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Abstract. eXtensible Markup Language (XML), in its semi-structured format has been employed for 
the data exchange purpose over the Internet due to its expressivity, flexibility, and capability to 
accommodate both structured and unstructured data. Due to the vast amount of data being 
transacted and updated frequently, it is essential to have a solution that can efficiently store and 
query the data. Hence, a robust and persistent labeling scheme that can sustain the need to re-
labeling  the entire document is desirable. Relational Database (RDB) has emerged since the 1970s 
and has been widely used as back-end storage in most industries. Since XML and RDB are in different 
formats, an efficient mapping technique is required. Several labeling and mapping schemes have 
been proposed, yet, there is no comparison of the performance of these schemes implemented in 
the RDB storage. In  this paper, we first  review the dynamic labeling schemes such as ORDPath, ME 
Labeling, and ORD-GAP in addressing these two needs. Secondly, the XML annotated labeling 
schemes are transformed into RDB storage. Finally, the performance evaluations are carried out to 
determine which labeling scheme is more robust and efficient to support storage and query 
retrieval. 
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1. Introduction 

eXtensible Markup Language (XML) is the de facto standard for data transactions over 
the Internet in many application domains, such as document repositories, healthcare, 
banking, and business transactions (Hsu and Liao, 2020). With the massive growth of data 
transferred over the Internet, a solution capable of coping with this situation is crucial 
(Jittawiriyanukoon & Srisarkun, 2018). To fully exploit the full-featured XML, it is essential 
to support both assorted queries and dynamic updates over the XML content (Haw & Song, 
2021). On the other hand, some labeling schemes require re-labeling the whole XML tree. 
As a result, it will increase the XML database size. As such, a persistent and robust labeling 
scheme susceptible to re-labeling is very much needed. 

Since XML evolution up until now, many methods to transform XML into RDB have 
existed (Gupta & Narsimha, 2015). Yet, most existing methods only support static 
documents by assuming that the structural information will not change over time 
(Dhanalekshmi et al., 2021). This situation is impractical as the data transacted over the 
web is subject to frequent updates. 
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This paper's first part concentrates on reviewing existing labeling schemes that 
support dynamic updates. The subsequent piece of the paper evaluates the performance of 
the chosen labeling schemes implemented on the RDB storage based on a path-based 
mapping approach. The path-based method tracks the hierarchical path information 
(Kapisha & Lakshmi, 2020) to map it into the parent table (path information on non-leaf 
nodes) and the child table (path information on leaf nodes) (Haw & Song, 2021).  

Generally, labeling schemes can be grouped into multiplicative-based, region-based, 
path-based, and hybrid (Amin et al., 2018).  The region encoding is based on assigning a 
unique integer to all nodes whereby the child nodes are within the parent node and 
ancestor node range, respectively (Pasnur et al., 2016). Prefix-based (path-based) is based 
on assigning the prefix of the parent node (as well as the ancestor) to the child (as well as 
the descendant). The multiplicative-based is based on some arithmetic operations to 
calculate a unique identifier for each node. At the same time, the hybrid-based may combine 
any group of labeling groups to overcome one scheme's weaknesses with the other 
scheme's features.  

Alsubai and North (2017) proposed a multiplicative-based Child Prime Label (CPL) 
with the label of (start, end, level, CPL) using prime number assignment. Khanjari and 
Gaeini (2018) introduced using a binary bit for the FibLSS encoding scheme. The 
experimental evaluations demonstrated that FibLSS insertion is possible without the need 
for re-labeling. Taktek and Thakker (2020) proposed Pentagonal Scheme, which can handle 
several insertions on massive datasets. Ahn and Im (2020) proposed a MapReduce-based 
prefix-based labeling scheme by extending the dynamically compressed element labeling 
(DCL) (Ahn & Im, 2016). Using MapReduce, they can reduce the space incurred by 
dynamically adjusting the label based on the number of nodes. Azzedin et al. (2020) 
extended Dewey labeling (Tatarinov et al., 2002) and named the scheme RLP-Scheme. From 
their approach, the A-D can be identified easily, even for XML with many identical sub-trees. 

Based on the review, we observed that prefix-based is the most diverse and widely 
adopted. Yet, this scheme label size grows with the length of the encoded path. In the worst 
case, its size is O(n). As such, in this paper, we have selected to focus on the evaluation of 
the path-based schemes, namely ORDPath (O'Neil et al., 2004), Multiplicative-Efficient (ME) 
labeling (Subramaniam & Haw, 2014) and ORD-GAP (Haw et al., 2021). 
 
2. Methods 

 In this section, we first elaborate on the three selected labeling schemes in Section 2.1. 
Then, we will briefly outline the architecture of the proposed simulation engine in Section 
2.2. 

2.1. Background  
2.1.1. ORDPath  

O’Neil et al. (2004) proposed an ORDPath labeling scheme in the format of prefixing the 
nodes based on a hierarchical relationship of the particular node. ORDPath applies positive 
integer and odd numbers to assign the initial labeling schemes, as shown in Figure 1, where 
the entire line indicates the initial labeling. They reserved the even and negative integers for 
future insertion, i.e., the right-most, left-most, and in-between insertion. The left-most node 
insertion is computed by adding a -2 to the last ordinal of the first child in the same level. In 
contrast, the right-most node insertion is calculated by adding a +2 to the previous ordinal 
of the previous child. The in-between node insertion uses “careted in”. For instance, a new 
odd element is inserted between an even ordinal and the last odd ordinal, and the odd 
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element   usually is 1. The dotted line in Figure 1 shows the insertion of right-most, in-
between, and left-most nodes using the ORDPath scheme. 

 

Figure 1 Left-most, right-most and in-between insertion 

The Parent-Child (P-C) and Ancestor-Descendant (A-D) relationships can be 
determined in ORDPath. As an illustration, node 1.3 is the parent of node 1.3.5, while node 
1 is the ancestor of node 1.3.5 by looking at the prefix, which is 1.3 and 1, respectively. 

2.1.2. ME Labeling 
ME labeling uses multiplication operation on odd numbers to compute the label of 

(level, [selflabel, ordinal]), whereby the level denoted the node's position in the tree's 
hierarchical depth, the parent is the self-label of the parent node. Ordinal is the order 
sequencing of the current node based on the formula 2n+1, while selfLabel is generated from 
the parent * ordinal label [14]. It started with the root node being annotated with 1. 
Subsequently, the first node of the ordinal at level 1 is 3 (calculated based on 2(1)+1), and 
the second node of ordinal at level 1 is 5 (calculated based on 2(2)+1). The third node of the 
ordinal at level 1 is 7 (calculated based on 2(3)+1 ). 

The P-C relationship is the child label that is inherited from the parent label. It can be 
defined by using the formula selfLabel/ordinal. The parent node is usually one level below 
the child node. For the A-D relationship, it can be determined using all four rules shown in 
Figure 2. 

 

Figure 2 The four rules to determine A-D in ME labeling (Subramaniam & Haw, 2014) 

Insertion of a new node in ME labeling can be inferred as the new node is going to be 
inserted in between NodeA and NodeB (see Figure 3). Presume that NodeC is the newly 
inserted node with selfLabel new self C and ordinal as  new ordinal C The group of new self 
C, and new ordinal C for the Node C is as follows: 
a) new self C = (self B)(ordinal A) + (self A)( ordinal B) 
b) new ordinal C = new self C/parent of node A or Node B. 
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Figure 3 New node insertion in ME labeling 

2.1.3. ORD-GAP  
ORD-GAP (Haw et al., 2021) is a robust labeling scheme that assigns unique identifiers 

with dynamic gaps (calculated based on maximum fan-outs and maximum depth) on the 
initial labeling to allow future insertion. The nodes were labeled with (s-e)l, where the s and 
e are the start range and end range assigned based on depth-first traversal, while l is the 
level of the node. The s and e are computed based on the gap g, whereby g is calculated 
based g= Σ(maxfan-out+maxdepth). Figure 4 depicts the partial labeling on the Sigmod dataset 
(UW, 2022). In this dataset, the maxfan-out is 4 and, the maxdepth is 6; thus, g will be computed 
as 10. The XML tree is traversed based on depth-first traversal in the annotation process. 
As such, the value in the initial tree for node “issue” will be assigned with 11 (by adding the 
s value with g value, i.e., 1+10), followed by node “author” with 21. Next, the value e will be 
computed when a leaf node is reached. In this case, if the s label is 31 and is a leaf node, then 
the e value will be assigned with 41, followed by the node “issue” with 51. As for new 
insertions, the ORD-GAP adopted the ORDPath scheme for any future node insertions. ORD-
GAP supports all three types of insertions, i.e., the left-most, right-most, and in-between. 

 

Figure 4 Partial view of SIGMOD dataset with ORD-GAP labeling 

 

Figure 5 The architecture of the Simulation Engine 

 Figure 5 depicts the architecture of the simulation engine, which consists of two main 
processes: (i) Data Storage, and (ii) Query Retrieval. The loaded XML document will be 
annotated in the data storage process with the ORDPath, ORD-GAP, and ME labeling, 
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respectively. The annotated XML document will be mapped into RDB storage. The query 
retrieval process will transform the user query (XPath) into the corresponding Structure 
Query Language (SQL). Then, the result will be returned to the user. 

2.2.  Experimental Setup  
 The PSD7003 dataset was obtained from the University of Washington repository (UW, 
2022). PSD7003 is an annotated protein sequence database with a data size of 723 MB, a 
skewed structure with a min depth of 3, a max depth of 7 and an average depth of 5. This 
dataset is being selected for two reasons: (1) huge size and (2) skewed structure. We would 
like to see how the approaches performed under these two conditions. All tests were 
performed on Intel(R) Core (TM) i7-3770 CPU @ 3.4GHZ (64bit). The experiment carried 
out included the evaluation of data storing and loading time, storage space evaluation, and 
query retrieval evaluation. Figure 6 illustrates the evaluation process. 

 
Figure 6 The experimental evaluation process 
 
3. Results and Discussion 

3.1.  Data Storing and Loading Time 
 In this evaluation, the XML document is mapped into RDB. As reported by (Al-Badawi 
et al., 2014) and (Haw & Song, 2021) respectively, since the structure of XML is semi-
structured (ranging from skewed to flat design), the performance studies usually 
considered only the running time without considering other evaluations such as memory 
and CPU usage. As such, we will be evaluating on time taken to insert data. 
 The size of data being stored in RDB and the time taken for the storage were recorded. 
This paper is an extension of (Haw et al., 2021) on a larger dataset to identify which 
approach is more suitable to support a large dataset. The evaluations were executed four 
consecutive times, but only three executions were taken as the average time (see Table 1). 
The first execution may contain some buffer time, and thus we eliminated the result of the 
first run.  
 Insertion time on the PSD7003 dataset shows that ORD-GAP is the fastest, followed by 
ME labeling and ORDPath respectively. The labeling size of ORDPath and ME labeling have 
tremendous growth when the data insertion runs on a large dataset (Haw et al., 2021), 
(Khanjari & Gaeini, 2018). 

Table 1 Data insertion based on various schemes 

ORDPath  
(mins) 

ME labeling 
(mins) 

ORD-GAP 
(mins)  

450.63 381.51 301.04 

3.2.  Data Storage Space 
 Mapping schemes is a technique where XML data is transformed into RDBs, which is 
row and column basis. Table 2 shows the summary of the overall database size evaluation. 
As can be observed, data storage for ORD-GAP produced a more significant size as 
compared to ORDPath. This is due to the ORD-GAP reserving more space “gap” for later 
insertion to support dynamic updates. However, when comparing ORD-GAP to ME labeling 

Data storing and loading 
time evaluation

Storage Space evaluation query retrieval 
evaluation



1060  Performance Evaluation of XML Dynamic Labeling Schemes on Relational Database 

 

ME labeling incurred more extensive storage as the label uses multiplication, which 
resulted in a large label size (Taktek & Thakker, 2020).   

Table 2 Data storage based on various schemes 

ORDPath  
(MB) 

ME labeling 
(MB) 

ORD-GAP 
(MB)  

4019 4854 4483 

Table 3 XPath Notation 

Query Query Node XPath Notation 

PQ1: 
 

 

/ProteinDatabase/ProteinEntry/reference 

PQ2: 
 

 

//ProteinDatabase//reference//citation 

PQ3: 
 

 

//phdthesis/title 

TQ4: 
 

  

/ProteinDatabase/ProteinEntry[/protein/refe
rence] 

TQ5: 
 

 

//ProteinDatabase[//refinfo//accinfo] 

TQ6: 

 

/ProteinDatabase/Database[//refinfo] 

3.3.  Query Retrieval Evaluation 
 Two types of queries are used in the SQL query retrieval experiment: the Path query 
(PQ) and the Twig query (TQ). Figure 7 depicts the types of query test cases. Table 3 
displays the question expressed in XPath notation that is input as the test cases. These 
queries will be translated into the corresponding SQL statements.  Table 4 depicts the two 
examples of SQL statements for the complex query for path query (PQ3) and twig query 
(TQ6) respectively. As can be observed from Table 4, both ME labeling and ORDPath require 
several joins to obtain the results (Qtaish & Alshudukhi, 2022). ME labeling needs several 
comparisons to determine if one relationship is in A-D, while for ORDPath, the relationship 
can be checked by using the prefix and node name comparison. 
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Figure 7 Query test cases (PQ1 to TQ6)  

Table 4 SQL commands on various approaches 

 Corresponding SQL commands 

Query ORDPath ME labeling ORD-GAP 
PQ3 Select SELFLABEL, 

(CHILDNAME) from 
[XMLDB].[dbo].[PARENTTABLE
REED] where 
(CHILDNAME='accession') and 
SELFLABEL > any (select 
SELFLABEL from 
[XMLDB].[dbo].[PARENTTABLE
REED] child where 
child.CHILDNAME = 'reference') 
and 
SELFLABEL < any (select 
SELFLABEL from 
[XMLDB].[dbo].[PARENTTABLE
REED] c where c.CHILDNAME = 
'reference' and PARENTNAME 
='ProteinEntry') 

Select SELFLABEL, (CHILDNAME) 
from 
[XMLDB].[dbo].[MEPARENTTABL
E] where 
(CHILDNAME='accession') and 
SELFLABEL > any (select 
SELFLABEL from 
[XMLDB].[dbo].[MEPARENTTABL
E] child where child.CHILDNAME 
= 'reference') and 
SELFLABEL < any (select 
SELFLABEL from 
[XMLDB].[dbo].[MEPARENTTABL
E] c where c.CHILDNAME = 
'reference' and PARENTNAME 
='ProteinEntry') 

Select start, (value) from 
XMLDB.dbo.itable where 
(Value='accession') and start > 
any (select START from 
XMLDB.dbo.itable child where 
child.Value = 'reference') and 
[end] < any (select [end] from 
XMLDB.dbo.itable c where 
c.Value = 'reference' and Pvalue 
='ProteinEntry') 

TQ6 Select SELFLABEL, 
CHILDNAME from 
[PSD].[dbo].[PARENTTABLE
REED] 

where CHILDNAME 
='Database' and 
PARENTLABEL in 

(Select IDNODE from 
[PSD].[dbo].[PARENTTABLE
REED] c where 
c.CHILDNAME = 
'ProteinDatabase') union 

Select SELFLABEL, 
(CHILDNAME) from 
[PSD].[dbo].[PARENTTABLE
REED] where SELFLABEL > 
any (select SELFLABEL from 
[PSD].[dbo].[PARENTTABLE
REED] child 
where child.PARENTNAME = 
'ProteinDatabase') and 
SELFLABEL < any (select 
SELFLABEL from 
[PSD].[dbo].[PARENTTABLE
REED] child where 
child.PARENTNAME = 
'ProteinDatabase') 
and CHILDNAME = 'refinfo 

Select SELFLABEL, 
CHILDNAME from 
[PSD].[dbo].[MEPARENTTABL
E] 

where CHILDNAME 
='Database' and 
PARENTLABEL in 

(Select IDNODE from 
[PSD].[dbo].[MEPARENTTABL
E] c where c.CHILDNAME = 
'ProteinDatabase') union 

Select SELFLABEL, 
(CHILDNAME) from 
[PSD].[dbo].[MEPARENTTABL
E] 
where SELFLABEL > any 
(select SELFLABEL from 
[PSD].[dbo].[MEPARENTTABL
E] child 
where child.PARENTNAME = 
'ProteinDatabase') and 
SELFLABEL < any (select 
SELFLABEL from 
[PSD].[dbo].[MEPARENTTABL
E] child where 
child.PARENTNAME = 
'ProteinDatabase') 
and CHILDNAME = 'refinfo' 

Select START, value from 
SIG.dbo.ITABLE 
where value ='Database' and 
PSTART in (Select IDNODE 
from SIG.dbo.ITABLE c 
where c.PVALUE = 
'ProteinDatabase') union 
Select start, (value) from 
SIG.dbo.itable where START 
> any (select START from 
SIG.dbo.itable child where 
child.PVALUE = 
'ProteinDatabase') and 
[END] < any (select [end] 
from SIG.dbo.itable child 
where child.PVALUE = 
'ProteinDatabase') 
and value = 'refinfo' 

 Figure 8a depicts the path query evaluation, while Figure 8b illustrates the twig query 
evaluation results. ME labeling took a longer time to run PSD7003 as this dataset is 
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unstructured data that requires multiple recursive joins. In addition, determining the A-D 
relationship requires several comparisons to confirm if the nodes are in the A-D 
relationship. ORDPath requires more time than ORD-GAP due to its traversal method based 
on breadth-first search, which travels level by level in the XML tree. As the number of 
siblings increased, the size label also increased. 

 

(a) (b) 

Figure 8 Evaluation of (a) path queries (b) twig queries retrieval 
 
4. Conclusions 

This paper discusses the performance evaluation of the three labeling schemes, i.e., 
ORD-GAP, ORDPath, and ME Labeling. From the observation, we noticed that ORD-GAP does 
not have the minimum storage size compared to ORDPath because it reserved a gap 
between nodes to maintain later insertion. In the query part, we evaluated the performance 
of the path query and twig query for ORD-GAP, ORDPath, and ME Labeling. It was observed 
that ME Labeling took a long time on both path and twig queries, especially for queries with 
A-D and mixed relationships. In our future work, we will evaluate dynamic updates 
regarding the time taken to insert sub-trees and nodes on the proposed approach. We will 
also look into the complexity analysis of each algorithm. 
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