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ABSTRACT 
In considering Composite Material Systems, the Markov Model is important for studying the 
behavior of composite materials. The monitoring of crack growth is suggested as the basis for 
this study. In fact, crack growth strongly impacts Composite Material Systems. Crack growth 
may lead to system failure, especially if we cannot prevent the various kinds of risk states and if 
we do not take necessary actions to maintain this system while in operation. In order to analyze 
risk states for steel materials, in the Moroccan National Railway Office, the Markov Model of a 
unit jump is chosen to analyze the crack growth of a composite material. This model is defined 
by a transition vector and a state vector, with a calculation of the averages and the extensions of 
the crack. Using these parameters, the jump of each extension of the crack and the number of 
the crack extensions are considered. A mathematical calculation helps us to find the formula for 
the transition probability, based on the average. An algorithm allows us to estimate the value of 
the crack jump. These estimations indicate the level of risk for each system state and values of 
the crack extension. The obtained results show that more the unit jump approximates to zero, 
the more the system is maintained in an acceptable operation, despite any disruptions that may 
influence the results. 
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1. INTRODUCTION 

In Composite Material Systems, the crack growth is seriously being studied, because it is 
essential to the security, safety, and operations of these systems. In order to predict the crack 
growth of materials under certain operational conditions, many stochastic models have been 
used. Cadini et al. (2009), Corbetta et al. (2014), Mohanty  et al. (2009), Nechval et al. (2007), 
Sankararaman et al. (2011), Xiang et al. (2011), and Zapatero et al. (1990) have studied fatigue-
sensitive aircraft structures in order to reduce the risk of failure and to determine the minimum 
level of reliability. In fact, the prediction of stochastic crack growth accumulation is important 
for reliability analysis (Yang et al., 1996). Then, when we prevent the probability of the failure, 
we can estimate reliability and finally decide the level in which we must act, to maintain the 
continuity of our system operations. However, for studying crack growth in a dynamic system, 
the Markov Process is the best model. Many Markov Models are applied to predict crack 
propagation and to study the behavior of a system. Bo-Siou et al. (2009) have proposed a model 
of Markov chains for predicting the evolution of damage, with a method for constructing a 
stochastic curve for a number of Composite Material Systems.  Beil et al. (2009), Brandejsky  et  
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al. (2013), Chiquet et al. (2009), Davis (1984), Davis (1993), Dhondt (1995), Rowatt et al. 
(1998), de Saporta et al. (2010), de Saporta et al. (2012), Zhang et al. (2014) have presented a 
Markov Model based on the evolution of damage to characterize fatigue behavior. Based on 
these behavioral studies, we investigated modeling the crack using a Markov Model with a 
method of simple analysis. From this perspective, we found that the Markov Model used by 
Bogdanoff et al. (1985) contains as few parameters as possible even when including all major 
variables. This model has been used for analyzing the damage to a component under conditions 
of severity. Bohn (1990) has used the best non-homogeneous Markov model that gives a very 
good description of the actual behavior of a pitting corrosion system. Also, Xi et al. (1997) 
found the best methodology, because they used a simple function (a linear function) to calculate 
the maximum load using a Markov Model of R-curve behavior. Thus, we seek a Markov model 
that gives us the best possible simulation of crack evolution to enable us to predict risk states, 
which can be applied to our research. 

Original works of Meier-Hirmer et al. (2006) show that it is possible, using a Markov process 
of unit jump, to model the wear of centenary pieces for the National Railway Society in France. 
Hence, we chose this model to apply to our study of steel materials, which are commonly used 
for train wheels and rails in a railway system. We chose the Markov Model of a unit jump that 
was applied by Roh et al. (2000). This model is advantageous because it gives a general 
formulation for the evolution of the fracture in a system. Roh et al. (2000) used the Markov 
Model of a unit jump to calculate transition probabilities with a formulation that is 
characterized by a jump δ. Their work focused on the probability itself more than the unit jump. 
In their application, Roh et al. (2000) used a constant value for δ. However, we noticed that this 
unit jump was not constant and it may be the factor that determines whether the system is in a 
disruptive state or not.  In that regard, we will focus on this unit jump and prove its importance. 

This article is composed of three sections. In the first section, we present our model, which is 
defined by a transition probability from one state to another, and which is characterized by an 
averaging and an extension of the fracture , where  is the unit jump of each extension in 
the fracture and  is the number of fracture extensions. Our aim is to calculate this unit jump, 
which is indicated as . In the second section, we will use the formulation of  to estimate the 
probability of crack growth in a material. We used a numerical application for the steel material 
in the third section, in order to conclude at what level the system may be in a risk state and in 
such an instance, what necessary actions should be made to maintain the system in operation, 
despite this risk.  
 
2. METHODOLOGY OF ESTIMATING CRACK GROWTH 
Our methodology aims to calculate crack growth in a material, before making simulations of 
transition probabilities. It is established in order to estimate the level of risk. It consists of two 
steps, which are presented in Figure 1. 

Step 1.  Our methodology begins by defining the Markov Model of a unit jump, with the 
Transition Probability Matrix , which is defined by Equation 1 below. From this Matrix, (Roh 
& Xi, 2000) have demonstrated the Transition Probabilities values , which are 
presented in the Equation 6 below. Consequently, these probabilities are functions of the mean 
values  and the jump  .   

Step 2.  The crack growth is then calculated by using the formulation of these transition 
probabilities in Equation 6. Next, the values of a unit jump   are demonstrated by  recurrence, 
and the results are obtained in Equation 13 as shown below.   
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Figure 1 Diagram summarizing our methodology 

2.1. Presentation of the Model 
The Markov Model of the unit jump is defined by a transition vector and a state vector. The 
value   is defined, where j is the current state of the system and  is its current transition. To 
predict the life expectancy of a material, the value  is used to determine the state of the crack, 
and its evolution. 

Our model is defined by the transition probability matrix  in Equation 1, where: 

 

 

(1)

And, for   ,  is the probability that the crack remains in the state   and  is the 
probability that it will change from state  to state . 

The initial transition vector , associated with this Markov model is considered. Generally, it 
has the value , when the transition is . (And,  when it is 
100% sure that the system maintains the state j = 1 at the initial stage).  
Thus, the transition vector at Step 1 is shown in Equation 2, as follows: 
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 (2) 

The distribution at the Step  is shown in Equation 3: 

 (3) 

Therefore, if it is considered that it is 100% sure that the state   is maintained at the 
initial stage, by the system.  The likelihood for maintaining the same transition  is 
shown in Equation 4: 

 (4) 

(See Appendix below). It is also called the trial of the first failure. 
This is a geometric distribution, hence  and q can be obtained by solving the following system 
algorithm as shown in Equation 5: 

 
(5)

Roh and Xi, (2000) have used this model to demonstrate the equation for the transition 
probability, below as shown in Equation 6: 

 

(6)

If the transition variable is selected as the crack extension, then  will be the mean value of the 
extension under the loading level . 

Then, the unit jump  of the crack length from one state to another will be calculated. 

2.2. Calculation of the Unit Jump to Define the State of Risk 
Supposing that the length of the crack begins at zero and that  is the average value of the 
transition variable . By using the formulation of   in Equation 6,  becomes the result in 
Equation 7: 
 

 
(7) 

By recurrence, the calculation in Equation 8 proves that: 

For  : 

 
(8)

Thus, it is relevant to calculate at each stage the value shown in Equation 9: 

 
(9)

Consequently, using this last formulation,  is calculated by the following algorithms shown in 
Equations 10, 11, 12, and 13 as follows: 
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Initialize: ,  , , : 
Iteration 1: 

Calculate  by using the following equation: 

 (10) 

For : 

 

(11)

And,  

 
 

(12)

Finally, 

(13)

 
3. APPLICATION ON THE CRACK OF A MATERIAL  
At each state, the crack in a material is considered as an inverted triangle (Figure 2). The 
average  can be calculated by estimating the center of gravity for this triangle. So, parameters 
of this triangle change from state-to-state. The unit jump is the distance between the center of 
gravity of a triangle at one state and that of the next state. 
 

 
Figure 2 Crack in a material 

 

By applying the previous algorithm on Matlab, the value of  will be found. In the unit jump 
model of the Markov chain, the probability mass function (pmf) of the variable at each stage 
may be assumed to be a geometric distribution. So, the random variables that follow this 
probability distribution with parameter  are generated.  

By taking the example of steel materials for the National Railway Office in Morocco, based on 
the collected data, the parameter  will be estimated. As a result,  and by applying the 
previous algorithm, the value of will be:   .  

Figure 3 represents the graphic of the simulations of crack growth, for detecting the state of risk 
(the state when its maximum probability exceeds 0.5). 
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Figure 3 States of crack growth, when   

 
Of course, by changing the value of δ, other variations and other states of risk will be 
displayed.  Figure 4 shows variations of crack growth states, when , so .  
It should be noted that these transitions and states are chosen because it seems that they are 
enough to show the low and the high levels of risk.  So, the best visualization is obtained and it 
is easy to deduce levels at which it must act. However, if this choice does not give an 
acceptable visualization, then these numbers could be increased. 
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Figure 4  Variations of the crack growth states, when  

 
4. INTERPRETATION AND VALIDATION OF RESULTS 
4.1. Interpretation of Results 
From the Figure 3, the probabilities of crack increase continuously once the number of states 
increases. And, because the probability exceeds 0.5 in state 8, we can then consider that this 
state is the step in which the system becomes in a state of risk, so it should make all necessary 
actions to ensure that the respective system states will be under state 8. In this way, during its 
period of exploitation, the system in operation is maintained despite disruptions and failures 
that may influence it.   
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However, in Figure 4, all the states have low probabilities (the maximum probability is less 
than 0.3). This can be explained by the presence of good conditions, in which the system 
operates. Here, the system operation is perfectly maintained, even though there are some 
disturbances and during the exploitation period of the system only some mild actions are 
required to remain at this result.  
4.2. Validation of Results 
In Equation 13, the risk increases when  approximates 1, and then . So, to maintain this 
probability to a very minimal level, then  should be moved away from zero to achieve the 
maximum possible.  

To validate this conclusion, our attempt will be to represent graphically , and to compare its 
variations with those of the system states. Thus, Figure 4 is obtained and   varies during 100 
transitions. To compare it with the results obtained, Figure 5 brings together the two graphs 
obtained previously in Figures 2 and 3, for the two given .  

To obtain values of , random variables  are considered in a manner that follows geometric 
distribution with a parameter , and with  as its value. From Equation 13, we can 
conclude that at every set of state , that  . So, during 100 states, if at every time 
a set of states 1,2,….,n and 2,…,n and 3,…,n and n, n+1,… etc., is considered, then,   will 
have respectively  and   and  , ….and ,…etc. 

By comparing Figures 5 and 6, we see that the disruptions in Figure 6 appear mostly between 5 
and 20 transitions for the two graphs. And, during this interval [5, 20],  decreases to its 
minimum values (Figure 5). Hence, it is simple to conclude that disruptions appear when  
decreases to a minimum value, nearest to zero and disappears when  increases to a high value 
of probability.  

 
Figure 5 Variations of values of , at every interval, during 100 states 
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Figure 6 Two examples of variations of states of the system, for 100 transitions 

 
5. CONCLUSION 
In this article, our aim is to calculate the unit jump δ, in order to simulate crack variations and 
to detect states of risk. This is a scientific methodology for maintaining a system operation in 
security and safety. This calculation gives us an important indicator to analyze risks in a system 
in operational conditions. By maintaining the unit jump nearest to zero, the security is ensured 
and the system will operate safely. Our methodology is important for the steps of monitoring 
and controlling in risk management. But, it is not sufficient to know crack propagation and to 
predict risk, it must also be known what actions and plans should be established to maintain the 
system in operation at the same level of safety and security. This is our proposition for future 
research.  
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APPENDIX 

Equation 4 is derived from the calculation of the matrix : 
Then, 

 
thus,  

 

We suppose that 

 

where,  

 

We calculate : 

 
We then have: 

 

where : 

 
 

Consequently, when it is 100% sure that the system maintains the state   at the initial stage, 
the vector , so that: 
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In this vector the probability for the first state of failure is:   
 




