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Abstract. Video framebuffers are usually used in video processing systems to store an entire frame 
of video data required for processing. These framebuffers make extensive use of random access 
memory (RAM) technologies and interfaces that use them. Recent trends in the high-speed video 
discuss the use of higher speed memory interfaces such as DDR4 (double-datarate 4) and HBM 
(high-bandwidth memory) interfaces. To meet the demand for higher image resolutions and frame 
rates, larger and faster framebuffer memories are required. While it is not feasible for software to 
read and process parts of an image quickly and efficiently enough due to the high speed of the 
incoming video, a hardware-based video processing solution poses no such limitation. Existing 
discussions involve the use of framebuffers even in hardware-based implementations, which 
greatly reduces the speed and efficiency of such implementations. This paper introduces hardware 
techniques to read and process kernels without the need to store the entire image frame. This 
reduces the memory requirements significantly without losing the quality of the processed images. 
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1. Introduction 

Video processing solutions (Park et al., 2020) typically require incoming video streams 
to be captured and stored first, and then to be processed later. This technique of buffering 
incoming frames is still the mainstream technique used to process videos today. However, 
as the consumer demands for clearer and faster videos continue to rise, initiating 
processing of videos after a time- lapse of several frames reduces efficiency and increases 
latency between the incoming video and the consumer of the video at the endpoint of the 
video pipeline. This paper introduces techniques that enable real-time processing of videos 
to reduce such latency while still maintaining the quality of the video being received, 
enabling potential improvements to existing hardware-based solutions that require the use 
of external RAM memory for frame buffering. 

Traditionally, random-access memory (RAM) (Kechiche, 2018; Vervoort, 2007; Wang, 
2019; Cerezuela-Mora et al., 2015; Gonzalez, 2002) has been extensively used to store 
entire image frame data before actual processing is performed in image and video 
processing. As the resolution of images increase, so do the need for more RAM. To be able 
to process video at high speed, access to the memory now becomes a bottleneck. Newer 
DDR and HBM RAM interfaces have been designed to cater for a surge in need for faster
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RAM access from the host (eg. graphics processing unit (GPU)). This paper proposes a 
technique to perform image processing without requiring the use of external DDR or HBM 
RAM memory. A much smaller amount of on-chip RAM is required to buffer the incoming 
video stream. Figure 1 shows a video processing system that incorporates the proposed 
image processing technique. This paper is an extension of work originally presented in the 
2020 edition of the IEEE Region 10 Conference (TENCON) (Kho et al., 2018).  
 
2. Literature Review 

 Chen (Chen, 2008) has shown that it was feasible to implement Full-HD (1920×1080p)-
resolution video processing on an application-specific integrated circuit (ASIC) at 55 fps. 
However, it is not known what type of edge detection or video sharpening algorithms were 
supported, or if any exist at all. Our research has shown that video sharpening, edge 
detection, and potentially many other video processing algorithms, can be implemented 
feasibly on a low-cost and much slower FPGA at a speed of at least 60 fps. 
 He (He, 2019) showed that it was feasible to implement high-speed HDMI video 
transfer and display using an FPGA device. Similar to our research, they have also used the 
HDMI as the video input interface to receive and perform video capture. However, their 
solution focused more on video capture, transmission, and display, with median filtering 
being the only algorithmic block. We have also used something similar to the image storage 
module, in what we refer to as the Row Buffers shown in Figure 1. However, our research 
focused more on improving algorithm efficiency and quality (Kho et al., 2018; Kho et al., 
2019; Kho et al., 2020), as well as efficient video data encoding techniques. Our Row Buffers 
re-encode the VGA or HDMI input video stream into a native 15×3-pixel chunk structure 
which is then provided to the Chunk Processor. Our Chunk Processor efficiently repacks a 
chunk into an array of fifteen 3×3 kernels, which are then passed directly into our algorithm 
blocks for further video processing. As shown in Figure 7, there are 15 such kernel 
processors within the Chunk Processor that processes each kernel in parallel. Our 
algorithmic blocks can receive these kernels directly and commence the processing without 
further delay. 
 Kolonko (Kolonko, 2019) used a Raspberry Pi single-board computer to repack the 
standard VGA or HDMI input video source to a format suitable for their FPGA design to 
manipulate. Such a system was intended to test the algorithmic blocks within the FPGA, and 
it was not meant to be a production-ready solution. Our chunk processor has shown to 
quickly process incoming VGA or HDMI video and pass the information quickly to the 
algorithmic blocks, hence, this solution can be used as a stand-alone production-ready 
solution. 
 Kechiche (Kechiche, 2018) shows a typical implementation that uses an ARM processor 
connected to an AXI bus, and making use of a 1-Gigabit DDR3 external RAM device. Sousa 
(Sousa, 2020) uses the million of connection updates per second (MCUPS) metric to 
characterize the throughput of their neural-network based application, which is different 
from the video processing throughput. Park (Park, 2020) discussed a 29×29-pixel Retinex 
algorithm at length and reported that the latency in a 1080p video processing environment 
at 60 fps is unnoticeable. The latency proposed in this paper is also unnoticeable and has 
been used successfully in gradient-based calculations. Our proposed techniques could be 
scaled to the same kernel size as Park’s, enabling the scaling of such applications to higher 
resolutions and framerates. 
 Wahab (Wahab et al., 2015) shows an automatic face-image acquisition system 
designed using a microcontroller that can be used for facial recognition applications. 
Pasnur (Pasnur et al., 2016) described methods to retrieve a partial image by specifying a 
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region of interest (ROI). Our proposed techniques aim to help improve the speed of 
recognition and retrieval processes.  
 
3. Hardware Architecture 

3.1.  Devising a new kernel processing scheme 
 Image processing algorithms usually implements with kernels, which are small fixed-
size pieces of an image. These kernels contain pixels that form a square, with the width and 
height of the square usually as an odd number. Even-numbered kernel dimensions exist but 
are less common. Kernel sizes may range from 3-by-3, 5-by-5, 7-by-7, 9-by-9 pixels to larger 
dimensions. In this paper, we show how we have carefully devised a new image processing 
scheme that considers these odd-dimension kernel sizes. 
 We would like to process at least some kernels in parallel to leverage the parallel 
processing advantages inherent in hardware-based designs. A bunch of kernels will be 
transferred to the processing block to be processed in parallel. In our paper, we shall denote 
this group of kernels as a “chunk”. The block that processes these chunks is shown in Figure 
1 as the Chunk Processor. In selecting a suitable size of a chunk, we considered the various 
kernel sizes from 3×3, 5×5, up to 15×15. We settled on a chunk size of 15×3 pixels due to 
practical reasons. 

 

Figure 1 Video processing system block diagram 

 
Figure 2 Examples of odd-sized kernel structures  

 Figure 2 shows several examples of odd-sized image kernels. The dark pixels denote 
the centre pixels. Because we are not able to support each and every possible kernel 
dimension, we wanted to make sure at least several kernels could be processed 
simultaneously using common chunk. By selecting a 15×3 chunk size, 3×3-sized kernels can 
be supported. Although other kernel dimensions such as 5×5 and 7×7 are gaining in 
popularity, kernels having dimensions of 3×3 pixels are still very much in use, therefore 
will be the focus of this paper. 
 To perform video processing continuously, one would shift the center pixel by one 
pixel, (either to the right, or to the bottom) by assuming that processing is done from the 
left to right and top to bottom. For example, by shifting the center pixel to the right, this 



1048  Video Chunk Processor: Low-Latency Parallel Processing of 3×3-pixel Image Kernels 

 

would result in having 13 full kernels in a 15×3 chunk, and 2 partial kernels. The partial 
kernels are what we denote as the edge kernels or boundary kernels, as shown in Figure 3. 

 
Figure 3 Boundary kernel structures 

 We will show that, from the viewpoint of the Kernel Processors, the pixel shifts are 
occurring in parallel, which means that we are processing all 15 kernels within a chunk 
simultaneously. This means that within a single chunk_valid cycle, all 15 kernels within a 
chunk are being processed in parallel, while the next chunk of video data is being buffered 
by the row buffers and transformed into chunks by the chunk processor. 

3.2. Kernel processing scheme 
 The input video source is read in pixel-by-pixel by a pre-processing block, which is 
comprised of row buffers that stores several rows of pixels of a frame. These Row Buffers, 
as shown in Figure 1, receive the incoming pixels serially and buffer them in internal RAM 
memory. This block then transforms the buffered pixels into our chunk format, which is 
subsequently transferred to the chunk processor block. The row buffers will also generate 
a chunk valid pulse every time a 15×3-pixel chunk has been buffered and the data is 
available for the chunk processor. The chunk processor then transforms chunks into 
individual kernels which are fed into the parallel algorithmic kernel processors. This will 
process all the 15 kernels within the chunk in parallel. 
 In our research, we wanted to perform Sobel edge detection with a 3×3 kernel. The 
pixel arrangement of such a kernel is shown in Figure 2, where the highlighted pixel in black 
is the center pixel. For a typical software-based solution, the algorithm would sweep across 
the kernels from the left-most of the frame to the right, each time reading a 3×3-pixel kernel 
across 3 rows of the image. For our proposed hardware-based solution, we would read in 3 
rows of 15 pixels directly (a chunk) and begin to process all the 15 kernels simultaneously. 
The proposed chunk structure is shown in Figure 5. 
 In the case of our Sobel gradient computations, it takes 3 clock cycles to complete the 
processing of a kernel. Because all the kernels within a chunk commences processing in 
parallel in which the same algorithm is used to process each kernel, all the kernels will also 
complete the processing at the same time. We shall denote this duration as the chunk 
processing time δTc. The chunk processing time varies depending on which algorithm is 
being used to process the kernels, and the actual hardware implementation involved 
including the number of pipeline stages used. 
 After a chunk has been processed, the hardware moves on to the next chunk and 
repeats the process until the end of the frame is reached. In the context of a Full-HD 
(1920x1080p) frame, our proposed chunk structure would be as shown in Figure 6. 
Figure 7 shows a block diagram of our proposed chunk processing scheme. The Chunk 
Processor in Figure 7 corresponds to the same Chunk Processor module as was shown in 
Figure 1. Likewise, the Kernel Processors in Figure 7 corresponds to the same module as 
depicted in Figure 1. Here, we show the parallel processing architecture of the 15 Kernel 
Processors. 
 The kernel outputs from the Chunk Processor are fed to the algorithmic Kernel 
Processors for parallel computation. The kernel processor outputs q0 to q14 correspond to 
the processed pixels after every kernel has been processed. Each kernel processor works 
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on the center pixel of a 3×3-pixel kernel and computes the resulting output pixel qN based 
on the other 8 pixels adjacent to the center pixel. 

 
Figure 4 Chunk valid timing 

 
Figure 5 Chunk structure 

 
Figure 6 Chunk structure for a Full-HD Frame 
 

 

Figure 7 Parallel kernel processing scheme 

At every chunk_valid pulse, data from 15 kernels is available. The 15 Kernel Processors 
will commence the parallel processing of all the kernels coming from the Chunk Processor, 
producing the pixel field q consisting of 15 pixels per chunk_valid cycle. 
 
4. Experimental Setup 

Figure 8 shows the experimental setup to characterize our video buffering scheme and 
processing algorithms. Our hardware implementation currently supports Full-HD (1080p) 
resolution video running at 60 frames-per-second (fps). 

In our laboratory environment, we used a 100-MHz oscillator input from our board as 
our system clock. A Xilinx Mixed-mode Clock Manager (MMCM) module is used to 
synthesize the output frequencies required for 1080p video. From the 100-MHz input 
clock, a pixel clock running at 148.5 MHz is generated by the MMCM. Also, a high-speed 
clock running at 750 MHz, required for transmitting and receiving serialized video data at 
the HDMI connectors, is also generated by the MMCM. 
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Figure 8 Experimental laboratory setup 

To characterize the performance of our chunk processor in terms of signal latencies, 
we shall first denote the signals of interest. The reset signal resets the system to default 
values. During this time, all counters and registers are zeroed out. The Vsync signal is the 
vertical synchronization signal of the incoming video input. Together with the vertical 
blanking (Vblank) signal, the Vsync signal is used to flag that a new video frame has arrived. 
Both the reset and Vsync signals are inputs to our chunk processing module. 

The chunk_valid signal is an output of our chunk processor block, indicating that a 
chunk of video data (15×3 pixels) has been processed and it is available for use by the 
downstream algorithmic processing blocks. 

As part of our characterization work, all these signals are captured using Xilinx 
ChipScope, and they produce similar results with our logic simulations. The Results section 
discusses these in terms of signal latencies and performance. 

 
5. Results 

Our simulation testbench closely emulates our hardware configuration. All hardware 
blocks have been written in the VHDL (Ashenden, 2010) hardware language. The design 
was functionally simulated in Mentor Graphics ModelSim. A sample screen capture of the 
final simulation results are shown in Figure 9. 

 
Figure 9 Partial view of output data from chunk processor. 

After gaining enough confidence from our simulations, we synthesised our design to 
FPGA hardware using Xilinx Vivado. The final implementation was downloaded into the 
Xilinx Artix XC7A200T device and the hardware results are acquired in real-time using 
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Xilinx ChipScope. The realtime hardware results are compared and verified against the 
ModelSim simulation results. 

5.1. Functional Simulations 
 We have implemented this design on a Xilinx Artix 7 (XC7A200T) FPGA device and 
used Xilinx’s ChipScope integrated logic analyzer to acquire real-time waveforms from our 
development hardware. Figure 9 shows a partial view of the functional simulation results 
in ModelSim. 
 From Figure 10, we note that the latency from the deassertion of the reset signal until 
the first assertion of the chunk_valid signal is 59.3535 microseconds (μs). A similar amount 
of time will be taken between the assertion of the Vsync video synchronization signal until 
the assertion of the chunk_valid signal. This means that the initial latency after a reset or 
power-up -up event, until data becomes available for processing by the algorithmic blocks, 
is 59.3535 μs. 
 Figure 11 shows that the processing latency between one chunk_valid pulse and the 
next is 101.01 nanoseconds (ns). 

 
Figure 10 Start-up latency between reset and first chunk_valid 

 
Figure 11 Latency between two consecutive chunk_valid pulses 

5.2. Hardware Synthesis, Place & Route, and Design Assembly 
 The Xilinx post-synthesis report shows that our row buffers and chunk processing 
scheme utilize only 397 look-up tables (LUTs), which on the Artix XC7A200T device, 
translates to just 0.29% of all the LUT resources in the chip. The post-synthesis results are 
shown in Figure 12. 

 
Figure 12 Post-synthesis utilization results for the chunk processing module 
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 Xilinx’s post-place-and-route (PAR) report shows that our chunk processing scheme 
was physically implemented with only 794 LUTs, which translates to 0.59% of all the LUT 
resources in the Artix 7 chip. The results are shown in Figure 13. 

 
Figure 13 Post-PAR utilization results for the chunk processing module. 

 The extra LUTs reported by the post-PAR report are due to deliberate insertion of 
multiplexers to serialize the chunk output results, which otherwise would have used too 
much input/output (I/O) pins to implement. During normal usage, this module will be 
integrated with the algorithmic processing modules which will be able to receive all the 
parallel chunk data directly. This will in effect, require only 397 LUTs in a typical 
implementation. 
 Notice that in our implementation, we have also used 6 Xilinx’s block random-access 
memory (BRAM) memory for buffering of the incoming Full-HD video data. This amounts 
to only 1.64% of the Artix 7 device. This means that our implementation is more easily 
scalable to support higher video resolutions such as 4K and 8K video, without requiring 
additional hardware. 

5.2. Computational Throughput 
 The chunk processor depends on the video transfer rate of the incoming video stream. 
As such, certain amount of pixel buffering is required before repacking the pixels into the 
15×3 chunk format. Once a 45-pixel chunk is available, the downstream algorithmic blocks 
will process all 15 kernels in parallel. In effect, there are 15 overlapping kernels, each with 
3×3 size, that are being processed in parallel by the algorithmic kernel processing blocks, 
resulting in a total of 135 concurrent pixel operations per chunk_valid cycle. 
 We are therefore processing 135 pixels within a 15-cycle period of the pixel clock for a 
single channel of video data, which translates to 9 pixels per clock per channel. For a 3- 
channel RGB or YCbCr video system as in our case, we have 27 pixels per cycle of the pixel 
clock. Consider our pixel clock to have a frequency of 148.5 MHz (as in the case of Full-HD 
(1080p) video), hence the pixel clock period is 6.734 ns. As a result, we have a 
computational throughput of 4.0095 gigapixels per second, as shown in Equation (1). 
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 Table 1 provides  comparisons between our computational throughput against the 
throughput results from other implementations. Due to differences in the scope of work, 
fair comparisons could not be made. For example, we discuss the computational throughput 
of the buffering and pixel-packing stages before any algorithmic computations are 
performed, whereas the other implementations discuss the throughputs of the actual 
algorithms being performed. 

Table 1 Computational throughput comparisons between several implementations. 

Implementation  Throughput (Mpixels/s)  

He et. al (He, 2019) 995 

Zhou et. al (Zhou, 2011) 530 

This Worka 4009.5 
                     a Fair comparison could not be made due to differences in scope 

 Due to the scarcity of pre-algorithmic throughput data, Table I gives an idea of existing 
computational throughputs (Zhou et al., 2011; He et. al, 2015; He et al., 2019) related to 
video processing in general. The fact that our computational throughput is much higher at 
4.0095 gigapixels per second implies that our solution could be applied to other existing 
kernel-based algorithms without incurring too much additional latency, and instead help to 
increase the throughput of such systems by helping to process kernels in parallel. 
 
6. Conclusions 

 Our research has shown that we are able to process video edges and perform video 
sharpening in real time at 60 fps frame rate for incoming Full-HD video. By utilising our line 
buffers and chunk processor blocks, incoming serial video streams from an HDMI input 
interface can be quickly transcoded to a suitable data format for other downstream video 
processing algorithms, such as our video edge detection and enhancement algorithms. The 
ability of our chunk processor block to directly produce kernel data structures for seamless 
integration with our algorithmic blocks helped increase the performance and efficiency of 
our solution. The chunk processing scheme has shown to be feasibly implemented with a 
small amount of digital hardware (397 LUTs, and 6 internal BRAMs), and could help lower 
the cost of existing video processing systems. 
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