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Abstract. This study aims to compare the effectiveness of oxidation and adsorption technology in 
the inactivation of Avian Influenza (AI) virus subtypes H5N1 as well as H9N1 and remove the 
content of COD, BOD, and TSS in industrial wastewater of Avian Influenza (AI) vaccines production. 
The experiment variables are the number and type of oxidizers (O3 and H2O2), the number of 
adsorbents granular activated carbon (GAC), and the type of Advanced Oxidation Process (AOP) 
based on O3 (O3/H2O2 and O3/GAC). The measured parameters include virus inactivation test (CT 
Value) and the number of AI virus subtypes H5N1 and H9N2 as well as TSS, COD, and BOD of 
wastewater from the vaccine industry. The results showed that the AOP with O3/H2O2 at a dose of 
0.00013 g O3/ml of wastewater is the most effective technology in the inactivation of AI virus of 
subtypes H5N1 and H9N1 and the decrease in the content of COD, BOD, and TSS. Furthermore, 
approximately 2% of H2O2 and ozonation for 20 minutes with CT Value equal to No CT, virus 
quantity was 0.0 thousand units/0.1 mL and pH 7.16, while percentage removal of TSS, COD, and 
BOD were 58% (86.42 mg/L), 49% (575 mg/L), 52% (304.42 mg/L. For the COD and BOD values to 
meet the quality standards, it is recommended to apply the O3/H2O2 technology in series with an 
additional processing time of approximately 10 minutes, or as alternative processing can be 
continued at the Wastewater Treatment Plant (WWTP) which is already owned by the Vaccine 
Industry. 
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1. Introduction 

The COVID-19 virus epidemic had a significant impact on human life and the economy 
of countries around the world (Nur et al., 2022). This showed that outbreaks of other deadly 
viruses, such as Avian Influenza (AI) are expected to be transmitted to animals and humans. 
In Indonesia, the AI virus vaccine industry in West Java, in the production process, 
generates wastewater from live egg allantois, tank washing, and sterilization. The 
wastewater is processed by the disinfection method at a steam temperature of 850C for 45 
minutes. However, the products obtained usually contain AI virus strains H5N1 and H9N1  
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activity with COD, BOD, and TSS values that exceed quality standards. AI virus is a single-
stranded RNA virus of the family Orthomyxoviridae, which is deadly zoonotic and    
contagious to humans (Everest et al., 2021; Mostafa et al., 2018). Therefore, to prevent 
environmental pollution and the spread of avian influenza Virus subtypes H5N1 and H9N1 
from liquid waste from the Avian Influenza virus vaccine industry, the waste must be treated 
with the right technology. The 2 categories of these viruses are Low Pathogenic Avian 
Influenza (LPAI), including H9N1, which has 9 subtypes and High Pathogenic Avian 
Influenza (HPAI), which includes H5N1 with 5 subtypes. Furthermore, the viruses are 
divided into subtypes based on 2 surface proteins, namely hemagglutinin (HA) and 
neuraminidase (NA) (CDCP, 2022; Everest et al., 2021; Huang et al., 2021; Koutsakos, 
Kedzierska, and Subbarao, 2019). The HA is a type of glycogen and a class 1 fusion protein 
that has a multifunctional activity for attaching viruses to cells, while NA is an enzyme that 
releases viruses for complete infection (Kosik and Yewdell, 2019; Naguib et al., 2019). 

 The oxidation process using ozone and Advance Oxidation Procces (AOP) base on 
Granular Activated Carbon (GAC) and Ozone are more environmentally friendly, efficient 
and effectively in treating industrial wastewater containing AI viruses. This method is also 
superior to the use of other chemicals such as alcohol, formalin, surfactants, sodium dichloro 
in the inactivation of microorganisms on the surface of solid objects. Ozone of oxidizers are 
strong and unstable, have a broad spectrum of antimicrobials and are reactive to proteins 
and lipids (Tizaoui, 2020; Megahed, Aldridge, and Lowe, 2018). In water, ozone is 
decomposed into free radicals such as HO•, HO2•, O3•- and O2 (Fu et al., 2019). The 
inactivation of the AI virus by this compound is influenced by dose, time, temperature, and 
relative humidity (Dubuis et al., 2021; Kong et al., 2021). Hydrogen peroxide (H2O2) is also a 
strong oxidizer, with an oxidation potential of 1.77 Volts, which reacts and damages the 
structure of microorganisms by disrupting their metabolic stability. The same study also 
showed that H2O2 was an extremely effective inactivating for both RNA and DNA viruses in 
less than 2 h after exposure to a 3% aqueous solution of H2O2 (Elveborg, Monteil, and 
Mirazimi, 2022). The advantages of activated carbon include its high absorption capacity, 
with a surface area of 500 to 1500 m2, and its good absorb inorganic and organic pollutants 
such as phenol and heavy metal ions in the water and wastewater (Hoang et al., 2022; 
Desmiarti et al., 2019), as well as during ozonation (O3/GAC) has been reported to improve 
oxidation performance through acts as an initiator and increased transformation of O3 to OH 
radicals (Rekhate and Srivastava, 2020). 

Advanced Oxidation Process (AOP) is higher oxidation with •OH as an oxidating 
potential of 2.8 volts and is non-selective, the most reactive free radical formed in vivo 
(Martemucci et al., 2022). The •OH formation systems are homogeneous such as O3/H2O2 
(Fan, Sokorai, and Gurtler, 2020) and heterogeneous, namely O3/GAC (Chen et al., 2021; 
Wang et al., 2020). In O3/H2O2 systems, •OH and oxidants (O2•- and O2) are produced through 
a reaction between H2O2 and water to generate HO2-, which further reacts with O3 (Kim et 
al., 2021). Meanwhile, the mechanism of O3/GAC in wastewater treatment is such that 
organic micropollutants whose low reactivity to ozone can be removed by either (i)•OH, 
especially micro-hydrophilic pollutants and/or (ii) adsorption on the surface of activated 
carbon for hydrophobic micropollutants (Lisovskayaa et al., 2021; Wang et al., 2018; Vega 
and Valdes, 2018). Ozone has a low solubility at room temperature, and the solubility of 
ozone can be increased by using an aerator pump so that it can reduce the size of the ozone 
bubble by up to 90% and increase the effective ozone solubility to 0.47 ppm (Verinda et al., 
2022). 

Inactivation of AI Viruses subtypes H5N1 and H9N1 has been carried out in drinking 
water treatment (Lenes et al., 2010). However, research on AI virus inactivation in 
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wastewater containing COD, TSS, and BOD exceeding the standard has not been carried out 
using oxidation processes (O3 and H2O2) and Advanced oxidation (O3/H2O2 and O3/GAC). 
The purpose of this study was to compare the processes of oxidation (O3 and H2O2), 
adsorption (GAC), and Advanced oxidation of the vaccine Industrial wastewater treatment: 
inactivation of AI Viruses subtypes H5N1 and H9N1 and their impact on decreasing COD, 
BOD, and TSS values. 
 
2. Methods 

2.1. Equipment and Materials  
 Oxidation reactor from glass material size ID 4.0 cm and H 60 cm, equipped with 
incoming and outgoing ozone gas ports, Plate Magnetic Stirrer 500 – 1500 rpm (Thermo 
Scientific, USA), Biosafety Cabinet model BSC-1500IIB2-X (MEDFUTURE, China), Analytical 
Balance Sheet model ABJ320-4NM, max 220 grams (KERN, Germany), Realtime PCR 
Quantstudio5  (Thermo Scientific , USA), Ozone Generator with capacity 3 grams O3/h 
(Quanju, China), Egg Candler 2,000 mAh (Magicfly, China), Egg Incubator model T-JZ1056 
(Tengao, China), Laminar Air Flow (LAF) for PCR model 321 PCR Workstation (Captair Bio, 
Malaysia), and pH Meter work on ATC (Mettler Toledo, Indonesia, Sulfuric acid (Merck, 
Indonesia), Hydrogen Peroxide (H2O2) (Sindopex Perotama Indonesia), GAC (Granular 
Activated Carbon) (Bumi Agung Chemistry, Indonesia), Viral Nucleic Acid Extraction Kit 
(Geneaid, Taiwan), Quantitect, RT-PCR Kit (Qiagen, USA), Primer & Probe (Macrogen, Korea 
Selatan), Egg Specific Pathogen Free (SPF)  (SPF Egg Plant, Indonesia), Iodine (I2)  (Merck, 
Indonesia), Potassium Iodide (KI) (Merck, Indonesia), Sulfuric Acid (H2SO4) (Meck, 
Indonesia), Sodium Thiosulfate (Merck, Indonesia) and Kanji Solution (C6H10O5)n  (Merck, 
Indonesia).  

2.2. Preparation and Characteristics of Liquid Waste of AI Virus Vaccine Industry  
 Liquid waste of H5N1 and H9N1 virus vaccine industry from PT. Vaksindo Satwa 
Nusantara (Ungas vaccine industry) Gunung Putri, Bogor Regency. The collecting tank at 
the sampling point was used to collect 500 mL in a tightly closed glass bottle and stored at 
4oC. The characteristics of liquid waste from the vaccine industry before treatment are 
stated in Table 1. 

Table 1 Characteristics of Liquid Waste Industry Vaccine of Virus AI Subtype H5N1 and 
H9N1 

Parameter Before Inactivation *Quality Standards Unit 

Temperature 26 - oC 

pH 6,52 6,0 – 9,0 - 
Specific gravity 970,2 - kg/m3 
TSS 149 100 mg/L 
COD 1,172,85 300 mg/L 
BOD 585,42 100 mg/L 
Quantity of Viruses H5N1 138,786,192 - Quantity (Unit/0.1mL) 
Quantity of Viruses H9N1 22,091,644,00 - Quantity (Unit/0.1mL) 

* PERMENLH RI Number 5 of 2014 concerning Wastewater Quality Standards (Pharmaceutical   Industry 
Appendix XXXIX) 

2.2. Qualitative and Quantitative Analysis of AI Viruses in liquid waste (OIE, 2014) 
2.3.1. Inoculation of Wastewater Samples on Eggs 

A total of 0.1 mL of wastewater was inoculated onto 11-day-old SPF (Specific Pathogen 
Free) eggs, which were then incubated at a temperature of 37°C during 5 days. The eggs 
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were observed (candled) using an egg candler tool to determine the growth of embryos at 
dead or live eggs. RNA extraction was performed after incubation. 

2.3.2. Ribonucleic Acid (RNA) Extraction 
Allantois sample was obtained from inoculation on eggs, and RNA (Ribonucleic Acid) 

was extracted using a Viral Nucleic Acid Extraction Kit from Genaid with the appropriate 
procedure on the www.Geneaid.com website. 

2.3.3. Mixing RNA (RT-PCR) 
RT-PCR (Quantstudio5) was used to detect AI viruses of subtypes H5N1 and H9N1 

qualitatively and quantitatively. The RNA in samples was amplified with Quantitect Probe 
RT-PCR Kit reagents with procedures according to using specific primers 
(www.macrogen.com) for each strain of the virus. Meanwhile, the cut-offs for each of the 
H5N1 and H9N1 methods are presented in Table 2. CT is a measure of disinfectant 
concentration (C) multiplied by the time (T) required to achieve a given inactivation level 
of a microorganism. 

2.3.4. Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD), dan TSS Analysis  
Measurement of COD, BOD and TSS of wastewater Industry vaccine AI virus subtype 

AIH5 dan AIH9 before and after treatment from the Indonesian National Standard (SNI) 
(BSN, 2019), for COD with SNI6989.2: 2019, BOD with SNI 06-6989.14-2004 and TSS with 
SNI 06-6989.3- 2004. 

Table 2 Cut Off Each Method (H5N1 and H9N1) 

Target H5N1 H9N1 

Positive CT < 30 CT < 30 
Indeterminate 30 < CT < 35 30 < CT < 35 

  Negative  CT > 35  CT > 35  

2.4. Wastewater Treatment of Vaccine Industry and AI Virus Inactivation  
 A total of 200 mL wastewater from the AI subtypes H5N1 and H9N1 vaccine industry 
was placed in the oxidation reactor, O3 gas flowed up to 144 mg/L. min for 10, 20, 30, 40, 
and 50 minutes, and the remaining ozone was analyzed using the iodometry approach 
(Chasanah et al., 2019). In the adsorption experiments with GAC (5.0 and 7.5 and 10 % 
w/v), approximately 200 mL of wastewater was stirred with a magnetic stirrer in the 
reactor for 20 Minutes. Subsequently, treatment with H2O2 oxidizers was carried out at 2.0, 
4.0, and 6.0 %v/v, while ozone-based AOP (O3/H2O2 and O3/GAC) was conducted at 
different doses, H2O2, and ineffective GAC. 

 
Figure 1 Process flow diagram Wastewater Treatment of Vaccine Industry and AI Virus 
Inactivation with Ozonation and AOP base on Ozone (O3/H2O2 and O3/GAC) 

http://www.macrogen.com/
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3. Results and Discussion 

3.1. Inactivate of AI Virus in wastewater of vaccine Industry with H2O2. 
 Table 3 shows the inactivation data of H5N1 and H9N1 viruses by H2O2 at 2.0, 4.0, and 
6.0%. The optimum inactivation was obtained at H2O2 of 6% with each No CT and quantity 
value of approximately 0.0 units/0.1 mL, and the egg is still alive. This indicates that the 
virus is inactive (dead) and is incapable of damaging the egg. At a concentration of 4%, the 
egg was still alive, showing that the virus was inactive, where the H5N1 and H9N1 quantity 
values had approximately 0.0 Units/0.1 mL and 17.60 units/0.1 mL with No CT and a value 
of 35.51, respectively the eggs also die in H2O2 of 2% which indicated that the virus is still 
active and can infect eggs in both subtypes, with quantity values of 4,261.81 units/0.1 mL 
and 10,404.53 units/0.1mL with CT values of 35.31 and 27.41, respectively. Previous 
reports stated that the effectiveness of H2O2 in the inactivation of the AI virus occurs at 
concentrations of H2O2 > 5 % micro aerosol (Neighbor et al., 1994), and the inactivated 
virus by H2O2 still has the ability to induce an immune response in the same level as live 
viruses (Dembinski et al., 2014). When compared to the maximum removal of Paracetamol 
in Pharmacy wastewater, it reaches 80% with the use of O3: H2O2 (1: 0.25 or 25% H2O2). 
Therefore, to minimize costs, the use of H2O2 needs to be combined with ozone gas. Ozone 
is a selective oxidant, but the addition of H2O2 is generated in situ. 

Table 3 Data of AI Virus of subtypes H5NI and H9N1 in wastewater of vaccine industry 
before and after inactivation with H2O2 

 Hydrogen peroxide is a strong, broad-spectrum inactivating agent that can decompose 
into water, oxygen, and highly reactive hydroxyl free radicals (•OH). These radicals can 
cleave or crosslink a wide range of biomolecules, including proteins, nucleic acids, and 
lipids (Lisovskaya et al., 2021). The H2O2 reaction in AI virus inactivation in the wastewater 
of the vaccine industry is as follows: H2O2 acts as an oxidant by producing hydroxyl free 
radicals (•OH), which attack the essential cell components, including lipids, proteins, and 
DNA as well as RNA (Ofoedu et al., 2021; Elveborg, Monteil, and Mirazimi, 2022). 

3.1. Inactivate of AI Virus in wastewater of vaccine Industry with H2O2. 
 Table 3 shows the inactivation data of H5N1 and H9N1 viruses by H2O2 at 2.0, 4.0, and 
6.0%. The optimum inactivation was obtained at H2O2 of 6% with each No CT and quantity 
value of approximately 0.0 units/0.1 mL, and the egg is still alive. This indicates that the 
virus is inactive (dead) and is incapable of damaging the egg. 

3.2. Inactivation of AI Virus in the wastewater of Vaccine Industry with O3 
 The inactivation of AI viruses of subtypes H5N1 and H9N1 by ozone in the wastewater 
of the vaccine Industry in Table 4 shows a very significant effect. At 50 minutes of ozonation 
(0.0325 mg O3/mL) for H5N1 viruses, the decrease in CT and the quantity of viruses reaches 
100%, namely No CT and a quantity of 0.0 units/mL or complete inactivation. This is very 
important to restrict any possibility of DNA/RNA mutations (Hossain, 2022). Meanwhile, 
AIH9 has a CT value of approximately 34.27, a virus quantity of 407.4 units/mL, and more 

 Concen
tration 
(%) 

Egg  H9N1  H5N1 
Oxidizer Result Dead 

(Day to) 
CT 

Value 
Quantity 

(Unit/0.1 mL) 
CT 

Value 
Quantity 

(Unit/0.1 mL) 

Before treatment - Die 1 14.79 220,091,644 20.05 138,786,192 
After 

treatment 
by H2O2 

2.0 Die 2 27.41 4,261,81 35.31 10,404.53 

4.0 Live - 35.51 17.60 No CT 0.0 

6.0 Live - No CT 0.0 No CT 0.0 
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glycogen than H5N1. Since the viruses are in organic wastewater, H9N1 inactivation needs 
greater ozone (Kong et al., 2021). 

Table 4 AI virus of subtypes H5N1 and H9N1 in Wastewater of Vaccine Industry Before and 
After Inactivation with O3 

 AI virus is a single-stranded RNA virus that can be decomposed by ozone (Martemucci 
et al., 2022; Blanco et al., 2021; Mostafa et al., 2018; Megahed, Aldridge, and Lowe, 2018) 
and radical OH from ozone decomposition. 

3.3. Inactivation of AI Virus in wastewater of Vaccine Industry with GAC 
 The inactivation of AI viruses of subtypes H5N1 and H9N1 by GAC in Table 5 seems less 
effective, where at 10% GAC, a quantity of 1,577.9 units/0.1 mL and 6,618.28 units/0.1 mL 
was detected in the liquid waste. This indicated that it takes a GAC > 10% to achieve a CT 
value and quantity of viruses of approximately 0. The removal of viruses with GAC through 
the adsorption process depends on the dose of activated carbon or adsorption capacity, the 
contact time between activated carbon and adsorbate/virus (Zhang et al., 2021; Dotto and 
McKay, 2020; Wang et al., 2020; Matsushita et al., 2013). 

Table 5 Data of AI virus of subtypes H5N1 and H9N1 in wastewater of industry   vaccine 
before and after Inactivation with GAC 

3.4. Inactivate of AI Virus in wastewater of vaccine Industry with O3/H2O2 and O3/GAC 
 Figure 2 shows the number of AI viruses of the subtypes H5N1 and H9N1 in the vaccine 
industry wastewater after inactivation with O3/H2O2 at H2O2 (2% and 4%) and O3/GAC at 
GAC (5.0% and 7.5%) as well as various doses of ozone. The inactivation of AI virus of 
subtype H5N1 with O3/H2O2 at concentrations of 2% and 4% of H2O2 in the wastewater was 
carried out until the quantity of the virus became 0.0 units /mL and No CT, respectively, at 
20 minutes (0.00013 gr O3/mL) and 15 minutes (0.0001 gr O3/mL) of ozonation, while with 
O3/GAC at GAC 5.0% and 7.5% occurred at 25 minutes of stirring. Furthermore, inactivation 
of H9N1 with the use of O3/H2O2 at 2% and 4% was achieved at the 20th minute of 
ozonation (0.00013 gr of O3/mL of waste), and O3/GAC both for GAC 5.0% and 7.5% was 
the 25th minute. The difference in ozonation time or dose in the inactivation of H5N1 and 
H9N1 viruses with O3/H2O2 at 4% H2O2 is because H9N1 has a HA of 9 proteins, which is 
greater than H5N1 with HA 5 proteins and NA one protein (CDCP, 2022; Koutsakos, 
Kedzierska, and Subbarao, 2019). Therefore, it takes a long time or a greater ozone dose for 

 Time 
(Minute) 

Egg  H9N1  H5N1 
Oxidizer Result Dead 

(Day to) 
CT 

Value 
Quantity 
(Unit/mL) 

CT 
Value 

Quantity 
(Unit/mL) 

Before Treatment - dead 1 14.79 220,916,440 20.05 138,786,192 

 10 dead 2 23.65 544,294,4 27.53 10,816,205.0 

After 
treatment by 

O3 

20 dead 2 23.89 464,639,5 27.93 8,308,768,1 

30 dead  2  24.82 246,359,7 29.27 3,490,141,9 

40 dead 3 30.85 4,132.5 36.97 23,571,5 

 50 dead 3 34.27 407.4 No CT 0.0 

  
Amount 
(%) 

Egg  H9N1  H5N1 
Adsorbent Result Dead 

(day to) 
CT 

Value 
Quantity 

(Unit/0.1 mL) 
CT 

Value 
Quantity 
(Unit/0.1 mL) 

Before treatment - dead 1 14.79 220,091,644 20.05 138,786,192 
After 

treatment 
by GAC 

5.0 dead 2 21.34 161,120.20 31.49 123,230.86 

7.5 dead 2 23.74 51,391.30 35.25 10,780.20 

10 dead 2 26.76 6,618.28 38.22 1,577.97 
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the formation of OH radicals (Wang et al., 2018), especially since the virus is in the 
wastewater that has a fairly high COD value (Kong et al., 2021). 

 
Figure 2 The quantity of AI viruses of the subtypes H5N1 and H9N1 in wastewater of the 
vaccine industry after inactivation with O3/H2O2 and O3/GAC 

 The formation of OH-radical in wastewater with O3/GAC was faster, and after 6 h of 
operation, O3 initially led to an increase in Brunauer-Emmett-Teller (BET) surface area on 
the GAC (Vatankhah et al., 2019). There are 3 phases in the reaction at O3/GAC, namely 
gaseous (ozone gas), liquid (wastewater of vaccine Viruses), and solid (GAC) as adsorbent 
and a catalyst depending on the site (Wang et al., 2020). Figure 3 shows that (1) Ozone gas 
(O3g) dissolves in liquid waste (O3l) and degrades AI viruses, (2) dissolved ozone (O3l) by 
OH ions is decomposed into OH-radicals and also degrades AI viruses in liquid waste (3) 
dissolved ozone (O3l ) and AI viruses are adsorbed on the surface of the GAC and also 
degrades the viruses, and (4) part of the ozone on the surface of the GAC is decomposed to 
form free radicals (OH and Oxygen) (Beltrán, Rey, and Gimeno, 2021; Wang et al., 2020) 
which also degrade the AI viruses. 

 

Figure 3 Mechanism of AI Virus Degradation and Inactivation with O3/GAC in wastewater 
of Industry of vaccine 

3.5. Effect of O3/H2O2 and O3/GAC on the removal of COD, BOD, and TSS in liquid waste from 
the vaccine industry 
 Figure 4 shows that the inactivation of H5N1 and H9N1 with O3/H2O2 has a significant 
impact on the elimination of TSS, COD, and BOD compared to O3/GAC. Based on the results, 
TSS was removed by 58% to 61% and has met quality standards, COD by 49 to 50%, and 
BOD by 51 to 52 %. When compared to COD removal of leachate, it decreased by 27% - 45% 
through ozonation (Moersidik, Annasari, and Nugroho, 2021). In textile industrial 
wastewater, the COD removal was 79.31% with 48 -72 hours through a combination of 
MBBR and Ozonation technology (Suryawan et al., 2021), as well as in PLTU wastewater, 
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the removal of COD is 83.33% through O3/H2O2 with H2O2 of 1 mL/L and O3 of 0.3 m3/hour 
(Jasim et al., 2021). 

 

Figure 4 The effect inactivation of AI Virus of Subtype H5N1 and H9N1 with O3/H2O2 and 
O3/GAC on Removal TSS, COD and BOD in wastewater of Vaccines industrial of AI viruses 

Table 6 Summary of studies removal virus on the surface of solid, Water and Wastewater 
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H5N1 and 
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Vacine industry 
Wastewater 

(This study) 

H2O2 aerosol (> 5%;  

20 min contact) 

Inactive H5N1 Drinking Water (Neighbor et al., 
1994) 

H2O2 (3%; 2h contact) RNA and DNA viruses Wastewater (Elveborg, 
Monteil, and 

Mirazimi, 
2022) 

H2O2 (2.1%; 10 min 
exposure could) 

Norovirus and Bacteriophage 
by 4 log10 units. 
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(Li  
et al., 2011) 

O3 (0.0325 mg/mL; 50 
min exposure) 

H5N1 and H9N1(100%) Wastewater (This study) 

O3 (20 ppm and10 min 
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SARS-CoV-2  
(99.8% and 99.9%) 
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(Uppal et al., 
2021) 
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et al., 2021) 

Adsorption GAC (10%) with 20 min 
contact time 

H5N1 (99.97%) 
 and H9N1(99.99 %) 
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(This study) 
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and 11.01 min contact) 

Bacteriophage T4 99.99% 
 (4.0 log)  
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(Shimabuku 
et al., 2018) 

 
GAC (5 mg mL−1 and 

3096.72 min contact) 
Bacteriophage T499.99% 

 (4.0 log) 
 

AOP H2O2 (2%) and  
O3 (20 min) 

H5N1 and H9N1(100%); TSS 
(58%); COD (52%); BOD (49%)  
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Wastewater 

 
(This study) 

H2O2 (4%) and  
O3 (20 min) 

H5N1 and H9N1(100%); TSS 
(61%); COD (51%); BOD (50%) 

H2O2 (1 mL/L) and  
O3 (0.3 m3/h) 

for oil (89.79 %); COD 83.33 % 
and TOC (70%)  

Oily 
Wastewater 

(Jasim et al., 
2021) 

GAC (5%) and  
O3 (25 min) 

TSS (28%); COD (27%); BOD 
(15%); H5N1 and H9N1(100%) 

 
Vacine industry 

Wastewater 

 
(This study) 

GAC (7.5%) and  
O3 (25 min) 

TSS (23%); COD (33%); BOD 
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(Karamah,  
Adripratiwi, 

and Anindita, 
2018) 
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 In O3/H2O2, ozone decomposition in OH radicals becomes faster with the presence of 
H2O2 (Cuerda-Correa et al., 2019; Wang et al., 2018), and it's a significant impact on the 
removal of TSS, COD, and BOD However, COD and BOD still did not meet the quality 
standards of 300 mg/L and BOD 100 mg/L, respectively. The use of O3/GAC for the 
inactivation of viruses H5N1 and H9N1 was less effective, as the percent removal of TSS, 
COD, and BOD was only 14.77% and 18.79%, 27.60%, and 26.32%, and 27.44% and 
33.01%, respectively. Compared to the Tofu Industrial wastewater, the COD reduction 
reached 46.26% and TSS 12.38% through a combination of ozonation (155 mg O3/hour) 
and GAC (50 gr) (Karamah,  Adripratiwi, and Anindita, 2018). Visual observations also show 
that the results of wastewater treatment of the AI virus with O3/H2O2 are clearer than the 
use of O3/GAC, H2O2, and GAC alone. 
 
4. Conclusions 

Advanced Oxidation Process (AOP) based on Ozone and Hydrogen Peroxide 
(O3/H2O2) is proven to be effective and economical in inactivating AI viruses (H5N1 and 
H9N1) in AI vaccine industry wastewater. The use of ozone as much as 0.00013 g O3/ml 
for 20 minutes and as much as 2% H2O2 can cause the AI virus to die with a CT of 0.0 
unit/0.1 mL. Researchers suggest that stakeholders from the Ministry of Environment 
have a policy so that liquid and solid waste from the vaccine industry is treated using 
O3/H2O2 technology at least at the final processing stage before being discharged into 
the environment. In addition, the use of AOP technology (O3/H2O2) in vaccine 
wastewater treatment can simultaneously reduce TSS, COD, and BOD values; 58% (86.42 
mg/L), 49% (575 mg/L) and 52 % (304.42 mg/L). If the COD and BOD values of vaccine 
industrial wastewater are large enough, then in processing the amount of ozone can be 
increased by extending the processing time or as alternative processing can be 
continued at the Wastewater Treatment Plant (WWTP) which is already owned by the 
Vaccine Industry, so that the impact on humans can be prevented, considering that the 
AI virus shows symptoms of resistance to all types of drugs on the market. Whereas in 
drinking water treatment, it is recommended that at the disinfection process stage it is 
enough to use O3/GAC or Ozonation only if a pandemic situation occurs. There are two 
problems encountered in this study, namely optimizing the contact of ozone gas, H2O2 
with the sample, so that the removal of COD and BOD is maximized. In addition, 
researchers must ensure that they have received the vaccine because the AI virus is 
zoonotic. The future research, it is hoped that the AOP method will be tested against 
other virus variants found in the wastewater, for example hospital wastewater. 
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