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Abstract. Unmanned aerial vehicles (UAV) are widely used in literature for object detection utilizing 
convolutional neural networks (CNN). However, most UAVs make use of GNSS sensors for 
localization, which have low reception in indoor situations. Therefore, this study aimed to 
investigate the implementation of a multi-UAV object detection system and navigation with the aid 
of particle swarm optimization (PSO) in ultra-wideband (UWB) positioning systems for GNSS-
denied environments, such as inside factories and warehouses. The performance of UWB systems 
was investigated to determine its viability in the PSO model. An object detection system based on 
the YOLOv5 network was trained with custom training images and subsequently evaluated with test 
images. The results of the object detection network were fed as inputs into PSO algorithms. 
Furthermore, different PSO algorithms were evaluated to determine the suitability for multi-UAV 
navigation and object detection. The results showed that UWB systems had sufficient accuracy for 
indoor localization, object detection, and navigation applications. YOLOv5 detection model detected 
objects with an F1 score of 0.93, given the optimal threshold of 0.8. Regarding the evaluation of PSO 
algorithms, the stochastic inertia weight variant of PSO algorithms (Sto-IW PSO) performed 
effectively across all metrics considered in the study compared to other algorithms that only 
performed effectively in one. Recommendations included the actual implementation of the system 
with multiple UAVs through field experiments and further refinements to PSO algorithms in order 
to match the kinematics and response time of the UAVs. 
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1. Introduction 

Autonomous Unmanned Aerial Vehicles (UAVs) are gaining considerable study interest 
in recent years, as evidenced by various investigations on mapping applications (Li et al., 
2023; Yu et al., 2022; Stachniss, 2009), search and rescue (Mishra et al., 2021; Karaca et al., 
2018; Van-Tilburg, 2017), medical services (Nenni et al., 2020), visual inspection (Nex et 
al., 2022), and swarm applications (Preiss et al., 2017). UAV systems have also significantly 
contributed to the growth of the Internet of Things (IoT) field by integrating numerous 
communication devices, sensors, cameras, and actuators (Motlagh, Taleb, and Arouk, 2016) 
to conduct various applications such as machine vision. Due to this, UAVs have played 
significant roles in the fourth industrial revolution in towards a sustainable future 
(Surjandari et al., 2022) A key aspect that can be observed from the mentioned studies is  
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the significance of Localization in facilitating the movement and data gathering of UAV 
systems. 

Localization is the use of external sensors such as Global Navigation Satellite Systems 
(GNSS), vision, radio frequency, or RFID systems to identify the location of a tag in space 
and represent its coordinates. While GNSS sensors are effective in accurately locating UAVs 
within the search space, the performance drops in indoor applications due to the lack of 
line of sight to the satellites (Shule et al., 2020). This limitation was also observed by 
Sandino et al. (2020), where the sensors failed to perform satisfactorily for indoor 
applications due to poor UAV localization. To address the limitation of GNSS localization for 
indoor applications, Badshah et al. (2019) investigated the use of cameras for Visual 
Localization. Although the system performed accurately, it required several cameras, as 
observed in the experimentation of Preiss et al. (2017), leading to a potentially costly 
implementation and complicated setup. In addition, the performance of visual systems is 
generally sensitive to lightning conditions of the environment. With the interest in local 
positioning systems for indoor UAV applications, there is a need for systems offering 
sufficient accuracy with a relatively simple setup. Among the types of technologies in local 
positioning systems, ultra-wideband (UWB) is preferred due to its high accuracy, wide 
range, low complexity, and low power consumption (Rajvanshi et al., 2022; Hasan et al., 
2018). Tiemann, Schweikowski, and Wietfeld (2015) designed UWB-based indoor 
positioning systems with two-way-ranging and later utilized time difference of arrival in a 
subsequent study to reduce channel usage (Tiemann and Wietfeld, 2017).  

In the context of UAV implementations, machine vision has been a significant study 
focus due to its contribution to industrial automation. The general process of object 
detection through machine vision mainly entails the extraction of features from an object, 
comparison with the image, and subsequent extraction of its position in the image, which 
can be translated to real-world location relative to the camera (Mansour, Dambul, and Choo, 
2022; Jurado et al., 2014). Convolutional neural networks (CNN) are often used to automate 
the extraction of these features and determine how the features can be used to classify or 
locate objects (Rawat and Wang, 2017). An effective CNN draws features from a large 
dataset and recent studies have combined them with other networks such as Long Short 
Term Memory for higher accuracy (Abdullah, Karim, and AlDahoul, 2023). Various research 
have shown success in the implementation of CNN to UAVs for image recognition with 
increased mobility (Zhu et al., 2022; Zhong et al., 2020; Nevavuori, Narra, and Lipping, 
2019).  

UAVs should be capable of quickly and reliably detecting objects in any environment in 
order to effectively implement object detection systems. These factors are evident in 
Sandino et al. (2020), which focused on search and rescue scenarios, demonstrating the 
need to minimize time when immediate assistance is required. The study also identified 
challenges related to operational time, often constrained by the limited battery supply of 
each UAV. Multiple UAVs can be utilized to address the time-sensitivity of missions, which 
can be supported with optimal path planning. Huang and Fei (2018) stated that particle 
swarm optimization (PSO) is relatively easier to understand and implement compared to 
other path planning algorithms. In PSO, each UAV is considered an individual particle in a 
search space where its movement depends on both personal experience and that of the 
swarm. Cho and Kim (2018) found that PSO outperformed genetic algorithms for single 
UAV and was comparable to non-hierarchical methods for multiple UAV applications. 
Multiple studies have reported success in the use of PSO for quadrotor path planning and 
navigation (Xu et al., 2023; Shao et al., 2020; Wang et al., 2018). The flexibility of PSO 
algorithms was also demonstrated in other applications outside of robotics such as 
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recognition of human activity (Zainudin, 2017). Mishra et al. (2021) saw success in 
combining PSO and CNN to achieve quick path planning and image recognition for time-
sensitive search and rescue missions. 

The current study aimed to address the aforementioned challenges by investigating the 
implementation of multi-UAV systems that utilized an optimized path determined by PSO 
and UWB positioning systems for localization in object detection tasks. The CNN object 
detector generated a confidence level indicating the probability of an object being within 
the bounding box on the captured frame, facilitating the localization of objects of interest. 
PSO was adopted to control the direction and velocity of UAVs for an efficient path to the 
object, with the cost function based on the results of designed object detection systems. 
Moreover, the study leveraged the benefits of radio localization through UWB localization 
systems. 
 
2. Methods 

2.1.  Implementation and evaluation of UWB based positioning systems 
 Ultrawide-band positioning systems operate through radio localization, where 
multiple anchors placed around a controlled flight space communicate with tags placed on 
objects of interest, estimating the position of the tags through radio communication. The 
ability of UWB to communicate with multiple tags, estimate positions, and allow the 
relaying of positions to other tags is essential for multi-UAV applications such as object 
detection. In the current study, the performance of UWB positioning systems for multi-UAV 
was investigated by evaluating the accuracy of localizing UAVs. The effectiveness of UWB-
based positioning systems could affect the performance of PSO in locating object-of-interest 
and in collision avoidance, which would be further discussed in the succeeding section. 
Crazyflie Loco Positioning Systems were the basis for this study as it utilized ultrawide-band 
technology. These systems adopted Loco Positioning Nodes as anchors and Loco Positioning 
Decks as tags placed on drones. The anchor nodes estimated distances using the Time 
Difference of Arrival of radio frequency waves, as shown in Equation 1. 

 𝑑 = 𝑐 × 𝑇𝐷𝑜𝐴 (1) 

where d is the distance from the beacon, c denotes the radio frequency, and TDoA is the 
time difference of arrival (Mimoune, Ahriz, and Guillory, 2019). For this study, journal 
articles addressing the performance analysis of UWB systems using time difference of 
arrival were reviewed to determine the suitability as positioning systems for object 
detection adopting PSO. 

2.2. Design and evaluation of a YOLOv5 convolutional neural network for object detection 
YOLOv5 is a CNN-based object detector that relies on extracting image features to 

predict classification and regress bounding box. Among various detectors, YOLOv5 was 
selected due to its relatively fast test time while retaining a high mean average precision 
(mAP), crucial for real-time object detection on the image feed from drones (Nepal and 
Eslamiat, 2022). However, training the model requires fast-computing hardware and ample 
memory, which can be addressed by using a hosted notebook service providing access to 
sufficient computing resources. For the current study, the object to be detected is a white 
mug. A dataset comprising 200 images was collected at random locations, with half 
containing mug and the other half without mug. This verified whether the detector detected 
false positives in the testing stage. To detect the location of the mug, the image was 
manually annotated with a bounding box locating the object or a null when no objects were 
present. The dataset was divided into three sections, namely training, validation, and 
testing at 70:20:10 split. The training dataset was used for automated training of the 
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YOLOv5 detector with 270 layers. The number of anchor box sizes, attempting to enclose 
the object, was set to 6, and training was set to run for 150 epochs. Furthermore, validation 
dataset was used to provide an unbiased evaluation of the model while tuning its 
parameters. The test dataset was used to evaluate the final model after training. Once 
YOLOv5 object detection model for the white mug is complete, it would be used to 
determine and pinpoint the location of the object within a test area. Meanwhile, the 
confidence level would serve as a variable for UAV swarm path planning. 

2.3. Design and evaluation of a particle swarm optimization algorithm for object detection 
PSO served as the backbone to coordinate a swarm of UAVs to converge toward the 

object of interest. Each drone represented a PSO particle containing information on its 
position and velocity in x, y, and z coordinates. In each epoch, the drone, equipped with a 
hypothetical camera, attempted to utilize the object detection system to search for the 
object. The results of the object detection systems were used as the input for the cost 
function. Therefore, the local and global best solutions of the particles were used for 
updating position and velocity for the following epoch. The updated position was 
subsequently transmitted to the swarm, allowing individual drones to adjust position with 
the guidance of UWB positioning systems. This process iterated for multiple epochs until 
PSO algorithms converged to an optimal solution, where it detected the object of interest 
with a high confidence level. The cost function used in the study for PSO algorithms is 
shown in Equation 2. 

 𝑐𝑜𝑠𝑡 = (1 − 𝑐𝑙) + 𝑑𝑖𝑠𝑏𝑏𝑜𝑥 + 𝑐𝑎 (2) 

where 𝑐𝑙  is the confidence level of the detection, 𝑑𝑖𝑠𝑏𝑏𝑜𝑥  represents the normalized 
distance between the center of the bounding box from the center of the image, and 𝑐𝑎 is the 
collision avoidance factor. The cost function considered the results from the object 
detection system to guide the swarm toward the object of interest while preventing inter-
UAV collisions. The cl indicated the certainty that object detection systems classified the 
object correctly. Subsequently, the resulting cl was subtracted from 1, where higher 
certainty corresponded to a lower cost. In cases where no bounding boxes were detected, 
the cost function should return 1 as the maximum cost. An appropriate confidence value 
would be determined through test runs with the object detection systems. The collision 
avoidance factor is set to 1 when UAV is within a minimum safe distance from another UAV, 
otherwise, the algorithm is set to 0. Also, 𝑐𝑎 can be neglected when there is enough height 
for each of the UAVs to set its own altitudes. PSO algorithms to be tested were derived from 
Kumar et al. (2013) and tabulated in Table 1, along with a brief description of the 
modifications from the standard PSO. 

 

Figure 1 Simulation of PSO algorithms with two particles 
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Figure 1 presents a Python script that is initialized with three possible locations of the 
object of interest, where two are set as false objects with lower confidence levels. To 
introduce uncertainty regarding the location of the true object, the variable 𝑑𝑖𝑠𝑏𝑏𝑜𝑥  is 
considered in the cost function only when the particle is within 1 meter from the object, as 
shown by Particle B in Figure 1. Once the particle is within 1 meter from the object, the 
confidence level is added to the equation at a constant value. Each algorithm was evaluated 
based on the number of iterations until convergence, the average distance traveled by each 
particle, and the percentage of global optimum reached (Shankar, Kandath, and Senthilnath, 
2021). Convergence is assumed when the best cost of all the particles is less than a tolerance 
value. Global optimum is assumed when the computed global best is within 1 meter of the 
true object at all dimensions. Each metric was based on the average of the results of 1000 
runs, tested with three, four, and five particles. An overall score was computed to assess 
each algorithm performance in object detection. The conditions for a higher overall score 
are as follows: when the number of iterations and distance traveled are minimized, and the 
percentage of global optimum reached is maximized. Equation 3 evaluates the performance 
of each model. 
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Where 𝑁 is the number of iterations, %𝑜𝑝𝑡  is the percentage of global optimum, 𝐷 is the 

average particle travel distance, and 𝐷𝑚𝑎𝑥  is the highest obtained average distance from the 
eight algorithms. Equation 3 assumes that each metric is of equal importance. 

Table 1 Algorithms considered for design of PSO 

Algorithm Brief Description 

Standard PSO (S-PSO) Standard PSO 
Canonical PSO (C-PSO) Updated velocity multiplied with constriction term 

Hierarchical PSO (H-PSO) 
Removal of inertial term. Reinitialize velocity when 
velocity becomes zero.  

Time Varying Acceleration Coefficients PSO 
(TVAC-PSO) 

c1 and c2 increases linearly every run 

Hybrid HPSO and TVAC (HPSO-TVAC) Combined H-PSO and TVAC-PSO 

Stochastic Inertia Weight PSO (Sto-IW PSO) 
Inertial weight randomized from an interval every 
run 

Decreasing Time Varying Inertia Weight PSO (Dec-
IW-PSO) 

Inertial weight decreases linearly every run 

Increasing Time Varying Inertia Weight PSO (Inc-
IW-PSO) 

Inertial weight increases linearly every run 

 
3. Results and Discussion 

3.1. Studies on UWB performance on drone localization and control 
 Chu et al. (2019) showed that LPS only had an average relative error of 6.83% when 8 
anchors were used. This error further decreased to 2.63% with a larger area. Similarly, 
Crețu-Sîrcu et al. (2022) successfully implemented UWB in a 14x40 m educational 
laboratory. For the purposes of PSO, UWB positioning systems were assumed to be 
implemented in a 10x10 meter space to control each drone accurately. 

3.2.  Evaluation of YOLOv5 object detection accuracy 
 The training of the model was completed in 0.082 hours using a Tesla T4 graphics card 
with 12 GB memory. After 150 epochs, the mean average precision (mAP) at 0.5 was 0.993, 
while the mAP in the range of 0.5 to 0.95 was 0.88. In the twenty test images, the model 
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successfully detected 9 out of 9 images containing mug at a cl greater than 0.5, but 3 had a 
second bounding box of false positive. Out of the 11 images without mug, 8 were classified 
null, 2 as false positives less than 0.5 cl, and 1 as a false positive with cl greater than 0.5. 
Figure 2 shows the sample predictions from this test. The total processing speed of the 
model per image was approximately 5.4 ms. Based on the precision curve in Figure 3, 
maximum precision was achieved at 0.75 cl. However, the recall curve remained perfect 
until it dropped to 0.6 and subsequently decreased to 0 at 0.8. This indicated that exceeding 
a confidence level of 0.6 could result in some false negatives, while exceeding 0.8 would 
lead to an increase in false negatives. The F1 curve showed that the optimal cl was at 0.8, 
where the minimum false negatives and false positives were found. 

 

Figure 2 Sample predictions of trained YOLOv5 model on test dataset.  

 

(a) 

 

(b) 

 

(c) 

Figure 3 Precision and Accuracy Curves on the Test Dataset: (a) F1 Curve, (b) P Curve, and 
(c) R Curve 
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3.3. Design and evaluation of object detection-based PSO algorithms 
The algorithms were evaluated by simulating three objects at random points within a 

search space of 10 x 10 meters. The confidence values were set as 0.91, 0.69, and 0.42 based 
on Figure 2. The algorithms are terminated when the personal best cost for all particles is 
less than 0.1. The algorithms process the output from the object detection system, with the 
cost function considering the object with a higher confidence level when more than one 
possible object of interest is detected. In addition, the cost is normalized to [0,1], with 2 
representing the maximum cost when no object is detected. 

The performance of each algorithm is shown in Figure 4. Furthermore, Figure 4(a) 
shows that the number of iterations generally decreases as the number of particles 
increases. H-PSO had the least number of iterations at 391 for three particles, followed by 
Sto-IW PSO and S-PSO at 461 and 488 iterations, respectively. The performance of Inc-IW 
PSO improved with five particles, making it comparable with Sto-IW PSO and S-PSO. C-PSO 
was the longest to converge, requiring 615 iterations. However, increasing the number of 
particles significantly improved performance, surpassing Inc-IW PSO.  

.

 

Figure 4 Performance of PSO algorithms in terms of (a) number of iterations, (b) 
percentage of global optimum reached, (c) average distance traveled by each particle, and 
(d) overall score 

 Figure 4(b) shows the results of detecting the true object from the three objects set. 
The increase in the number of particles improved the performance of each algorithm in 
detecting the true object. Models, such as Dec IW-PSO, HPSO-TVAC, and H-PSO exhibited 
percentages greater than 40%. Apart from H-PSO, the algorithms with fewer iterations 
showed less probability of reaching true detection. Dec IW-PSO and HPSO-TVAC both 
performed poorly in terms of convergence. H-PSO, on the other hand, showed an increase 
in performance to 47% when the number of particles was increased to five, surpassing 
HPSO-TVAC. In terms of the average distance traveled by each particle, as shown in Figure 
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4(c), C-PSO proved to be the most efficient, with an average distance of 83 meters for three 
particles, followed by S-PSO, Sto-IW PSO, and Inc-IW PSO, all traveling less than 200 meters. 
Increasing the number of particles led to an increase in the average distance traveled by 
each particle. Out of the top four performing algorithms, S-PSO had the most significant 
increase from 104 to 137 meters with five particles. Dec-IW PSO had the largest distance 
traveled, despite having the most global optimum reached.  

The performance of the algorithms in the three metrics showed that focusing on a 
single metric compensated for other metrics. Figure 4(d) shows the computed overall score 
for each algorithm. Sto-IW PSO achieved the highest score for all number of particles 
considered, with 55.64% and 63.17% for three and four particles, respectively. Sto-IW PSO 
performed satisfactorily across all three metrics without significantly sacrificing accurate 
detections. Despite having high accuracy, Dec-IW PSO ranked the lowest due to its 
significantly higher particle travel distance compared to other algorithms. Adjustments 
could be made to the Sto-IW PSO algorithm to further improve accuracy. 
  
4. Discussion 

The performance of the different components in indoor multi-UAV object detection 
systems were presented in the earlier sections. For UWB-based localization, Chu et al. 
(2019) utilized Loco Positioning Systems from Bitcraze and recommended a minimum 
spacing of two meters spacing for the anchors to obtain accurate readings with an average 
relative error of 2.63%. Consequently, the simulated setup included anchors from Pozyx 
platform, used by Mimoune, Ahriz, and Guillory (2019), which were placed in four corners 
of the room 10 meters apart. This indicated that UWB localization systems could effectively 
supplement the performance of PSO by providing the model with relatively accurate pose 
data. To increase accuracy, UWB localization could be integrated into UAV control systems 
and fused with the onboard inertial navigation systems (Tiemann and Wietfield, 2017). 
Object detection systems can be implemented by mounting a camera on UAV, providing a 
bird-eye view of the search space. A pretrained YOLOv5 network can be used for common 
objects to reduce the time for the setup of the object detection system, as opposed to the 
one trained on custom data. The particles from PSO algorithm represent UAVs. Various PSO 
models were evaluated with the use case of the study, with Sto-IW PSO performing the best 
among the other models. However, adjustments may be necessary to better correspond 
with the kinematics and response time of UAVs. The computations for PSO algorithms can 
be carried out by the leader UAV. The cost function can be obtained from the output of the 
object detection system, comprising the confidence level of the detection and the distance 
of the object in the photo in pixels or meters when the camera parameters are known. Once 
the positions of the UAVs are computed, the leader UAV can transmit data to the follower 
UAVs to minimize computational load.  

 
5. Conclusions 

In conclusion, the performance of UWB-based localization, YOLOv5 detection network, 
and PSO was tested for viability in autonomous object detection through multi-UAV 
navigation. Studies on UWB systems demonstrated its suitability for indoor localization, 
particularly in areas not overly large with few obstructions. YOLOv5 was found to be 
effective in detecting specific indoor objects in various areas, with an optimal threshold of 
0.8 enabling the swarm to locate the object with minimal false negatives and false positives. 
Most of the evaluated PSO algorithms could only perform satisfactorily on one metric. 
Minimizing the number of iterations would reduce the capability of the algorithms to reach 
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the global optimum or decrease the distance traveled by each particle. Increasing the 
number of particles generally decreased the number of iterations and increased the 
probability of particles locating the actual object. However, this increased the average 
distance traveled by each particle. Sto-IW PSO performed satisfactorily across all metrics 
based on the overall score. By integrating these concepts, a system for multi-UAV object 
detection with UWB-based location could be devised. Future studies were recommended to 
focus on implementation through simulation or the use of actual robots. Furthermore, fine-
tuning PSO for actual object detection could be carried out to improve accuracy and 
efficiency. 
 
References 

Abdullah, M.S.N.B., Karim, H.A., AlDahoul, N., 2023. A Combination of Light Pre-trained 
Convolutional Neural Networks and Long Short-Term Memory for Real-Time Violence 
Detection in Videos. International Journal of Technology, Volume 14(6), pp. 1228–1236  

Badshah, A., Islam, N., Shahzad, D., Jan, B., Farman, H., Khan, M., Jeon, G., Ahmad, A., 2019. 
Vehicle Navigation in GPS Denied Environment for Smart Cities Using Vision Sensors. 
Computers, Environment and Urban Systems, Volume 77, p. 101281 

Cho, J.-W., Kim, J.-H., 2018. Performance Comparison of Heuristic Algorithms for UAV 
Deployment with Low Power Consumption. In: 2018 International Conference on 
Information and Communication Technology Convergence (ICTC), pp. 1067–1069 

Chu, T.S., Chua, A., Sybingco, E., Roque, M., 2019. A Performance Analysis on Swarm Drone 
Loco Positioning System for Time Difference of Arrival Protocol. International Journal 
of Engineering and Advanced Technology, Volume 9, pp. 1475–1484 

Crețu-Sîrcu, A.L., Schiøler, H., Cederholm, J.P., Sîrcu, I., Schjørring, A., Larrad, I.R., 
Berardinelli, G., Madsen, O., 2022. Evaluation and Comparison of Ultrasonic and UWB 
Technology for Indoor Localization in an Industrial Environment. Sensors, Volume 22, 
p. 2927 

Hasan, H., Hussein, M., Mad-Saad, S., Mat-Dzahir, M.A., 2018. An Overview of Local 
Positioning System: Technologies, Techniques and Applications. International Journal 
of Engineering and Technology, Volume 7, pp. 1–5  

Huang, C., Fei, J., 2018. UAV Path Planning Based on Particle Swarm Optimization with 
Global Best Path Competition. International Journal of Pattern Recognition and Artificial 
Intelligence, Volume 32, p. 1859008 

Jurado, F., Palacios, G., Flores, F., Becerra, H.M., 2014. Vision-Based Trajectory Tracking 
System for an Emulated Quadrotor UAV. Asian Journal of Control, Volume 16, pp. 1–13 

Karaca, Y., Cicek, M., Tatli, O., Sahin, A., Pasli, S., Beser, M.F., Turedi, S., 2018. The Potential 
Use of Unmanned Aircraft Systems (Drones) in Mountain Search and Rescue 
Operations. The American Journal of Emergency Medicine, Volume 36, pp. 583–588 

Kumar, S., Sau, S., Pal, D., Tudu, B., Mandal, K.K., Chakraborty, N., 2013. Parametric 
Performance Evaluation of Different Types of Particle Swarm Optimization Techniques 
Applied in Distributed Generation System. In: Proceedings of the International 
Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA), 
Advances in Intelligent Systems and Computing. Springer, Berlin, Heidelberg, pp. 349–
356 

Li, J., Zhang, G., Shan, Q., Zhang, W., 2023. A Novel Cooperative Design for USV–UAV Systems: 
3-D Mapping Guidance and Adaptive Fuzzy Control. IEEE Transactions on Control of 
Network Systems, Volume 10, pp. 564–574  



Guzman et al. 1035 

Mansour, M.A., Dambul, K.D., Choo, K.Y., 2022. Object Detection Algorithms for Ripeness 
Classification of Oil Palm Fresh Fruit Bunch. International Journal of Technology, 
Volume 13(6), pp. 1326–1335 

Mimoune, K.-M., Ahriz, I., Guillory, J., 2019. Evaluation and Improvement of Localization 
Algorithms Based on UWB Pozyx System. In: 2019 International Conference on 
Software, Telecommunications and Computer Networks (SoftCOM), pp. 1–5 

Mishra, B., Garg, D., Narang, P., Mishra, V., 2021. A Hybrid Approach for Search and Rescue 
Using 3DCNN and PSO. Neural Computing & Applications, Volume 33, pp. 10813–10827 

Motlagh, N., Taleb, T., Arouk, O., 2016. Low-Altitude Unmanned Aerial Vehicles-Based 
Internet of Things Services: Comprehensive Survey and Future Perspectives. IEEE 
Internet of Things Journal, Volume 3, pp. 899–922 

Nenni, M.E., Riemma, S., Di Pasquale, V., Miranda, S., 2020. Development of a Drone-
Supported Emergency Medical Service. International Journal of Technology, Volume 
11(4), pp. 291–319 

Nepal, U., Eslamiat, H., 2022. Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous 
Landing Spot Detection in Faulty UAVs. Sensors, Volume 22, p. 464 

Nevavuori, P., Narra, N., Lipping, T., 2019. Crop Yield Prediction with Deep Convolutional 
Neural Networks. Computers and Electronics in Agriculture, Volume 163, p. 104859 

Nex, F., Armenakis, C., Cramer, M., Cucci, D.A., Gerke, M., Honkavaara, E., Kukko, A., Persello, 
C., Skaloud, J., 2022. UAV in the Advent of the Twenties: Where we Stand and What is 
Next. ISPRS Journal of Photogrammetry and Remote Sensing, Volume 184, pp. 215–242 

Preiss, J.A., Honig, W., Sukhatme, G.S., Ayanian, N., 2017. Crazyswarm: A Large Nano-
Quadcopter Swarm. In: 2017 IEEE International Conference on Robotics and 
Automation (ICRA), pp. 3299–3304  

Rajvanshi, A., Chiu, H.-P., Krasner, A., Sizintsev, M., Murray, G., Samarasekera, S., 2022. 
Ranging-Aided Ground Robot Navigation Using UWB Nodes at Unknown Locations. In: 
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 
Volume 2022, pp. 786–793 

Rawat, W., Wang, Z., 2017. Deep Convolutional Neural Networks for Image Classification: A 
Comprehensive Review. Neural Computation, Volume 29, pp. 2352–2449 

Sandino, J., Vanegas, F., Maire, F., Caccetta, P., Sanderson, C., Gonzalez, F., 2020. UAV 
Framework for Autonomous Onboard Navigation and People/Object Detection in 
Cluttered Indoor Environments. Remote Sensing, Volume 12, p. 3386 

Shankar, A., Kandath, H., Senthilnath, J., 2021. Acceleration based PSO for Multi-UAV Source-
Seeking. In: IECON 2023-49th Annual Conference of the IEEE Industrial Electronics 
Society, Volume 2021, pp. 1–6 

Shao, S., Peng, Y., He, C., Du, Y., 2020. Efficient Path Planning for UAV Formation Via 
Comprehensively Improved Particle Swarm Optimization. ISA Transactions, Volume 
97, pp. 415–430 

Shule, W., Almansa, C.M., Queralta, J.P., Zou, Z., Westerlund, T., 2020. UWB-Based 
Localization for Multi-UAV Systems and Collaborative Heterogeneous Multi-Robot 
Systems. Procedia Computer Science. In: The 15th International Conference on Future 
Networks and Communications (FNC), Volume 175, pp. 357–364 

Stachniss, C., 2009. Robotic Mapping and Exploration. Berlin, Heidelberg: Springer Tracts in 
Advanced Robotics, Springer 

Surjandari, I., Zagloel, T.Y.M., Harwahyu, R., Asvial, M., Suryanegara, M., Kusrini, E., 
Kartohardjono, S., Sahlan, M., Putra, N. Budiyanto, M.A., 2022. Accelerating Innovation 
in The Industrial Revolution 4.0 Era for a Sustainable Future. International Journal of 
Technology, Volume 13(5), pp. 944–948  



1036  Ultra-Wideband Implementation of Object Detection Through  
Multi-UAV Navigation with Particle Swarm Optimization 

Tiemann, J., Schweikowski, F., Wietfeld, C., 2015. Design of an UWB Indoor-Positioning 
System for UAV Navigation in GNSS-Denied Environments. In: 2015 International 
Conference on Indoor Positioning and Indoor Navigation (IPIN), Volume 2015, pp. 1–7 

Tiemann, J., Wietfeld, C., 2017. Scalable and Precise Multi-UAV Indoor Navigation Using 
TDOA-Based UWB Localization. In: 2017 International Conference on Indoor 
Positioning and Indoor Navigation (IPIN), Volume 2017, pp. 1–7  

Van-Tilburg, C., 2017. First Report of Using Portable Unmanned Aircraft Systems (Drones) 
for Search and Rescue. Wilderness & Environmental Medicine, Volume 28, pp. 116–118 

Wang, Z., Liu, L., Long, T., Wen, Y., 2018. Multi-UAV Reconnaissance Task Allocation for 
Heterogeneous Targets Using an Opposition-Based Genetic Algorithm with Double-
Chromosome Encoding. Chinese Journal of Aeronautics, Volume 31, pp. 339–350 

Xu, L., Cao, X., Du, W., Li, Y., 2023. Cooperative Path Planning Optimization for Multiple UAVs 
with Communication Constraints. Knowledge-Based Systems, Volume 260, p. 110164  

Yu, K., Hao, Z., Post, C., Mikhailova, E., Lin, L., Zhao, G., Tian, S., Liu, J., 2022. Comparison of 
Classical Methods and Mask R-CNN for Automatic Tree Detection and Mapping Using 
UAV Imagery. Remote Sensing, Volume 14(2), p. 295  

Zainudin, M.S., Sulaiman, M.N., Mustapha, N., Perumal, T., Mohamed, R., 2017. Recognizing 
Complex Human Activities using Hybrid Feature Selections based on an Accelerometer 
Sensor. International Journal of Technology, Volume 8(5), pp. 968–978  

Zhong, Y., Hu, X., Luo, C., Wang, X., Zhao, J., Zhang, L., 2020. WHU-Hi: UAV-Borne 
Hyperspdectral with High Spatial Resolution (H2) Benchmark Datasets And Classifier 
For Precise Crop Identification Based On Deep Convolutional Neural Network with 
CRF. Remote Sensing of Environment, Volume 250, p. 112012 

Zhu, J., Zhong, J., Ma, T., Huang, X., Zhang, W., Zhou, Y., 2022. Pavement Distress Detection 
Using Convolutional Neural Networks with Images Captured via UAV. Automation in 
Construction, Volume 133, p. 103991 

 


