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Abstract. Stroke is one of the leading causes of death in Indonesia. From 2013 to 2018, the 
prevalence of stroke increased from 7% to 10.9%. There are two types of strokes, namely 
Hemorrhagic and Acutte Ischemic Stroke (AIS) with the majority of it being AIS. Early detection and 
diagnosis are essential in stroke as it is a life-threatening disease, and the stroke treatment is based 
on its type. Currently, the gold imaging standards in stroke diagnosis are Computed Tomography 
(CT) scan and Magnetic Resonance Imaging (MRI). However, the mentioned services for stroke 
diagnosis are primarily available in hospitals classified as “class A” (general hospitals with extensive 
facilities and medical services).  Compared to CT scans and MRI, electroencephalography (EEG) is a 
cost-friendly, non-invasive device studied for various brain-related diseases. This study aimed to 
determine the optimal epoch length to classify four stroke classes (healthy, minor, moderate, and 
severe) during  resting condition for a machine learning-based AIS computer-aided diagnostics 
system. 32-channel EEG, CT scan, and NIHSS Scores were the obtained data. The features were delta-
theta to alpha-beta ratio (DTABR), delta to alpha ratio (DAR), relative power ratio (RPR), and 
asymmetry, which were extracted using wavelet decomposition technique. The epoch length was 
varied by 1s, 2s, 10s, 30s, 60s, and 120s. The severity of stroke were classified using a feedforward 
neural network. The best performance was obtained at the 60-second epoch length with 89% 
accuracy using 15 hidden layers. This EEG-based diagnostic system would be expected to be 
implemented in “class C” hospitals, where only essential medical services and facilities are available, 
usually in rural areas. 
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1. Introduction 

Health Research conducted by the Indonesian Ministry of Health in 2013 and 2018 
revealed an increase in stroke prevalence from 7% to 10.9% (Health Research and 
Development Department, 2018). This disease can be divided into two main types, ischemic 
and haemorrhagic. Acute Ischemic Stroke (AIS) constitutes the majority of stroke cases 
(85%), which happens when blood vessels to the brain are blocked or narrowed from fatty
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deposits (Rudd, 2016). The diagnosis of stroke is commonly facilitated by brain Computed   
Tomography (CT) scan or Magnetic Resonance Imaging (MRI). However, these 
neuroimaging devices are only available in “class A” hospitals, with extensive facilities and 
medical services. On the other hand, the hospitals in rural areas (“class C” hospitals) usually 
provide only the essential medical services with limited facilities and thus lack access to 
better and more expensive neuroimaging means. In addition, stroke rehabilitative services 
are only available in those large city hospitals (Kusuma et al., 2009). Meanwhile, based on 
a study in 2013, it was revealed that stroke was just as prevalent in rural areas as it was in 
the city (Health Research and Development Department, 2013). Therefore, an affordable 
alternative for stroke diagnostics, such as electroencephalography (EEG), is sorely needed 
in rural areas. 

EEG is a non-invasive device that has been used in several research, such as for 
depression detection (Apsari & Wijaya, 2020), seizure detection (Srivastava et al., 2020), 
and stroke detection (van Putten, 2007).  An EEG device is more affordable to procure than 
a CT scan or an MRI, and consequently less costly to operate. Ischemic stroke brain may 
present abnormalities in the EEG signal (Finnigan & van Putten, 2013). Typically, AIS EEG 
signals exhibit high delta activity (1-4 Hz). The delta power has been consistently identified 
as the marker for ischemic stroke. The alpha power, Brain Symmetry Index (BSI), delta-
alpha ratio (DAR) and delta-theta alpha-beta ratio (DTABR) were also found to be good 
markers for stroke (Rahma et al., 2017; Finnigan et al., 2007; Müller et al., 2002). The delta 
band power and alpha to delta band ratio can distinguish patients who have sizeable 
ischemic stroke from other stroke patients (Shreve et al., 2019).  

EEG comes with complex brain signals, and thus machine learning (ML) approach has 
been implemented as means to make sense of them. Extreme ML has been used to classify 
stroke features (Chan et al., 2019; Rahma et al., 2017), while XGBoost and principal 
component analysis were applied to improve classification accuracy in a small number of 
selected EEG channels (Fitriah et al., 2017). Convolutional Neural Networks, including 
Multi-Layered Perceptron, as well as Decision Tree and Artificial Neural Networks, have 
been used for EEG-based classification (Nurfirdausi et al., 2022; Dewi et al., 2020; Qureshi 
et al., 2018; Omar et al., 2014). One of the issues with classifying EEG signals using the ML 
approach is looking for the most optimal feature settings to obtain the best performance. 
Thus, this study explored variations of epoch lengths to investigate which length would 
yield the best results. 

The current study is an extension of previous studies (Chan et al., 2019; Fitriah et al., 
2017; Rahma et al., 2017) using the AIS dataset. The EEG data were obtained for healthy 
control and stroke patients as a 30-minute recording. NIHSS scores were referenced to 
separate patients into classes based on stroke severity, i.e., healthy, mild, moderate, and 
severe. EEG data were read and analyzed in MATLAB R2020A. The 30-minute recording 
was segmented into epochs of a certain length (120, 60, 30, 10, 2, and 1 second epochs) and 
features—such as relative power ratio (RPR), delta-theta alpha-beta ratio (DTABR), delta-
alpha ratio (DAR), and asymmetry—were computed for each epoch. In the future, this 
program is expected to be implemented into the EEG hardware so that the most accurate 
prediction of stroke type can be obtained automatically in the shortest time possible. The 
features were classified into four classes based on stroke severity, and classification 
performance was obtained from that. Feedforward neural network was chosen as a 
classification algorithm because of its simplicity and advantage in handling nonlinear data. 
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2. Methods  

2.1.  Data Acquisition 
Before the experiment, the patients were given informed consent regarding their 

availability and willingness as subjects. The subjects comprised 29 healthy controls, 9 mild 
stroke patients, 23 moderate stroke patients, and 5 severe stroke patients. Healthy controls 
did not have any stroke onset before the data acquisition, while stroke patients were those 
who had an ischemic stroke within 72 hours or less after start. This study included 39 male 
and 27 female patients aged 40 to 74 years old. Table 1 contains demographic information 
for each subject. 

Table 1 Participant’s demographic and characteristics based on stroke severity 

The EEG devices used in this study were the Biologic Netlink System and the Xltek EEG 32U 
Natus, both had 32 channels and 512 Hz sampling frequency. The electrode placement was 
based on the international 10–20 system and was saved in European Data Format (.edf). 
Each AIS patient’s EEG recording was accompanied by their NIHSS score, CT scan, and EEG 
interpretation from the supervising physician. NIHSS score defines the level of stroke 
severity: 0 indicates no stroke, 1–4 indicates minor stroke, 5–15 indicates moderate stroke 
and above  15 indicates severe stroke (Rahma et al., 2017). 

2.2.  Signal Processing and Features 
After data collection, pre-processing using Independent Component Analysis (ICA) was 

done automatically in the device. The signals were then decomposed into their respective 
frequency bands using wavelet transformation, and their features were calculated before 
inputting into the ML algorithm. The features calculated in this study were relative power 
ratio (RPR), delta-alpha ratio (DAR), delta-theta alpha-beta ratio (DTABR), and asymmetry. 

2.2.1. Segmenting into Multiple Epochs 
 The standard procedures for EEG recording were based on the conditions shown in 

Table 2. The total recording time was 30 minutes, which were divided as follows: 

Table 2 EEG data timepoints and their recording conditions 

In this study, only eyes closed conditions were used. The reason for this was to 
investigate AIS markers during resting condition. The total eyes closed recording was 18 
minutes. This recording was then divided into multiple epochs of various lengths, which are 

Subject 
Number 

Patient Stroke 
Severity 

Age Gender Onset 
time 

NIHSS EEG Device Frequency 
Sampling 

1 stroke moderate 43 M 20 4/4 Xltek 512 

2 stroke moderate 48 F 24 10/5 Biologic 256 

3 stroke moderate 43 M 48 12/7 Biologic 256 

4 stroke mild 60 F 6 1/1 Biologic 256 

5 stroke mild 56 F 6 2/1 Biologic 256 

… … … … … … … … … 

66 stroke mild 
 

F 
  

Xltek 512 

Minute Description 

0-3 eyes closed 
3-6 eyes open 
6-9 photic stimulation 

9-12 hyperventilation (rapid inhale and exhale) 
12-30 eyes closed; patients were asked to sleep if they could 
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120, 60, 30, 10, 2, and 1 second epochs. Each epoch was transformed to a frequency domain 
using wavelet transformation. 

2.2.2. Wavelet Transformation 
Wavelet transformation is a time-to-frequency domain transformation that utilizes 

wavelets called the “mother” and “daughter” wavelets. Wavelet is concentrated in both time 
and frequency, whereas standard Fourier transforms is localized only in frequency 
(Agarwal et al., 2017). It is known to localize signal components better than other methods 
(Sanei & Chambers, 2007). The wavelet is represented as:  

 𝛾𝜅(𝜔𝛼 , 𝑡) = ∫ 𝑥(𝑡 + 𝜏)𝜓𝜔𝛼,𝜅
∗ (𝜏)𝑑𝜏

∞

−∞
 (1) 

where ωα is the angular frequency, κ is the wavenumber, and ψωα, κ(τ) is the wavelet 
function.  

Wavelet transformation can be classified into two types: Continuous Wavelet 
Transformation (CWT) and Discrete Wavelet Transformation (DWT). For this study, DWT 
was used to decompose the EEG signals into their respective frequency bands: delta, theta, 
beta, alpha, and gamma. DWT discreetly samples the signal and acts like a filter bank that 
takes the input signal and outputs the coefficients of the signal. Decomposing EEG signals 
into their respective frequency components can be done using a multi-level DWT 
decomposition (Tumari et al., 2013). 

To decompose a signal of EEG, the window function and the level of decomposition 
must be appropriate for the signal. The frequency sampling of the acquisition was 512 Hz, 
which means that the recorded signal is 0-512 Hz. A 7-level decomposition was required to 
decompose these signals. The window function used in this study was Daubechies 4 (db4) 
due to its small mean square error (MSE) when used for EEG signals (Tumari et al., 2013).  

The decomposed signals consisted of approximation (A) and detail (D) signals. The first 
three decompositions (D1, D2, and D3) were not used because they were considered as 
noise (Tumari et al., 2013). EEG frequency bands were obtained from the decomposition of 
AD3, which were D4 (gamma band, 32 – 64 Hz), D5 (beta band, 16 – 32 Hz), D6 (alpha band, 
8 – 1 6 Hz), D7 (theta band, 4 – 8 Hz), and AD7 (delta band, 0 – 4 Hz). 

2.2.3. Relative Power Ratio 
Relative power ratio is the ratio between a certain frequency band's power and all 

bands' total power. The RPR of a certain frequency band is computed using the equation:  

 RPR(𝑓1, 𝑓2) =
𝑃(𝑓1,𝑓2)

𝑃(𝑓𝐿 ,𝑓𝐻)
× 100% (2) 

where f1 and f2 are the low and high boundaries of the frequency band, fL and fH are the low 
and high boundaries of all bands. P(f1, f2) refers to the band power of a particular frequency 
band, while P(fL, fH) refers to the total power of all bands. 

2.2.4. Delta-Alpha Ratio (DAR) 
Delta-alpha ratio (DAR) is the ratio between the delta band's power and the alpha 

band's power. DAR is calculated using the equation: 

 DAR =
RPRdelta

RPRalpha
 (3) 

DAR in AIS patients’ EEG signals was found to be higher than healthy controls, with higher 
variability as well (Finnigan et al., 2016).  

2.2.5. Delta-Theta Alpha-Beta Ratio (DTABR) 
Delta-theta alpha-beta ratio (DTABR) is the ratio between the slow (delta and theta) 

and fast (alpha and beta) EEG waves. DTABR is calculated using the equation. DTABR in AIS 
patients was found to be relatively higher than in healthy controls (Finnigan et al., 2016). 
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 DTABR =
RPRdelta+RPRtheta

RPRalpha+RPRbeta
 (4) 

2.2.6. Asymmetry 

Asymmetry is the measure of activity between the left and right brain, calculated using 
the band power of each EEG frequency band. A high asymmetry indicates that the brain in 
that frequency band is more dominant in the left or right hemispheres. When asymmetry is 
positive, it indicates that the right hemisphere is more dominant. When it is negative, then 
the left hemisphere is more dominant (Allen et al., 2004). The calculation of asymmetry is 
as follows:  

 a𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 =  
1

𝑁
 (∑ ln 𝑃𝑥 𝑟𝑖𝑔ℎ𝑡

𝑁
n=1 −  ∑ ln 𝑃𝑥 left

N
n=1  ) (5) 

 
where N is the number of electrodes on each hemisphere and Px is the band power of 
frequency band x for each electrode. 

This study calculated nine asymmetry features from eight left-right electrode pairs and 
the total left-right hemispheric asymmetry. These features can be further explained as 
follows: prefrontal (FP2 – FP1); frontal 1 (F4 – F3); frontal 2 (F8 – F7); temporal 1 (T2 – 
T1); temporal 2 (T4 – T3); central (C4 – C3); parietal (P4 – P3); occipital (O2 – O1). 

2.3.  Machine Learning Classification 
2.3.1. Feedforward Neural Network 

Feedforward neural network or multilayer perceptron (MLPs) is the first artificial 
neural network that does not have a loop for their connections. In this network, information 
only flows forward from the input nodes to the hidden layers (if any) and the output node, 
hence the name “feedforward”. It is also divided into two groups depending on the number 
of the layers, which are single-layer and multi-layer (SAZLI, 2006). Feedforward neural 
network is considered simple compared to a recurrent neural network (RNN), in which is 
constructed as a loop. This chain's length is called the network's depth. 

2.3.2. K-Fold Cross Validation 
Cross-validation is a sampling method to estimate the performance of a predictive 

model in testing with the advantage of giving insight into performance from an independent 
dataset. It separates the dataset into portions and utilizes different parts of that data as 
either testing or training data in each of its iterations. The estimation of cross-validation 
accuracy is the number of correct classifications divided by the total data in the dataset. In 
k-fold cross-validation, the dataset will be randomly divided into equal sizes of subsets or 
folds. 

 𝐴𝑐𝑐𝐶𝑉 =  
1

𝑛
 ∑ (

𝑦𝑖− 𝑦̂𝑖

1− ℎ1
 )

2
𝑛
𝑖=1  (6) 

The results of k-fold cross-validation are averaged from the results of k number of subsets. 
In k-fold cross-validation, all subsets will take turns as training and validation data, but each 
subset will only be used once for validation. The standard parameter -k on k-fold cross-
validation is 10, however, it remains an undetermined parameter (Seni & Elder, 2010).  
 
3. Results and Discussion 

3.1.  Features Analysis 
Features capable of identifying healthy and stroke patients were calculated to 

differentiate between the two main classes. Based on four groups classification, DAR and 
DTABR showed an incremental increase in moderate and severe stroke compared to 
control, as shown in Figure 1. Higher DAR and DTABR in stroke patients are caused by the 
slowing in brain activity, thus lower wave signals become more significant compared to 
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healthy controls (Finnigan et al., 2016). However, a small increase was seen for mild stroke 
compared to healthy controls. 

Figure 1 Comparison of DAR and DTABR among stroke severity level: normal, mild, 
moderate, and severe  

In addition to DAR and DTABR, RPR was calculated using Decomposition Wavelet 
Transform (DWT). Figure 2 shows RPR in different frequency bands of EEG: alpha RPR, beta 
RPR, delta RPR, and theta RPR based on the level of stroke severity. The slight dominance 
of delta RPR is shown in mild stroke patients compared to normal subjects. In moderate 
and severe stroke patients, delta dominated the brain signals. Severe stroke patients had 
an abnormally dominant delta band, especially in the prefrontal areas (FP1, FP2, and FPZ), 
which proves that stroke patients have unusually high power of slow waves in their brains. 
Figure 2 shows that the alpha RPR of moderate stroke is slightly lower compared to the 
alpha RPR of mild stroke. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 2 Relative Power Ratio (RPR) comparison among all stroke severity level 

The last feature observed in this study was the asymmetry of each channel pair, shown 
in Figure 3. Out of all channel pairs, the central pair showed the most significant asymmetry 
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difference between healthy controls and stroke patients, with values of 0.36 and -2.75, 
respectively. This indicates that stroke patients generally have more left hemisphere 
activity in the central region. In general, healthy controls have a relatively small asymmetry 
between hemispheres, with a slight tendency on either right or left side dominance. Besides 
the central pair, only narrow differences between control and stroke were found between  

hemispheres.   

Figure 3 Asymmetry scores between healthy and stroke patients 

3.2. Training and Classification Result 
A feedforward neural network is implemented to classify AIS severity levels into four 

categories: normal or healthy controls, mild, moderate, and severe. The ML training was 
conducted using MATLAB R2020A with Intel® Core™ i7-8809G CPU@ 3.10GHz and 32 GB 
RAM. Each epoch length variation was trained and tested using the chosen ML algorithm to 
determine which would yield the best performance based on accuracy, specificity, and 
sensitivity. Besides epoch length, hidden layers were also varied to find the number of 
hidden layers required to achieve the best performance. RPR, DAR, DTABR, and asymmetry 
features were included as input in the ML classification without any exclusions. 

Table 3. shows the training result of the dataset. In general, ML performance increased 
with the number of hidden layers used—peaking at 15 hidden layers—but performance 
decreased at 20 hidden layers. The same was observed for epoch length, which achieved 
the best performance at a 60-second length and decreased at a 120-second length.  

Table 3 Performance results 

Parameter 120 seconds 60 seconds 30 seconds 
Acc Spec Sen Acc Spec Sen Acc Spec Sen 

Hidden 
layer 

5 75% 75% 90% 63% 51% 96% 65% 48% 97% 
10 72% 73% 87% 80% 86% 100% 67% 68% 100% 
15 66% 66% 93% 89% 100% 88% 83% 100% 100% 
20 65% 65% 86% 71% 58% 97% 76% 54% 99% 

 
Parameter 10 seconds 2 seconds 1 second 

Acc Spec Sen Acc Spec Sen Acc Spec Sen 

Hidden 
layer 

5 57% 45% 100% 68% 68% 96% 62% 61% 97% 

10 70% 61% 100% 60% 70% 100% 62% 62% 100% 

15 72% 69% 100% 80% 80% 88% 63% 64% 100% 

20 74% 70% 100% 80% 80% 97% 68% 68% 99% 

The best configuration was acquired at a 60-second epoch length with 15 hidden layers, 
which performed 89% accuracy, 88% sensitivity, and 100% specificity. The 60-second 
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epoch gave the most optimum result among others. The shortest epoch length, a 1-second 
epoch, produced the worst results overall.  

The lowest accuracy was obtained using 10 hidden layers, 60% for the 2-second epoch, 
compared to the accuracy obtained by 60 seconds, 80%. This occurred because longer 
segments contained more signal information than shorter segments, which resulted in 
better feature calculations. 
 
4. Conclusions 

This study calculated features that could identify stroke from healthy controls from 
resting EEG signals, which were delta theta to alpha beta ratio (DTABR), delta to alpha ratio 
(DAR), relative power ratio (RPR), and asymmetry. Stroke patients had higher delta RPR 
value as compared to healthy controls. Differences between control and stroke patients 
were identified. Stroke patients had higher delta RPR value as compared to healthy 
controls. In general, as stroke severity increases, so does the dominance of the delta band. 
Severe stroke showed a very dominant delta compared to the other bands, especially in the 
prefrontal region. Feedforward neural network and AIS EEG features were utilized to 
identify stroke and predict its severity from resting EEG data. The EEG signals were 
segmented into different epoch lengths, and the neural network's hidden layers varied. For 
this study, the optimum network configuration was 60-second epochs with 15 hidden 
layers. This simple configuration could classify stroke into four different classes with the 
best accuracy of 89%, specificity of 100%, and sensitivity of 88%. Further studies could 
implement feature-selection methods such as Principal Component Analysis (PCA) to 
reduce dimensionality and improve classifier performance. The result of this study shows 
a promising future for a more robust AIS computer-aided diagnostic system that uses EEG 
as an alternative neuroimaging device for stroke diagnosis. 
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