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Abstract. 5G technology will greatly improve quality of human life by enabling new use cases that 
will fully leverage on the improved throughput, connections, and latency of the 5G networks. 
Enhanced Mobile Broadband (eMBB), which supports ultra-high throughput, is one of the most 
important features in 5G networks. This service is expected to improve users’ quality of experience 
(QoE) when using resource-intensive and far more interactive applications such as playing online 
games. It is widely known that 5G networks can be used for gathering network monitoring data and 
application metrics; however, the correlation between the data and the users’ QoE is not well 
understood. Since large amount of data can be collected, machine learning approach is well suited 
for predicting users’ QoE when playing online games in 5G networks. In this paper, an artificial 
neural network (ANN) model is proposed to predict the users’ QoE based on the network 
monitoring data of a 5G network during an online gaming session and the model's performance is 
evaluated. The ANN model consists of four layers which include one input layer, two hidden layers, 
and one output layer. The Unified Management Expert (UME) system is used to collect the network 
monitoring data from a 5G NSA indoor private campus network. The proposed ANN model achieves 
prediction accuracy of close to 80% using 30 most relevant features derived from the radio access 
network monitoring data. 
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1. Introduction 

 Human life will be transformed by 5G technology. This is because 5G technology has 
significant advantages over its predecessor, which not only offers a higher data rate, but it 
also provides a technological platform to support machine to machine communications. For 
example, connecting millions of Internet of Things (IoT) sensors together to a 5G network, 
and advanced services requiring very low latency communication, such as remote surgery 
and autonomous driving. 5G services can be classified into three scenarios - enhanced 
mobile broadband (eMBB), ultra-reliable and low latency communications (URLLC), and 
massive machine-type communications (mMTC). To meet the technical requirements of 5G 
networks, a better quality-of-experience (QoE) model is required than what is currently 
used for 2G, 3G, and 4G services. 

eMBB, which provides users with higher throughputs and data rates, is one of the most 
important use cases in 5G networks. It is able to support applications with very high video 
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traffic such as VR/AR, live streaming, UHD video, online gaming, cloud gaming, etc. Online 
gaming and cloud gaming contribute a significant amount of data traffic to 5G networks. 
Traditional video games are designed to depict a virtual 2D environment through a monitor. 
The first gaming methodology, known as "arcade" allow users to interact with the game. 
Then came multiplayer games, which allow users to play offline games with a few other 
players simultaneously. Online gaming and cloud gaming are becoming more popular. They 
are the mainstream of current and future gaming approaches, as communication networks 
improve to provide higher data rates and lower latency. 5G networks is expected to enhance 
online gaming and cloud gaming experience by connecting users around the world to play 
games simultaneously with high connection quality and ultra-low latency.  

 Traditionally, performance monitoring of the 2G/3G/4G networks are based on the 
existing standards which focus on technical Key Performance Indicators (KPIs) and Quality 
of Service (QoS). However, these KPIs and QoS hide the real experience of users and do not 
directly measure the target user experience. This is because QoS is defined as the technical 
point of view on service quality of the service providers. In order to provide better services 
to 5G users, a more holistic approach based on Quality of Experience (QoE) is needed which 
directly measures the target user experience. The definition of QoE according to ITU is the 
“degree of delight or annoyance of the users of an application or service” (ITU, 2017). 
However, there is no standard way on how to measure the user’s QoE for 5G networks. 
Therefore, this project aims to develop a machine learning model for modelling and 
predicting QoE based on the network monitoring data collected from an indoor 5G non-
standalone (NSA) private campus network.  
 The remainder of this paper is structured as follows: Related work is presented in 
Section 2. Section 3 describes the methodology of the project. The result and discussion are 
described in Section 4. Section 5 concludes the paper. 
 
2.  Related Works 

 According to (Banović-Ćurguz & Ilišević, 2019), the relationship between QoS and QoE 
may be service-specific, non-parametric, non-linear and not straightforward. This is 
because QoE is not directly reflected in measured network data and indeterminism of 
human behaviour. The authors suggested a 5G KPIs-QoS-QoE mapping framework to 
determine the end-to-end (E2E) user QoE based on both subjective and objective 
assessments. Due to the highly non-linear relationship between the KPIs and the QoE, data-
driven modelling will be able to provide the required prediction accuracy. 
 In (Liotou et al., 2016), a roadmap for QoE metrics and frameworks in 5G networks is 
proposed. The link between QoS and QoE mapping, QoE influencing variables, QoE 
assessment and estimate approaches, and QoE estimation models are discussed in this 
work. Perception-centric QoS-QoE mapping and stimulus-centric QoS-QoE mapping are the 
two methodologies offered for the QoS and QoE mapping process. The importance, changes, 
and influence on QoE as we move toward 5G are discussed in (Malik, 2020). It provides an 
overview of the QoE and the reason why does not address all aspects of network 
performance, including user experience. 
 The authors in (Laselva et al., 2018) propose a customizable QoE service model and 
assessment approach based on key quality indicators (KQIs) for objective user QoE 
measurement. To begin, data of network KPIs is gathered from a variety of sources, KPI 
normalisation is the following phase, which is used to compare and process the specified 
KPIs. The normalised KPIs are then used to compute the KQIs. The weighted-mean 
technique is applied, in which each low-level KPI is given a weight. This is done to see how 
important the indicator is when it's mapped to the KQI. The QoE score can be calculated 
based on the weighted combination of KQI, which captures the objective user’s QoE. 
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In (Pierucci, 2015), a QoE prediction framework based on neural network (NN) (or ANN) 
approach is suggested for 5G networks. The concept is to utilise a NN to link the QoS 
parameter to the QoE values. Network KPIs (e.g. channel quality indicator, user throughput, 
data volume, modulation order, and coding) can be used as input to the NN. The NN 
produces one of the QoE values as the output. A test on real KPIs collected from the HSPA 
network of TIM using a basic multi-layer perception (MLP) network with two hidden layers 
delivers satisfactory results. The author argues that the use of the NN approach enables 
simple adaptability of the categorization to changes in KPI features, which is the main 
benefit of the MLP NN. However, the proposed framework has not been tested on a real 5G 
network. 
 In (Schwarzmann et al., 2019), estimation of video streaming QoE in the 5G architecture 
using machine learning (ML) approach is presented. Network data analytics function 
(NWDAF) is introduced to collect data from application functions (AFs), control plane, 
management plane, and user plane. The network-level monitoring data statistics allow the 
application of ML techniques to predict user’s QoE. The proposed framework can be 
separated into three phases. In the first phase, network performance data are collected by 
NWDAF through the third-party AF. In the second phase, the network features derived from 
the collected data are ranked based on their significance in influencing QoE. Then, a subset 
of the features and ground truth QoE are selected to train the ML models for QoE prediction. 
After completing each test, the performance based on the selected feature sets and ML-
based models are evaluated. If the performance is not achieving requirement, the process 
can be repeated with different feature sets and ML-based models. The third phase is the 
deployment phase, where the feature sets and ML models selected are applied to estimate 
the QoE in real time. The results show QoE score can be reliably estimated using support 
vector regression based solely on network monitoring data. However, traces generated 
within an OMNeT++ simulation are used; the framework still needs to be validated within 
a real 5G deployment. 
 Online gaming is gaining increasing attention and popularity. QoE evaluation of online 
gaming applications is very important for both the game providers and the network service 
providers. However, due to the interactive nature of the online game applications among 
human and machines, it is very difficult to accurately predict online gaming’s QoE.  
Many researchers have explored the network characteristics for gaming QoE evaluation, 
yet there is no common QoE model for online mobile gaming (OMG). A gaming QoE 
paradigm for OMG is explored in (Moller et al., 2018). It also discusses a few research 
questions, such as whether the cloud gaming (CG) QoE assessment model proposed in 
(Yang et al., 2019) can be used to measure OMG QoE, how important is jitter when exploring 
the impact of packet loss on gaming QoE, which features influenced the most to the overall 
gaming QoE during playing online mobile game, and how can gaming QoE be predicted 
using only network monitoring data. Some ML-based QoE predictive models for video 
gaming and multimedia applications are highlighted in (Huang et al., 2018; Anwar et al., 
2020; Kougioumtzidis et al., 2022) but most of them are relying on application-level 
metrics. Moreover, they are not targeting 5G networks. In this work, we study the feasibility 
of an ANN approach for QoE prediction based on real-life physical-layer traffic patterns and 
statistics and evaluates their performance for an online gaming use-case in 5G network. 
 
3. Methodology 

 Figure 1 shows the proposed ML-based QoE prediction framework. The 5G NSA 
network service used in this study is an indoor private network available in the MMU-ZTE 
Training Centre. In the data collection phase, the Unified Management Expert (UME) 
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software is used to collect different types of raw radio access network monitoring data, such 
as UE uplink average MCS, UE downlink average MCS, Channel Quality Indicator (CQI), 
Precoding Matrix Indicator (PMI), SRS SINR, Downlink Physical Throughput, Uplink 
Physical Throughput, PUCCH Average SINR, PUSCH Frequency Offset, and PUSHC Average 
SINR. The true QoE is the user’s experience during their gaming session. It is collected from 
the users in the form of mean opinion score (MOS) after every gaming session using a 
survey form. The features derived from the collected raw network monitoring data will act 
as the inputs for training the ML model, while the true QoE data are the expected outputs. 
All the collected data, including network monitoring data from UME and users’ true QoE, 
are processed and labelled accordingly. In our data collection campaign, a UE which consists 
of a laptop and a 5G customer premise equipment (CPE) is used to connect to the 5G 
network. The user will then play the online game, Apex Legends, at different locations 
within the coverage of the 5G service. All the network monitoring data mentioned above 
are collected using the UME software with a time resolution of 1s. Figure 2 shows the 5G 
NSA network employed in this work and the data collection locations. 

 
Figure 1 Proposed ML-based QoE modelling and prediction framework 

 The second phase of the framework consists of feature selection and machine learning 
model training. Features extraction is first performed for every set of data. The statistics 
(or features) for each network monitoring data are calculated, including the mean, standard 
error, median, mode, standard deviation, sample variance, kurtosis, skewness, range, 
maximum, and minimum. In this work, 10 different types of network monitoring data are 
collected for each online gaming session. Therefore, every instance of data in our dataset 
has 110 features (or statistics). F-Test is used for feature selection and ranking in order to 
select the most relevant features for the ML model. Those irrelevant features which 
negatively affect the model's performance will be removed. The selected features are used 
to train a ML model for QoE prediction. In this work, an artificial neural network (ANN) 
model with four layers (one input layer, two hidden layers, and one output layer) is 
proposed. The number of nodes in the hidden layer 1 and 2 are set to 250 and 200 
respectively. Rectified Linear Unit (ReLU) activation function is used for the hidden nodes. 
For the output layer, 5 nodes are used to predict the 5 different levels of user’s experience 
(from very poor to excellent). Softmax activation function is used for the output nodes. The 
performance evaluation is performed after each epoch of model training. If the performance 
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evaluation does not satisfy the requirement for accuracy, the features are reselected and 
the ML model is trained again. This process is repeated until the performance converges or 
meets requirement. 

 
Figure 2 (a) Industrial-grade 5G NSA network equipment, (b) Measurement locations 

 In phase 3, which is the testing phase, after selecting the features that achieve the 
required accuracy for the ML model, the UME is used to collect the required network 
monitoring data only. Finally, the ML model uses only the features that are selected to 
predict the user's QoE in 5G networks when playing online games. The novelty of this work 
is mainly in the proposed feature extraction and selection as well as the ML modeling to 
accurately predict user’s QoE.  
 
4. Results and Discussion 

4.1. Feature Selection  
 Table 1 shows the result of feature selection using ANOVA F-Test. It ranks the features 
from the most influential feature that affects the output to the least influential feature. From 
this table, the most relevant features can be selected for training the ANN model. The result 
shows that the variance, standard deviation and standard error derived from the uplink 
(UL) data and control channels (i.e., PUSCH and PUCCH) and the sounding reference signal 
(SRS) data have critical influence on the user’s QoE. These features measure the amount of 
variability of the UL channels’ conditions during an online gaming session. The radio access 
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network data which are most useful for determining the user’s QoE are SINR, MCS index, 
and physical throughput. 

Table 1 Features ranking based on ANOVA F-Test 

Rank Feature Rank Feature 

1 VARIANCE_PUSCHAVGSINR 16 MODE_PUCCHSINR 

2 VARIANCE_PUCCHSINR 17 RANGE_PUCCHSINR 

3 VARIANCE_SRSSINR 18 MEDIAN_PUCCHSINR 

4 VARIANCE_ULAvgMCS 19 RANGE_PUSCHAVGSINR 

5 SERROR_PUCCHSINR 20 MEDIAN_SRSSINR 

6 SDEVIATION_PUCCHSINR 21 MIN_PUCCHSINR 

7 SERROR_SRSSINR 22 MODE_PUSCHAVGSINR 

8 SDEVIATION_SRSSINR 23 VARIANCE_DLAvgMCS 

9 SDEVIATION_PUSCHAVGSINR 24 RANGE_SRSSINR 

10 SERROR_PUSCHAVGSINR 25 MEDIAN_ULPHYTHROUGHPUT 

11 SERROR_ULAvgMCS 26 MODE_ULPHYTHROUGHPUT 

12 SDEVIATION_ULAvgMCS 27 MIN_SRSSINR 

13 MODE_SRSSINR 28 SDEVIATION_DLAvgMCS 

14 MEAN_PUCCHSINR 29 SERROR_DLAvgMCS 

15 MEAN_SRSSINR 30 MIN_PUSCHAVGSINR 

4.2. Number of Features  
 Table 2 shows the QoE prediction performance of the ANN model employing different 
number of features. The number of epochs is set to 100 and the train-test splitting is set to 
20%. This means that 80% of the dataset is used for training, while the remaining 20% is 
for testing. In our case, the dataset has 270 instances of data. The ANN model used in this 
test has four layers - one input layer, two hidden layers, and one output layer. 

Table 2 Performance of the ANN model employing different number of features (100 
training epochs) 

No. of 
Features 

Train 
Accuracy 

Train 
Precision 

Train 
Recall 

Train Loss 
Test 

Accuracy 
Test 

Precision 
Test Recall 

5 81.85 53.30 44.91 36.88 44.44 44.44 44.44 
10 85.37 68.35 50.00 30.65 50.00 50.00 50.00 
15 90.37 79.79 69.44 22.00 59.26 59.26 59.26 
20 92.04 81.86 77.31 18.78 70.37 70.37 70.37 
25 94.44 86.79 85.19 13.89 66.66 66.66 66.66 
30 95.93 90.95 88.43 11.73 72.22 72.22 72.22 
35 97.69 94.42 93.98 8.00 64.81 64.81 64.81 
40 98.89 97.22 97.22 4.91 66.66 66.66 66.66 
50 99.26 98.15 98.15 2.72 55.55 55.55 55.55 

 It can be observed that by increasing the number of features from 5 to 50 features, the 
training accuracy improves from 81.85% to 99.26%, the precision improves from 53.3% to 
98.15%, the recall rate improves from 44.91% to 98.15%, and the training loss is reduced 
from 36.88% to 2.72%. But for the testing, the accuracy improves from 44.44% to 72.22% 
when the number of features increases from 5 to 30 features. The performance of the ANN 
model drops when the number of features used is more than 30. This means that the ANN 
model is overfitting. Overfitting refers to the situation where the model performs well 
during the training stage, but performs poorly in the testing stage. It happens when a model 
learns the details and noise in the training data to the extent that it negatively impacts the 
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prediction performance of the model.  
 Table 3 shows the performance of the ANN model considering a higher number of 
training epochs of 500. The purpose of this test is to make comparison between the models 
with 100 and 500 training epochs, as well as the impact of the different number of features 
used. The other parameters remain the same as in the previous test.  

Table 3 Performance of the ANN model trained with 500 epochs 

No. of 
Features 

Train 
Accuracy 

Train 
Precision 

Train 
Recall 

Train Loss 
Test 

Accuracy 
Test 

Precision 
Test 

Recall 

5 82.96 57.92 54.17 33.98 48.15 48.15 48.15 
10 89.35 77.30 66.20 23.14 59.26 59.26 59.26 
15 97.87 94.88 94.44 7.33 61.11 61.11 61.11 
20 98.33 95.83 95.83 5.46 59.26 59.26 59.26 
25 99.26 98.15 98.15 1.64 66.66 66.66 66.66 
30 100.00 100.00 100.00 0.58 62.96 62.96 62.96 
35 99.63 99.07 99.07 0.77 64.82 64.82 64.82 
40 100.00 100.00 100.00 0.04 59.26 59.26 59.26 
50 100.00 100.00 100.00 0.01 55.55 55.55 55.55 

 It can be observed that by increasing the number of epochs to 500, the training accuracy 
of the ANN model is improved. However, due to the overfitting problem, the testing 
accuracy is reduced when 500 training epochs is considered. For example, for 30 features, 
the testing accuracy is reduced from 72.22% to 62.96% when the number of epochs is 
increased from 100 to 500.  

4.3. Number of Training Epochs  
 Table 4 shows the QoE prediction performance of the ANN model using different 
number of training epochs. The ANN model has four layers - one input layer, two hidden 
layers, and one output layer. The train-test splitting is set to 20%. The number of features 
is fixed to the top 20 features from the feature selection result (see Table 1). 

Table 4 Performance of the ANN model employing different number of training epochs 

Epochs 
Train 

Accuracy 
Train 

Precision 
Train 
Recall 

Train Loss 
Test 

Accuracy 
Test 

Precision 
Test 

Recall 

25 84.54 65.61 47.69 30.00 55.56 55.56 55.56 
50 88.89 76.97 63.43 24.23 62.96 62.96 62.96 

100 92.04 81.86 77.31 18.78 70.37 70.37 70.37 
150 94.72 87.68 85.65 14.74 64.81 64.81 64.81 
200 95.00 88.94 85.65 12.66 64.81 64.81 64.81 
250 96.39 91.16 90.74 10.31 64.81 64.81 64.81 
300 97.50 94.37 93.06 8.55 64.81 64.81 64.81 
400 97.31 93.49 93.06 6.13 64.81 64.81 64.81 
500 98.33 95.83 95.83 5.46 59.26 59.26 59.26 
600 98.89 97.22 97.22 3.11 61.11 61.11 61.11 
700 99.07 97.69 97.69 2.77 61.11 61.11 61.11 
800 99.63 99.07 99.07 1.79 64.81 64.81 64.81 
900 99.26 98.15 98.15 1.83 64.81 64.81 64.81 

1000 99.81 99.54 99.54 1.08 64.81 64.81 64.81 

 Based on the result in Table 4, it can be observed that when the number of training 
epochs increases from 25 to 1000, the training accuracy, precision, recall rate and loss are 
all improved. However, the testing outcome shows the best performance is achieved for 
100 epochs. After 100 epochs of training, the testing performance reduces, which means 
that the ANN model is overfitting.  
 Table 5 shows the performance of the ANN model versus the number of epochs when 
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the number of features is increased to 25.  

Table 5 Performance of the ANN model employing 25 features 

Epochs 
Train 

Accuracy 
Train 

Precision 
Train 
Recall 

Train Loss 
Test 

Accuracy 
Test 

Precision 
Test 

Recall 

25 87.13 73.05 56.48 27.17 57.41 57.41 57.41 
50 91.39 81.54 73.61 20.16 68.52 68.52 68.52 
55 91.02 79.60 74.07 20.62 70.37 70.37 70.37 

100 94.44 86.79 85.19 13.89 66.66 66.66 66.66 
150 96.94 92.96 91.67 9.19 64.81 64.81 64.81 
200 97.04 92.59 92.59 7.40 64.81 64.81 64.81 
250 98.52 96.73 95.83 5.26 66.66 66.66 66.66 
300 98.98 97.67 97.22 3.41 62.96 62.96 62.96 
400 99.44 98.61 98.61 1.63 64.81 64.81 64.81 
500 99.26 98.15 98.15 1.64 66.66 66.66 66.66 
600 99.81 99.54 99.54 0.90 64.81 64.81 64.81 
700 99.81 99.54 99.54 0.61 66.66 66.66 66.66 
800 100.00 100.00 100.00 0.39 66.66 66.66 66.66 
900 100.00 100.00 100.00 0.19 68.52 68.52 68.52 

1000 100.00 100.00 100.00 0.10 66.66 66.66 66.66 

 By increasing the number of features from 20 to 25 features, the training accuracy, 
training precision, and training recall rate are also improved. But this improvement is not 
reflected in the testing performance. The testing performance reaches its maximum at 55 
epochs, which is 70.37% for testing accuracy, and then drops down and remains roughly 
the same from 100 epochs onward toward the end of the testing using 25 features.  
 Table 6 shows the QoE prediction performance of the ANN model employing 30 
features versus the number of training epochs. Higher number of features is considered in 
this test to understand the effect on the prediction performance. 

Table 6 Performance of the ANN model employing 30 features 

Epochs 
Train 

Accuracy 
Train 

Precision 
Train 
Recall 

Train Loss 
Test 

Accuracy 
Test 

Precision 
Test 

Recall 

25 86.67 70.93 56.48 27.26 61.11 61.11 61.11 
50 90.74 79.29 72.69 19.70 68.52 68.52 68.52 

100 95.93 90.95 88.43 11.73 72.22 72.22 72.22 
150 97.96 95.33 94.44 7.16 68.52 68.52 68.52 
200 97.96 94.91 94.91 6.31 66.67 66.67 66.67 
250 99.44 98.61 98.61 2.76 66.67 66.67 66.67 
300 99.63 99.07 99.07 1.70 66.67 66.67 66.67 
400 100.00 100.00 100.00 0.79 68.52 68.52 68.52 
500 100.00 100.00 100.00 0.58 62.96 62.96 62.96 
600 100.00 100.00 100.00 0.34 62.96 62.96 62.96 
700 100.00 100.00 100.00 0.15 59.26 59.26 59.26 
800 100.00 100.00 100.00 0.10 62.96 62.96 62.96 
900 100.00 100.00 100.00 0.08 62.96 62.96 62.96 

1000 100.00 100.00 100.00 0.05 62.96 62.96 62.96 

 By increasing the number of features to 30, it can be observed that the training 
performance has improved as well. At 400 epochs, the training accuracy reaches 100%. The 
testing accuracy improves to 72.22% at 100 epochs, However, after 100 epochs, the testing 
performance starts to degrade and remain roughly the same until the end of the testing. 
This is because the ANN model is overfitting after 100 epochs of training. By making a 
comparison between the results of these three tests, we can observe that the best 
performance is achieved with 30 features at 100 training epochs, which gives 72.22% of 
testing accuracy. 
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4.4. Number of Hidden Layer Nodes 
 Table 7 shows the QoE prediction performance of the ANN model versus different 
combinations of number of hidden layer nodes. In this test, the top 30 features are 
considered, and the settings of the other parameters are given in Table 7. 

Table 7 Performance of the ANN model versus different combinations of number of hidden 
layer nodes (100 training epochs) 

Hidden 
Layer 
Nodes 

Train 
Accuracy 

Train 
Precision 

Train 
Recall 

Training 
Loss 

Test 
Accuracy 

Test 
Precision 

Test 
Recall 

50, 50 90.37 81.11 67.59 21.52 72.22 72.22 72.22 
80, 50 91.39 83.98 70.37 20.41 74.07 74.07 74.07 
80, 80 91.85 82.00 75.93 18.78 72.22 72.22 72.22 

100, 80 93.89 87.50 81.02 16.91 77.78 77.78 77.78 
100, 100 94.07 88.00 81.48 16.19 70.37 70.37 70.37 
150, 100 93.89 87.50 81.02 14.67 70.37 70.37 70.37 
150, 150 94.54 87.56 84.72 13.13 68.52 68.52 68.52 
200, 150 94.35 86.73 84.72 14.26 74.07 74.07 74.07 
200, 200 95.28 89.10 87.04 12.52 70.37 70.37 70.37 
250, 200 95.93 90.95 88.43 11.73 72.22 72.22 72.22 
250, 250 95.83 90.14 88.89 10.96 68.52 68.52 68.52 
300, 300 96.57 92.02 90.74 10.23 70.37 70.37 70.37 
400, 300 96.94 92.56 92.13 10.28 68.52 68.52 68.52 
400, 400 97.22 93.46 92.59 8.46 68.52 68.52 68.52 
500, 400 96.85 92.52 91.67 8.40 68.52 68.52 68.52 
500, 500 97.13 93.43 92.13 8.05 68.52 68.52 68.52 

 It can be observed that different combination of the number of hidden layer nodes gives 
different performance. When the number of nodes increases, the training performance of 
the model improves as well. However, the testing performance didn’t show similar 
improvement. The best performance that can be achieved is 77.78% when the number of 
hidden layer nodes is set to 100 nodes for the first hidden layer and 80 nodes for the second 
hidden layer. 
 
5. Conclusions 

 In the past, networks KPIs and QoS were used to measure the user experience. 
However, they do not directly target the actual user experience. The current trend in 
measuring user experience is towards QoE evaluation. But there is still a lack of study 
regarding data-driven 5G user’s QoE prediction using real-life network monitoring data. 
Since QoE is also dependent on specific use case, online gaming is selected in this study 
which is one of the important use cases of 5G. A machine learning model, namely an artificial 
neural network (ANN) model, is proposed to predict the users’ QoE in a 5G network based 
on features extracted from radio access network monitoring data. Ten types of physical-
layer data are collected using an industrial-grade 5G NSA indoor campus network for an 
online gaming use-case. Out of the total 110 statistical features, the top 30 features are 
selected based on ANOVA F-test for training the ANN model. The proposed ANN model with 
four layers achieves prediction accuracy close to 80% and very fast convergence in training. 
The performance of the ANN model may be affected by the small dataset and the 
inconsistency of the users when rating their experience using the survey form after each 
gaming session. At present there are not sufficient data instances in the constructed dataset 
due to the difficulty in field measurement. Moreover, different users may have different 
expectations, and the inconsistency of the rating will lead to reduced performance of the 
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ANN model. It is also worth mentioning the status of the game server is also a factor 
influencing the user’s experience. Our current work focuses on expanding the dataset, 
developing more advanced machine learning model such as deep learning and including 
external factors such as game server status to improve the prediction accuracy. 
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