
International Journal of Technology 13(5) 1055-1063 (2022)
 Received March 2022 / Revised August 2022 / Accepted August 2022

 International Journal of Technology

 http://ijtech.eng.ui.ac.id

Performance Evaluation of XML Dynamic Labeling Schemes on Relational
Database

Su-Cheng Haw1*, Aisyah Amin1, Palanichamy Naveen1, Kok-Why Ng1

1Faculty of Computing and Informatics, Multimedia University, 63100 Cyberjaya, Malaysia

Abstract. eXtensible Markup Language (XML), in its semi-structured format has been employed for
the data exchange purpose over the Internet due to its expressivity, flexibility, and capability to
accommodate both structured and unstructured data. Due to the vast amount of data being
transacted and updated frequently, it is essential to have a solution that can efficiently store and
query the data. Hence, a robust and persistent labeling scheme that can sustain the need to re-
labeling the entire document is desirable. Relational Database (RDB) has emerged since the 1970s
and has been widely used as back-end storage in most industries. Since XML and RDB are in different
formats, an efficient mapping technique is required. Several labeling and mapping schemes have
been proposed, yet, there is no comparison of the performance of these schemes implemented in
the RDB storage. In this paper, we first review the dynamic labeling schemes such as ORDPath, ME
Labeling, and ORD-GAP in addressing these two needs. Secondly, the XML annotated labeling
schemes are transformed into RDB storage. Finally, the performance evaluations are carried out to
determine which labeling scheme is more robust and efficient to support storage and query
retrieval.

Keywords: Dynamic updates; Labeling scheme; Mapping scheme; Performance evaluation; XML

database; XML query

1. Introduction

eXtensible Markup Language (XML) is the de facto standard for data transactions over
the Internet in many application domains, such as document repositories, healthcare,
banking, and business transactions (Hsu and Liao, 2020). With the massive growth of data
transferred over the Internet, a solution capable of coping with this situation is crucial
(Jittawiriyanukoon & Srisarkun, 2018). To fully exploit the full-featured XML, it is essential
to support both assorted queries and dynamic updates over the XML content (Haw & Song,
2021). On the other hand, some labeling schemes require re-labeling the whole XML tree.
As a result, it will increase the XML database size. As such, a persistent and robust labeling
scheme susceptible to re-labeling is very much needed.

Since XML evolution up until now, many methods to transform XML into RDB have
existed (Gupta & Narsimha, 2015). Yet, most existing methods only support static
documents by assuming that the structural information will not change over time
(Dhanalekshmi et al., 2021). This situation is impractical as the data transacted over the
web is subject to frequent updates.

*Corresponding author’s email: sucheng@mmu.edu.my, Tel.: +603-83125233; Fax: +603-83125264
doi: 10.14716/ijtech.v13i5.5871

1056 Performance Evaluation of XML Dynamic Labeling Schemes on Relational Database

This paper's first part concentrates on reviewing existing labeling schemes that
support dynamic updates. The subsequent piece of the paper evaluates the performance of
the chosen labeling schemes implemented on the RDB storage based on a path-based
mapping approach. The path-based method tracks the hierarchical path information
(Kapisha & Lakshmi, 2020) to map it into the parent table (path information on non-leaf
nodes) and the child table (path information on leaf nodes) (Haw & Song, 2021).

Generally, labeling schemes can be grouped into multiplicative-based, region-based,
path-based, and hybrid (Amin et al., 2018). The region encoding is based on assigning a
unique integer to all nodes whereby the child nodes are within the parent node and
ancestor node range, respectively (Pasnur et al., 2016). Prefix-based (path-based) is based
on assigning the prefix of the parent node (as well as the ancestor) to the child (as well as
the descendant). The multiplicative-based is based on some arithmetic operations to
calculate a unique identifier for each node. At the same time, the hybrid-based may combine
any group of labeling groups to overcome one scheme's weaknesses with the other
scheme's features.

Alsubai and North (2017) proposed a multiplicative-based Child Prime Label (CPL)
with the label of (start, end, level, CPL) using prime number assignment. Khanjari and
Gaeini (2018) introduced using a binary bit for the FibLSS encoding scheme. The
experimental evaluations demonstrated that FibLSS insertion is possible without the need
for re-labeling. Taktek and Thakker (2020) proposed Pentagonal Scheme, which can handle
several insertions on massive datasets. Ahn and Im (2020) proposed a MapReduce-based
prefix-based labeling scheme by extending the dynamically compressed element labeling
(DCL) (Ahn & Im, 2016). Using MapReduce, they can reduce the space incurred by
dynamically adjusting the label based on the number of nodes. Azzedin et al. (2020)
extended Dewey labeling (Tatarinov et al., 2002) and named the scheme RLP-Scheme. From
their approach, the A-D can be identified easily, even for XML with many identical sub-trees.

Based on the review, we observed that prefix-based is the most diverse and widely
adopted. Yet, this scheme label size grows with the length of the encoded path. In the worst
case, its size is O(n). As such, in this paper, we have selected to focus on the evaluation of
the path-based schemes, namely ORDPath (O'Neil et al., 2004), Multiplicative-Efficient (ME)
labeling (Subramaniam & Haw, 2014) and ORD-GAP (Haw et al., 2021).

2. Methods

 In this section, we first elaborate on the three selected labeling schemes in Section 2.1.
Then, we will briefly outline the architecture of the proposed simulation engine in Section
2.2.

2.1. Background
2.1.1. ORDPath

O’Neil et al. (2004) proposed an ORDPath labeling scheme in the format of prefixing the
nodes based on a hierarchical relationship of the particular node. ORDPath applies positive
integer and odd numbers to assign the initial labeling schemes, as shown in Figure 1, where
the entire line indicates the initial labeling. They reserved the even and negative integers for
future insertion, i.e., the right-most, left-most, and in-between insertion. The left-most node
insertion is computed by adding a -2 to the last ordinal of the first child in the same level. In
contrast, the right-most node insertion is calculated by adding a +2 to the previous ordinal
of the previous child. The in-between node insertion uses “careted in”. For instance, a new
odd element is inserted between an even ordinal and the last odd ordinal, and the odd

Haw et al. 1057

element usually is 1. The dotted line in Figure 1 shows the insertion of right-most, in-
between, and left-most nodes using the ORDPath scheme.

Figure 1 Left-most, right-most and in-between insertion

The Parent-Child (P-C) and Ancestor-Descendant (A-D) relationships can be
determined in ORDPath. As an illustration, node 1.3 is the parent of node 1.3.5, while node
1 is the ancestor of node 1.3.5 by looking at the prefix, which is 1.3 and 1, respectively.

2.1.2. ME Labeling
ME labeling uses multiplication operation on odd numbers to compute the label of

(level, [selflabel, ordinal]), whereby the level denoted the node's position in the tree's
hierarchical depth, the parent is the self-label of the parent node. Ordinal is the order
sequencing of the current node based on the formula 2n+1, while selfLabel is generated from
the parent * ordinal label [14]. It started with the root node being annotated with 1.
Subsequently, the first node of the ordinal at level 1 is 3 (calculated based on 2(1)+1), and
the second node of ordinal at level 1 is 5 (calculated based on 2(2)+1). The third node of the
ordinal at level 1 is 7 (calculated based on 2(3)+1).

The P-C relationship is the child label that is inherited from the parent label. It can be
defined by using the formula selfLabel/ordinal. The parent node is usually one level below
the child node. For the A-D relationship, it can be determined using all four rules shown in
Figure 2.

Figure 2 The four rules to determine A-D in ME labeling (Subramaniam & Haw, 2014)

Insertion of a new node in ME labeling can be inferred as the new node is going to be
inserted in between NodeA and NodeB (see Figure 3). Presume that NodeC is the newly
inserted node with selfLabel new self C and ordinal as new ordinal C The group of new self
C, and new ordinal C for the Node C is as follows:
a) new self C = (self B)(ordinal A) + (self A)(ordinal B)
b) new ordinal C = new self C/parent of node A or Node B.

1058 Performance Evaluation of XML Dynamic Labeling Schemes on Relational Database

Figure 3 New node insertion in ME labeling

2.1.3. ORD-GAP
ORD-GAP (Haw et al., 2021) is a robust labeling scheme that assigns unique identifiers

with dynamic gaps (calculated based on maximum fan-outs and maximum depth) on the
initial labeling to allow future insertion. The nodes were labeled with (s-e)l, where the s and
e are the start range and end range assigned based on depth-first traversal, while l is the
level of the node. The s and e are computed based on the gap g, whereby g is calculated
based g= Σ(maxfan-out+maxdepth). Figure 4 depicts the partial labeling on the Sigmod dataset
(UW, 2022). In this dataset, the maxfan-out is 4 and, the maxdepth is 6; thus, g will be computed
as 10. The XML tree is traversed based on depth-first traversal in the annotation process.
As such, the value in the initial tree for node “issue” will be assigned with 11 (by adding the
s value with g value, i.e., 1+10), followed by node “author” with 21. Next, the value e will be
computed when a leaf node is reached. In this case, if the s label is 31 and is a leaf node, then
the e value will be assigned with 41, followed by the node “issue” with 51. As for new
insertions, the ORD-GAP adopted the ORDPath scheme for any future node insertions. ORD-
GAP supports all three types of insertions, i.e., the left-most, right-most, and in-between.

Figure 4 Partial view of SIGMOD dataset with ORD-GAP labeling

Figure 5 The architecture of the Simulation Engine

 Figure 5 depicts the architecture of the simulation engine, which consists of two main
processes: (i) Data Storage, and (ii) Query Retrieval. The loaded XML document will be
annotated in the data storage process with the ORDPath, ORD-GAP, and ME labeling,

Haw et al. 1059

respectively. The annotated XML document will be mapped into RDB storage. The query
retrieval process will transform the user query (XPath) into the corresponding Structure
Query Language (SQL). Then, the result will be returned to the user.

2.2. Experimental Setup
 The PSD7003 dataset was obtained from the University of Washington repository (UW,
2022). PSD7003 is an annotated protein sequence database with a data size of 723 MB, a
skewed structure with a min depth of 3, a max depth of 7 and an average depth of 5. This
dataset is being selected for two reasons: (1) huge size and (2) skewed structure. We would
like to see how the approaches performed under these two conditions. All tests were
performed on Intel(R) Core (TM) i7-3770 CPU @ 3.4GHZ (64bit). The experiment carried
out included the evaluation of data storing and loading time, storage space evaluation, and
query retrieval evaluation. Figure 6 illustrates the evaluation process.

Figure 6 The experimental evaluation process

3. Results and Discussion

3.1. Data Storing and Loading Time
 In this evaluation, the XML document is mapped into RDB. As reported by (Al-Badawi
et al., 2014) and (Haw & Song, 2021) respectively, since the structure of XML is semi-
structured (ranging from skewed to flat design), the performance studies usually
considered only the running time without considering other evaluations such as memory
and CPU usage. As such, we will be evaluating on time taken to insert data.
 The size of data being stored in RDB and the time taken for the storage were recorded.
This paper is an extension of (Haw et al., 2021) on a larger dataset to identify which
approach is more suitable to support a large dataset. The evaluations were executed four
consecutive times, but only three executions were taken as the average time (see Table 1).
The first execution may contain some buffer time, and thus we eliminated the result of the
first run.
 Insertion time on the PSD7003 dataset shows that ORD-GAP is the fastest, followed by
ME labeling and ORDPath respectively. The labeling size of ORDPath and ME labeling have
tremendous growth when the data insertion runs on a large dataset (Haw et al., 2021),
(Khanjari & Gaeini, 2018).

Table 1 Data insertion based on various schemes

ORDPath
(mins)

ME labeling
(mins)

ORD-GAP
(mins)

450.63 381.51 301.04

3.2. Data Storage Space
 Mapping schemes is a technique where XML data is transformed into RDBs, which is
row and column basis. Table 2 shows the summary of the overall database size evaluation.
As can be observed, data storage for ORD-GAP produced a more significant size as
compared to ORDPath. This is due to the ORD-GAP reserving more space “gap” for later
insertion to support dynamic updates. However, when comparing ORD-GAP to ME labeling

Data storing and loading
time evaluation

Storage Space evaluation query retrieval
evaluation

1060 Performance Evaluation of XML Dynamic Labeling Schemes on Relational Database

ME labeling incurred more extensive storage as the label uses multiplication, which
resulted in a large label size (Taktek & Thakker, 2020).

Table 2 Data storage based on various schemes

ORDPath
(MB)

ME labeling
(MB)

ORD-GAP
(MB)

4019 4854 4483

Table 3 XPath Notation

Query Query Node XPath Notation

PQ1:

/ProteinDatabase/ProteinEntry/reference

PQ2:

//ProteinDatabase//reference//citation

PQ3:

//phdthesis/title

TQ4:

/ProteinDatabase/ProteinEntry[/protein/refe
rence]

TQ5:

//ProteinDatabase[//refinfo//accinfo]

TQ6:

/ProteinDatabase/Database[//refinfo]

3.3. Query Retrieval Evaluation
 Two types of queries are used in the SQL query retrieval experiment: the Path query
(PQ) and the Twig query (TQ). Figure 7 depicts the types of query test cases. Table 3
displays the question expressed in XPath notation that is input as the test cases. These
queries will be translated into the corresponding SQL statements. Table 4 depicts the two
examples of SQL statements for the complex query for path query (PQ3) and twig query
(TQ6) respectively. As can be observed from Table 4, both ME labeling and ORDPath require
several joins to obtain the results (Qtaish & Alshudukhi, 2022). ME labeling needs several
comparisons to determine if one relationship is in A-D, while for ORDPath, the relationship
can be checked by using the prefix and node name comparison.

Haw et al. 1061

Figure 7 Query test cases (PQ1 to TQ6)

Table 4 SQL commands on various approaches

 Corresponding SQL commands

Query ORDPath ME labeling ORD-GAP
PQ3 Select SELFLABEL,

(CHILDNAME) from
[XMLDB].[dbo].[PARENTTABLE
REED] where
(CHILDNAME='accession') and
SELFLABEL > any (select
SELFLABEL from
[XMLDB].[dbo].[PARENTTABLE
REED] child where
child.CHILDNAME = 'reference')
and
SELFLABEL < any (select
SELFLABEL from
[XMLDB].[dbo].[PARENTTABLE
REED] c where c.CHILDNAME =
'reference' and PARENTNAME
='ProteinEntry')

Select SELFLABEL, (CHILDNAME)
from
[XMLDB].[dbo].[MEPARENTTABL
E] where
(CHILDNAME='accession') and
SELFLABEL > any (select
SELFLABEL from
[XMLDB].[dbo].[MEPARENTTABL
E] child where child.CHILDNAME
= 'reference') and
SELFLABEL < any (select
SELFLABEL from
[XMLDB].[dbo].[MEPARENTTABL
E] c where c.CHILDNAME =
'reference' and PARENTNAME
='ProteinEntry')

Select start, (value) from
XMLDB.dbo.itable where
(Value='accession') and start >
any (select START from
XMLDB.dbo.itable child where
child.Value = 'reference') and
[end] < any (select [end] from
XMLDB.dbo.itable c where
c.Value = 'reference' and Pvalue
='ProteinEntry')

TQ6 Select SELFLABEL,
CHILDNAME from
[PSD].[dbo].[PARENTTABLE
REED]

where CHILDNAME
='Database' and
PARENTLABEL in

(Select IDNODE from
[PSD].[dbo].[PARENTTABLE
REED] c where
c.CHILDNAME =
'ProteinDatabase') union

Select SELFLABEL,
(CHILDNAME) from
[PSD].[dbo].[PARENTTABLE
REED] where SELFLABEL >
any (select SELFLABEL from
[PSD].[dbo].[PARENTTABLE
REED] child
where child.PARENTNAME =
'ProteinDatabase') and
SELFLABEL < any (select
SELFLABEL from
[PSD].[dbo].[PARENTTABLE
REED] child where
child.PARENTNAME =
'ProteinDatabase')
and CHILDNAME = 'refinfo

Select SELFLABEL,
CHILDNAME from
[PSD].[dbo].[MEPARENTTABL
E]

where CHILDNAME
='Database' and
PARENTLABEL in

(Select IDNODE from
[PSD].[dbo].[MEPARENTTABL
E] c where c.CHILDNAME =
'ProteinDatabase') union

Select SELFLABEL,
(CHILDNAME) from
[PSD].[dbo].[MEPARENTTABL
E]
where SELFLABEL > any
(select SELFLABEL from
[PSD].[dbo].[MEPARENTTABL
E] child
where child.PARENTNAME =
'ProteinDatabase') and
SELFLABEL < any (select
SELFLABEL from
[PSD].[dbo].[MEPARENTTABL
E] child where
child.PARENTNAME =
'ProteinDatabase')
and CHILDNAME = 'refinfo'

Select START, value from
SIG.dbo.ITABLE
where value ='Database' and
PSTART in (Select IDNODE
from SIG.dbo.ITABLE c
where c.PVALUE =
'ProteinDatabase') union
Select start, (value) from
SIG.dbo.itable where START
> any (select START from
SIG.dbo.itable child where
child.PVALUE =
'ProteinDatabase') and
[END] < any (select [end]
from SIG.dbo.itable child
where child.PVALUE =
'ProteinDatabase')
and value = 'refinfo'

 Figure 8a depicts the path query evaluation, while Figure 8b illustrates the twig query
evaluation results. ME labeling took a longer time to run PSD7003 as this dataset is

1062 Performance Evaluation of XML Dynamic Labeling Schemes on Relational Database

unstructured data that requires multiple recursive joins. In addition, determining the A-D
relationship requires several comparisons to confirm if the nodes are in the A-D
relationship. ORDPath requires more time than ORD-GAP due to its traversal method based
on breadth-first search, which travels level by level in the XML tree. As the number of
siblings increased, the size label also increased.

(a) (b)

Figure 8 Evaluation of (a) path queries (b) twig queries retrieval

4. Conclusions

This paper discusses the performance evaluation of the three labeling schemes, i.e.,
ORD-GAP, ORDPath, and ME Labeling. From the observation, we noticed that ORD-GAP does
not have the minimum storage size compared to ORDPath because it reserved a gap
between nodes to maintain later insertion. In the query part, we evaluated the performance
of the path query and twig query for ORD-GAP, ORDPath, and ME Labeling. It was observed
that ME Labeling took a long time on both path and twig queries, especially for queries with
A-D and mixed relationships. In our future work, we will evaluate dynamic updates
regarding the time taken to insert sub-trees and nodes on the proposed approach. We will
also look into the complexity analysis of each algorithm.

Acknowledgements

This research work has not received any grant from any funding agency. The authors
are grateful to the University for granting them access to equipment to produce this work.

References

Ahn, J., Im, D.H., Kim H.G., 2016. A Mapreduce-Based Approach for Prefix-Based Labeling of
Large XML Data. In: Joint International Semantic Technology Conference, pp. 83–98

Ahn, J., Im, D.H., 2020, Efficient Access Control of Large-Scale RDF Data Using Prefix-Based
Labeling, IEEE Access, Volume 8, pp. 122405–122412

Al-Badawi, M., Al-Hamdani, A., Baghdadi, Y., 2014, A Comprehensive Evaluation of a
Bitmapped XML Update Handler. International Journal on Advances in Internet
Technology, Volume 7(1-2), pp. 1–16

Alsubai, S., North, S., 2017. A Prime Number Approach to Matching an XML Twig Pattern
including Parent-Child Edges. In: 13th International Conference on Web Information
Systems and Technologies, pp. 204–211

Amin, A., Haw, S.C., Subramaniam, S., Song, E., 2018. Labeling Schemes to Support Dynamic
Updates on XML Trees: A Technical Review. In: Knowledge Management International
Conference (KMICe) 2018, 25 –27 July 2018, Miri Sarawak, Malaysia

Haw et al. 1063

Azzedin, F., Mohammed, S., Ghaleb, M., Yazdani, J., Ahmed, A., 2020. Systematic Partitioning
and Labeling XML Subtrees for Efficient Processing of XML Queries in IoT
Environments. IEEE Access, Volume 8, pp. 61817–61833

Dhanalekshmi, G., Asawa, K., 2021. An efficient Prefix-Based Labelling Scheme for Dynamic
Update of XML Documents. International Journal of Advanced Intelligence Paradigm,
Volume 18(4), pp. 464–480

Gupta, S., Narsimha, 2015. Performance Evaluation of Nosql-Cassandra over Relational Data
Store-Mysql for Bigdata. International Journal of Technology, Volume 6(4), pp. 640–649

Haw, S.C., Amin, A., Wong, C.O., Subramaniam, S., 2021. Improving the Support for XML
Dynamic Updates Using a Hybridization Labeling Scheme (ORD-GAP). F1000Research,
Volume 10(907), pp. 1–14

Haw, S.C., Song, E., 2021. Transforming Data-Centric Extensible Markup Language into
Relational Databases Using Hybrid Approach. Bulletin of Electrical Engineering and
Informatics, Volume 10(6), pp. 3256–3264

Hsu, W.C., Liao, I.E., 2020. UCIS-X: An Updatable Compact Indexing Scheme for Efficient
Extensible Markup Language Document Updating and Query Evaluation. IEEE Access,
Volume 8, pp. 176375–176392

Jittawiriyanukoon, C., Srisarkun, V., 2018. An Approximation Method of Regression
Analysis in Concurrent Big Data Stream. International Journal of Technology. Volume
9(1), pp. 192–200

Kapisha, S.J., Lakshmi, G.V., 2020. Exploring XML Index Structures and Evaluating C-Tree
Index-based Algorithm. In: 3rd International Conference on Intelligent Sustainable
Systems (ICISS), pp. 212–218

Khanjari, E., Gaeini, L., 2018. A New Effective Method for Labeling Dynamic XML Data.
Journal of Big Data, Volume 5, pp. 1–17

O'Neil, P., O'Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N., 2004. ORDPATHs: Insert-
friendly XML node labels. In: ACM SIGMOD International Conference on Management
of Data, pp. 903–908

Pasnur, Arifin, A.Z., Yuniarti, A., 2016. Query Region Determination based on Region
Importance Index and Relative Position for Region-based Image Retrieval.
International Journal of Technology, Volume 7(4), pp. 654–662

Qtaish, A., Alshudukhi, J., 2022. An Efficient Prefix-Based Labeling Scheme for XML Dynamic
Updates Using Hexagonal Pattern. IEEE Access, Volume 10, pp. 57107-57123

Subramaniam, S., Haw, S.C., 2014. ME Labeling: A Robust Hybrid Scheme for Dynamic
Update in XML Databases. In: IEEE International Symposium on Telecommunication
Technologies, pp. 126–131,

Taktek, E., Thakker, D., 2020. Pentagonal Scheme for Dynamic XML Prefix Labeling.
Knowledge-Based Systems, Volume 209, p. 106446

Tatarinov, I., Viglas, S.D., Beyer, K., Shanmugasundaram, J., Shekita, E., Zhang, C., 2002,
Storing and Querying Ordered XML using a Relational Database System. In:
Proceedings of the 2002 ACM SIGMOD International Conference on Management of
Data, Madison, Wisconsin

University of Washington (UW), 2022. XML Repository. Available online at
https://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repositor
y.html, Accessed on August 24, 2022

