersburg using the 
automatic interval selection method 

Method Operation time, min 

personally method  15,33 

scipy.optimize.curve_fit method  3,88 

lmfit.minimize method 

least_squares 1,783 
leastsq 1,75 
nelder 8,08 
powell ∞ 

 Thus, the lmfit.minimize() function with the least_squares method was chosen because 
it provided the most precise indicators that combined the results in terms of operating time, 
output data reliability, and usability. In addition, the program has developed two 
approaches for splitting the curve into intervals: manual and automatic. The manual 
method consists in the user manually splitting the curve into intervals, leaving points in real 
time. Then the entire segment is divided into the desired intervals using the points that the 
user has set, and the program begins calibration in each of them. The automatic interval 
detection method found peaks and troughs independently using scipy.signal 
methods.find_peaks, scipy.signal.peak_widths, scipy.signal.peak_prominences methods. 
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First, peaks were defined with the scipy.signal method.find_peaks method, after that the 
search for troughs was carried out. To do this, the length of each peak was determined with 
the scipy.signal.peak_widths method, and peaks longer than 50 days were selected. Then, 
in the selected peaks, a height search was performed with the 
scipy.signal.peak_prominences method and a height selection of more than 10,000 infected. 
Thus, the selected points were sorted in ascending order, and the curve was divided into 
intervals, which were then calibrated. 

The operation of the program on the Moscow and Saint Petersburg data is shown in 
Figure 2 and Figure 3, demonstrating the automatic and manual methods, respectively. The 
data were taken from an open source (Stopcoronavirus.rf, 2022). 

  

Figure 2 The results of the automatic interval selection method on the Moscow and Saint 
Petersburg data 

  

  

Figure 3 The results of the manual interval selection method on the Moscow and Saint 
Petersburg data 

There are plenty of statistical criteria to confirm the data’s reliability. Within the 
research, the chi-square criteria, the Akaike and Bayes information criterion (Kalhori et al., 
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2019; Peng et al., 2021), and the difference in areas under the resulting and original graphs 
were considered.  

The values of the criteria for each interval could be obtained during calibration in the 
form of a report using the lmfit.fit_report() method. 

Theoretically, the lower the number of Akaike and Bayes criteria, the more reliable the 
results. However, throughout the entire fitting, the values of these criteria remain quite 
large. This is the reason why the resulting graph does not match the original one by 100%. 
But the obtained values are the most optimal in the current situation. Therefore, with other 
values of the 𝛽 and µ parameters, information criteria take even more non-zero values. The 
same applies to the chi-square criterion. In addition, the standard error and confidence 
interval for each selected value of 𝛽and µ can be observed from the report. 

Table 3 demonstrates the average criteria values for all intervals in the case of Saint 
Petersburg. Values were calculated only for methods that show correct results. The powell 
algorithm was not considered due to the fact that it takes a long time to calculate parameter 
values in comparison with the above methods. Table 4 shows the same values for Moscow. 

Table 3 Calculation of criteria for Saint Petersburg 

Saint 
Petersburg 

Chi average AIC average BIC average 

least_squares 23456669080.199 1750.138 1754.56 
leastsq 221861702553.906 1862.872 1867.295 
nelder 23458213317.06 1750.139 1754.562 

Table 4 Calculation of criteria for Moscow 

Moscow Chi average AIC average BIC average 

least_squares 27806867064.608 1378.292 1382.143 
leastsq 1245427171708.553 1854.249 1858.885 
nelder 27806876506.776 1378.292 1382.143 

Table 3 and Table 4 show that the criteria values for least_squares and nelder 
algorithms differ in the 5th or 7th order in the case of the chi-square criterion and differ in 
digits after the decimal point in case of AIC and BIC criteria. Despite the small difference in 
errors, the least_squares method operates better since it requires less time for calculations. 

Further, the area under the graph was checked with the numpy.trapz() function. Table 
5 shows the results. 

Table 5 Area calculation of the graphs under consideration 

 Area difference 
(number of infected) 

Area with source data 
(number of infected) 

Area with the obtained data 
(number of infected) 

Saint 
Petersburg 

3 million 27 million 24 million 

Moscow 6 million 88 million 82 million 

Thus, in Saint Petersburg, the model for predicting the infection spread dynamics has 
an error of 11.1% of the source data. On the other hand, in Moscow, the model gives an 
error of 6.8%. Given that the errors in both cases are close to 10%, it can be assumed that 
the predictive model is adequate, and the prediction results meet expectations. 

The discrepancy between the results and the initial data is explained by the fact that 
the forecasting methods and the available models are imperfect since they cannot fully 
consider all the factors affecting the real situation. Therefore, these studies are of particular 
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interest among the scientific community, and the developed models are being improved 
and complicated, which provides more reliable and accurate forecasts. 
 
4. Discussion 

The chosen automatic calibration method showed an adequate result, in which there is 
a correlation between reliability and the algorithm's operating time. Numerically, by the 
values of the difference in the areas under the graphs, and graphically, by the illustrations 
in Figure 2 and Figure 3, it can be seen that the deviations of the prediction results from the 
actual data are present and have sufficiently high indicators. However, the above solution 
is optimal, satisfying the needs in terms of both operating time and modeling accuracy. 
Moreover, considering the result as a whole, it can be noticed that the resulting graph 
repeats the shape and main waves (peaks and troughs) of the original data and therefore 
meets the necessary requirements. 

It was found that if there are more intervals, then prediction becomes more accurate, 
but the operating time increases. Due to the frequency of the intervals, their size decreases, 
so the adjustment of the 𝛽 and µ parameters is carried out at closer numerical values. Thus, 
there will be fewer outliers and more acceptable values of 𝛽 and µ, and, as a result, a more 
accurate and reliable prediction. 

The best result was obtained with the least squares method (LSM). LSM is used to solve 
various tasks where it is required to minimize the discrepancy (error). Furthermore, this 
method is successfully applied for finding solutions to nonlinear simultaneous equations 
and data approximation (Benzerrouk et al., 2013). In the present case, the SIR model 
variation was used, which constitutes simultaneous ordinary differential equations (SODE) 
(Borovkov et al., 2022). Therefore, the least squares method is appropriate for solving the 
problem of minimizing the sum of squared errors between the infected agents in the 
evaluated model and the current values (Ji et al., 2021; Parhusip et al., 2022; Qian, 2022; 
Smit et al., 2022). 

To adapt the calibration method to other models, the error function should be changed. 
This function compares the value was calculated by the formulas of the Kermack-
McKendrick SEIR model and the reference value. Accordingly, the purpose of calibration is 
to minimize errors in the entered parameters. The formula for calculating the error is given 
below (2). 

𝐸𝑟𝑟𝑖  =   𝑓𝑎𝑐𝑡𝑑𝑎𝑡𝑎 𝑖
 – 𝑟𝑒𝑠𝑢𝑙𝑡𝑑𝑎𝑡𝑎 𝑖

,

𝑖 = [𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑒𝑛𝑑 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑], (2)
 

где 𝑓𝑎𝑐𝑡_𝑑𝑎𝑡𝑎𝑖 – the initial data at the current step of the algorithm, 𝑟𝑒𝑠𝑢𝑙𝑡_𝑑𝑎𝑡𝑎𝑖 – the 
data calculated at the current step of the algorithm with the current selected parameters. 

𝐸𝑟𝑟𝑖  → min (3) 
Then it is possible to adapt the calibration to other needs: it is necessary to replace the 

existing formula with any other formula that is required to solve the task, change the 
reference values, and enter the necessary parameters. Thus, it is necessary to change the 
original values of 𝑓𝑎𝑐𝑡_𝑑𝑎𝑡𝑎𝑖 and replace the formula for calculating the current value of 
𝑟𝑒𝑠𝑢𝑙𝑡_𝑑𝑎𝑡𝑎𝑖. Also, replace the parameters in the Parameter class with those that need to 
be calibrated. 

It is also possible to use this model within a different geographical location, for 
example, by changing the input data and parameters to those defined in another country 
(the dynamics of cases, recovered, vaccinated, and other indicators). To do this, you will 
need to generate all the necessary information in a json file and add it to the file containing 
the source data. 
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5. Conclusions 

Within the research, the calibration method was selected and integrated into the 
predictive epidemiological Kermak-McKendrick SEIR model. For each wave, the values of 
the calibrated parameters changed, so the method of automatic and manual (graphical) 
selection of patient waves was implemented. To implement the functions, the Python 
programming language, and the minimization method from the lmfit library were chosen 
for model calibration. It is the most abstract, so it allows changing parameters in a more 
convenient manner and getting estimates of the fit. To minimize the error between the 
obtained and source data, the least-squares algorithm was selected in the minimization 
method. It allows considering the boundary values and demonstrates a solid performance 
in a short period of time. The developed calibration program of the obtained data allows 
using software to correctly assess the impact of the virus spread stemming measures 
during a pandemic on the morbidity dynamics. The developed solution can be tailored to 
other infection spread models.  
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